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Abstract 
This work mainly focuses on the numerical simulation of the Fredholm 
integral equation of the second kind. Applying the idea of Gauss-Lobatto qu-
adrature formula, a numerical method is developed. For the integral item, we 
give an approximation with high precision. The existence condition of the 
solution for the Fredholm equation is given. Furthermore, the error analyses 
are presented. Finally, the numerical examples verify the theoretical analysis, 
and show the efficiency of the algorithm we discussed. 
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1. Introduction 

Integral equation is a very important tool, it has been more and more widely 
used in Mechanics, Mathematics, Thermodynamics, Physics and other fields in 
recent decades. As early as 1823, Norwegian mathematician N.H. Abel has ob-
tained the integral equation of the following form when he studied the tautoch-
rone problem. Now, the integral equation is also known as the Abel equation, 
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This integral equation can be regarded as a special case of Volterral’s integral 
equation, which can also be transformed into a fractional differential equation. 
The theory of integral equation is established mainly by Fredholm and Volterra 
in the late 19th century. Their work profoundly influenced the study of integral 
equations in the 20th century. Many mathematical models in science and engi-
neering can be described by integral equation model, such as anomalous diffu-
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sion problem, population prediction model, biological population ecological 
model, nerve pulse propagation, medical scanning, viscoelastic material simula-
tion, heat conduction problem with memory material, etc., one can refer to 
[1]-[6]. 

In this work, we will focus on the Fredholm integral equation of the second 
kind, 

( ) ( ) ( ) ( ), d ,
b

a
y x x t y t t f xλ φ= +∫                  (2) 

where ( ),x tφ  is the kernal of the integral equation, λ  is the coefficient of the 
integral item, ( )f x  is a free item. ( )y x  is the unknown function, a and b are 
the nodes of the integral interval. 

As is well known, the analytical solution of the integral equation is hard to get. 
Only in some special cases, such as the integral part contains degenerate kernal, 
the analytical solution can be presented. The numerical method is a very useful 
tool for solving the integral equation which is difficult to obtain the analytic so-
lution, even the integral equation whose analytic solution does not exist at all. 
From different research perspectives, many scholars have proposed various nu-
merical methods, such as finite difference method, Galerkin method, finite ele-
ment method, Nyström method, allocation method, successive approximation 
method, etc. 

Guo et al. used a finite difference scheme for solving the nonlinear time-fractional 
partial integro-differential equation [7]. Assari et al. presented a discrete Galer-
kin method for solving Fredholm integral equations of the second kind with lo-
garithmic kernels [8]. Brambilla et al. described the implementation of a 
one-dimensional integral equation in a finite-element model [9]. Guoqiang and 
Jiong got a Nystrom solution for two-dimensional nonlinear Fredholm integral 
equations of the second kind, and gave an error analysis for this method [10]. 
Chen and Tang analyzed the convergence of the Jacobi spectral-collocation me-
thods for Volterra integral equations [11]. Maleknejad and Sohrabi provided a 
numerical solution of Fredholm integral equations of the first kind by using Le-
gendre wavelets [12]. Yusufoglu and Erbas obtained a numerical solution for 
Fredholm-Volterra type integral equations by interpolation and quadrature rules 
[13]. And other one can refer to [14]-[21].  

2. Preliminaries 

In this part, the properties of the Legendre polynomials will be shown. And the 
zeros of the Legendre polynomials will be used to construct a numerical algo-
ruthm in the following part. 

Definition 1. [22] In the interval [ ]1,1− , with the weight ( ) 1xρ = , the po-
lynomials with the following relations are called Legendre polynomicals. 
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where 1,2,3,n =  . 
From the above relations, it is clear that the coefficient of Legendre Polyno-

mials ( )nP x  is 
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Property 2. 

( ) ( ) ( )1 .n
n nP x P x− = −                      (5) 

Property 3. 
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where 1,2,3,n =  . 
Similarly, the zeros of Chebyshev polynomials and other special polynomials 

also can be used to cope with this problem, one can refer to [22]. Legendre po-
lynomials are chosen here mainly because the weight coefficient is 1, which pro-
vides a great convenience for calculation. 

3. Nunmerical Algorithm and Error Analysis for Fredholm 
Integral Equation of the Second Kind 

Let’s consider the Gauss-Lobatto formula in the interval [ ]1,1−  
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where the coefficients , 1, 2,3,j jω =   satisfy the following relations 
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where ( )nP x  are the Legendre polynomials and , 1, 2,3jt j =  are the zeros of 
( )nP x′ . The trunction error is 
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If the interval is [ ],a b , one should make the following substitution  

( )
2

b a s b a
t

− + +
= . Then the interval [ ],a b  can be mapped into [ ]1,1− . And 

the Fredholm integral equation can be equivalently transformed to the following 
form 
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where [ ],x a b∈ , 
( ) [ ],

2
b a s b a

a b
− + +

∈ . 

