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Abstract 
Functional brain network (FBN) measures based on functional magnetic re-
sonance imaging (fMRI) data, has become important biomarkers for early 
diagnosis and prediction of clinical outcomes in neurological diseases, such as 
Alzheimer’s diseases (AD) and its prodromal state (i.e., Mild cognitive im-
pairment, MCI). In the past decades, researchers have developed numbers of 
approaches for FBN estimation, including Pearson’s correction (PC), sparse 
representation (SR), and so on. Despite their popularity and wide applica-
tions in current studies, most of the approaches for FBN estimation only con-
sider the dependency between the measured blood oxygen level dependent 
(BOLD) time series, but ignore the spatial relationships between pairs of 
brain regions. In practice, the strength of functional connection between 
brain regions will decrease as their distance increases. Inspired by this, we 
proposed a new approach for FBN estimation based on the assumption that 
the closer brain regions tend to share stronger relationships or similarities. To 
verify the effectiveness of the proposed method, we conduct experiments on a 
public dataset to identify the patients with MCIs from health controls (HCs) 
using the estimated FBNs. Experimental results demonstrate that the pro-
posed approach yields statistically significant improvement in seven perfor-
mance metrics over using the baseline methods. 
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1. Introduction 

As the common neurological diseases, Alzheimer’s disease (AD) is defined as 
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diagnostic criteria of progressive cognitive and memory impairment [1]. It is 
reported that increasing populations will suffer from AD over time, which will 
severely affect their health and daily life [2]. Consequently, it is urgently needed 
for early detection and correct diagnosis for mild cognitive impairment (i.e., 
MCI, the early prodromal stage of AD) populations [3]. 

As a widely used non-invasive technique for measuring brain activities, func-
tional magnetic resonance imaging (fMRI) has been successfully applied to ex-
plore early MCI diagnosis [4]. In particular, the popular diagnosis models in-
clude Bayesian network (BN) [5], support vector machine (SVM) [6], and graph 
learning (GL) [7], but, due to the randomness and the asynchronization of the 
spontaneous brain activities, it is difficult to train these models directly using the 
fMRI data. In contrast, functional brain network (FBN), estimated by fMRI data, 
can provide an effective tool to better understand and study the brain structure 
of neurological diseases (i.e., MCI) [8]. In other words, estimating a high-quality 
FBN may be helpful for the subsequent neurological identification task [9] [10]. 

Mathematically, each node in the FBN corresponds to the brain region of in-
terest (ROI), and each edge shows the dependency relationships between pairs of 
ROIs. To estimate these edges, researchers have proposed numbers of approach-
es, in which the standard correction-based approaches include Pearson’s correc-
tion (PC)-based approach [11], (regularized) partial correction-based approach 
[12], and dynamic causal model [13] respectively. In this paper, we only consider 
second-order approaches, i.e., PC-based method and (regularized) partial cor-
rection-based method, since a recent study has empirically validated that they 
are more effective than many complex higher-order approaches. 

Despite its simplicity and popularity, PC always produces dense FBNs that all 
nodes are fully-connected by edges, since it is sensitive to both direct and indi-
rect functional connections in the brain. Thus, PC-based FBNs generally contain 
noisy or uninformative information. To remove the spurious information from 
the estimated FBNs, a common strategy is thresholding [14]. However, the op-
timal value of thresholding is currently an open problem. In contrast, partial 
correction is only sensitive to direct connections that can explain more complex 
interactions among brain regions. Even so, the estimation of partial correction 
matrix is usually ill-posed due to the singularity of the sample covariance matrix. 
To over this problem, the regularization term is generally contained the partial 
correction model, which generates a sparse representation (SR)-based method. 
Similarly, it is difficult to select the optimal value for the regularization term. In 
addition, both the above methods do not consider the spatial relationships of the 
BOLD time series. 

In practice, according to previous work, the strength of functional connection 
between two ROIs will decrease as their distance increases. For instance, people 
in a society are analogous as a node (or ROI), and the social relationship be-
tween people is analogous as edge (or functional connectivity) in the estimated 
FBN [15]. If two persons are spaced close together, they may have similar rela-
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tionships or social circles. Thus, we simply assume that the brain regions close to 
each other tend to share stronger relationships or similarity. Inspired by this as-
sumption, we propose a new approach for FBN estimation based on the spatial 
distance between ROIs. To verify the effectiveness of our model, we utilize the 
FBNs estimated by our method to identify the patients with MCI from health 
controls (HCs). Experiments conducting on a public dataset demonstrate that 
the proposed model outperforms than baseline methods (i.e., PC and SR). To 
better understand, we describe the whole pipeline of MCI classification task used 
in this study in Figure 1 that contains three main steps: 1) Data Acquisition, 2) 
FBN Estimation, and 3) Classification, which will be shown in Section II, III, and 
IV respectively. 