For the Fredholm integral equation of the second kind, the hardest part to 
deal with is the integral term. The quadrature formula was applied to cope with 
the integral term. i.e. 
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= =   are the nodes, , 1, 2,3,j jω =   are 

the coefficients, nR  is the truncation error for the quadrature formula, 
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If we denote ( )i iy y x= , ( )i if f x= , ( ),ij i jx xφ φ= , then the following al-
gorithm will be proposed. 
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The coefficient matrix of the above system can be written in detailed as 
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Therefore, if ( ) 0det I C− ≠ , one can get the unique approximate solution. 

4. Nunmerical Examples 

In this part, the proposed algorithm will be employed to solve two Fredholm 
integral equations of the second kind. To show the efficiency of the algorithm we 
proposed the numerical results will be compared with the exact solution. 

Example 1. Consider the following Fredholm integral equation of the second 
kind 

( ) ( )1

0
e d e ,t xy x x y t t −= − +∫                    (15) 

where [ ]0,1x∈ , and the exact solution is ( ) e
2

x xy x −= − . 

Figure 1 shows the numerical and analytical solution of Example 1. One can 
find that the numerical solution and the exact solution are in good agreement. 
Figure 2 shows the errors at different nodes in the interval [ ]0,1 . The error 
bound is about 10−9, when 4n = . 

When we choose different collocation nodes, i.e. 2,3,4,5,6n = . Table 1 
shows that the errors at different points in the interval [ ]0,1  for Example 1. 
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One can find that the more nodes we use, the better accuracy we get. 
Example 2. Consider the following Fredholm integral equation of the second 

kind 

( ) ( )1

0

2 e d e ,
e 1

x xy x y t t= −
− ∫                   (16) 

where [ ]0,1x∈ , and the exact solution is ( ) exy x = . 
 

 
Figure 1. The exact solution and numerical solution (n = 4). 

 

 
Figure 2. The error of the exact solution and the numerical solution (n = 4). 
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Comparison of the numerical and analytical solutions of Example 2 is illu-
strated in Figure 3. Figure 4 reveals the absolute error of the numerical and 
analytical solutions for Example 2. Figure 1 and Figure 2 show a good perfor-
mance of the algorithm we proposed for solving the Fredholm intergral euation 
of the second kind. 

From Table 2, it can be seen that the numerical results with the method we 
proposed are in excellent agreement with the exact solution. When the colloca-
tion nodes 6n = , the absolute error is 10−16, which means a high precision of 
the method we used. 

 
Table 1. The errors of Example 1. 

x n = 2 n = 3 n = 4 n = 5 n = 6 

0.1 −6.54E−05 −1.79E−07 −2.48E−10 −2.06E−13 −2.22E−16 

0.2 −1.31E−04 −3.58E−07 −4.97E−10 −4.12E−13 −2.22E−16 

0.3 −1.96E−04 −5.37E−07 −7.45E−10 −6.19E−13 −3.33E−16 

0.4 −2.62E−04 −7.17E−07 −9.93E−10 −8.25E−13 −5.00E−16 

0.5 −3.27E−04 −8.96E−07 −1.24E−09 −1.03E−12 −6.66E−16 

0.6 −3.93E−04 −1.07E−06 −1.49E−09 −1.24E−12 −7.22E−16 

0.7 −4.58E−04 −1.25E−06 −1.74E−09 −1.44E−12 −9.44E−16 

0.8 −5.23E−04 −1.43E−06 −1.99E−09 −1.65E−12 −1.05E−15 

0.9 −5.89E−04 −1.61E−06 −2.23E−09 −1.86E−12 −1.17E−15 

1 −6.54E−04 −1.79E−06 −2.48E−09 −2.06E−12 −1.28E−15 

 

 
Figure 3. The exact solution and numerical solution (n = 5). 
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Figure 4. The error of the exact solution and the numerical solution (n = 5). 

 
Table 2. The errors of Example 2. 

x n = 2 n = 3 n = 4 n = 5 n = 6 

0.1 7.45E−04 1.41E−06 1.5E−09 1.01E−12 4.44E−16 

0.2 8.23E−04 1.56E−06 1.66E−09 1.12E−12 4.44E−16 

0.3 9.10E−04 1.73E−06 1.83E−09 1.23E−12 4.44E−16 

0.4 1.01E−03 1.91E−06 2.03E−09 1.36E−12 4.44E−16 

0.5 1.11E−03 2.11E−06 2.24E−09 1.51E−12 4.44E−16 

0.6 1.23E−03 2.33E−06 2.47E−09 1.66E−12 4.44E−16 

0.7 1.36E−03 2.58E−06 2.73E−09 1.84E−12 8.88E−16 

0.8 1.50E−03 2.85E−06 3.02E−09 2.03E−12 8.88E−16 

0.9 1.66E−03 3.15E−06 3.34E−09 2.25E−12 8.88E−16 

1 1.83E−03 3.48E−06 3.69E−09 2.48E−12 8.88E−16 

5. Conclusion 

In this work, we study the Fredholm integral equation of the second kind. For 
the integral term of the equation, we use Gauss-Lobatto quadrature formula to 
cope with it. We give the numerical algorithm and truncation error for the algo-
rithm we used. Furthermore, we give the existence condition of the algorithm 
for Fredholm integral equation we discussed. Finally, two numerical examples 
are shown to verify the efficiency and accuracy of the algorithm. 
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