The rest of this paper is organized as follows: in Section 2, we introduce the 
data sources and preprocessing step; in Section 3, we review several related 
works and develop our method for FBN estimation; in Section 4, we describe the 
experimental setting and verify the proposed method for MCI identification 
task; in Section V, we conclude this paper. 

2. Data Acquisition 

In this section, ADNI (http://adni.loni.ucla.edu) dataset was utilized to identify 
the participants with MCI from HCs based on the estimated FBNs to demon-
strate the effectiveness of the proposed method. Concretely, for MCI vs. NC 
classification task, the preprocessed dataset with 137 subjects (68 MCIs and 69 
HCs) was utilized in this study, in which all participants were scanned by 3.0T 
Philip scanners. Further, to remain the signal stabilization, the first three vo-
lumes of each participant were removed from the fMRI time series/BOLD sig-
nals. Then, the remaining volumes were processed by Data Processing Assistant 
for Resting-State fMRI (DPARSF) toolbox [16]. The preprocessing step can be 
summarized into the following steps: 1) head motion correction (i.e., subjects with 
head motion larger than 2 mm or 2˚ were excluded), 2) Friston 24-parameters 
nuisance regression model (i.e., the influence of the ventricle, white matter sig-
nals, and the high-order effect of head motion were removed ); 3) registration to 
standard Montreal Neurological Institute (MNI) space; 4) spatially smoothing 
and temporal band-pass filtering (0.01 - 0.1 Hz). Finally, according to the auto-
mated anatomical labeling (AAL) atlas [17], the brain was divided into 116 
ROIs, and all BOLD time series of the whole ROI was placed into 137 116X R ×∈ . 

 

 
Figure 1. The classification pipeline used in our study. 
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3. FBN Estimation 
3.1. Pearson’s Correlation 

PC, as the most popular and simplest method to estimate FBNs, can be defined 
as follows mathematically: 

( ) ( )
( ) ( ) ( ) ( )

T
i i j j

ij TT
i i i i j j j j

x x x x
S

x x x x x x x x

− −
=

− − − −
,           (1) 

where , 1, ,T
ix R i m∈ ∀ =   is the mean time series extracted from ith brain re-

gion, T is the number of time points in each series, m is the total number of ROIs, 
T

ix R∈  is the mean of ix , and , , 1, ,ijS i j m∀ =   is the connection weight be-

tween ith ROI and jth ROI. In particular, we redefine ( )
( ) ( )
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x

x x x x

−
=

− −
, 

i.e., the new ix  has been centralized by i ix x−  and normalized by  

( ) ( )T
i i i ix x x x− − . Finally, Equation (1) can be simplified into T

ij jiS x x= , 

which corresponds to the optimal solution of the following form: 

, 1min
ijS i ij ji j

m x S x
=

−∑ .                     (2) 

Equivalently, Equation (2) can be further transformed into the following ma-
trix model: 

2
min T

S F
S X X− ,                       (3) 

where S is the connectivity matrix between ROIs, [ ]1 2, , , , , T m
i mX x x x x R ×= ∈   

is the data matrix, and 
F⋅  represents the F-norm of a matrix. In fact, FBN es-

timated by PC is very dense that contains noises or redundant connections. 
Thus, the threshold strategy is utilized to remove these redundant connections. 
However, selecting the optimal value of the threshold is still difficult. 

3.2. Sparse Representation 

As an alternative PC, SR is one of the commonly-used approaches to calculate 
the partial correction, which can estimate more reliable relationships between 
two ROIs by regressing out the confounding effect from other ROIs. The ma-
thematical model of SR can be defined below: 

2

1min
ijS i ij j iji j i j i

m x S x Sλ
= ≠ ≠

− +∑∑ ∑ ,              (4) 

Accordingly, it can be further rewritten by the following matrix form: 
2

1min

s.t. 0, 1, ,
S F

ii

X XS S

S i m

λ− +

= ∀ = 

                     (5) 

where 
1⋅  shows 1l -norm of a matrix. The constraint 0iiS =  is utilized here 

to avoid the trivial solution (i.e., S I= , the identity matrix) by removing ix  
from X. It is worth noting that the optimized matrix S in Equation (5) is asym-
metric. To be consistent with PC, SR-based FBNs (i.e., S) can be defined as 
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( ) 2TS S S= + . It can be observed that the data fitting term of Equation (5) can 
obtain the sparse FBNs, since the data fitting term estimates the partial correc-
tions between two ROIs, and the regularization parameter plays an important 
role to control the sparsity of the estimated FBNs. However, this method ignores 
the spatial relationship of pairs of time series. 

3.3. The Proposed Method 
Model 
The proposed method can be described by the following optimization model: 

2

, 1

1

min

s.t., 0, 1, 1, ,

ijS i j iji j

m
ij

m

ijj

x x S

S S i m

=

=

−

≥ ≥ ∀ =∑
∑



                (6) 

Equally, Equation (6) can be rewritten by the following matrix form in ma-
thematic: 

1

min

s.t., 0, 1, 1, ,

T
S

m
ij ijj

trXHX

S S i m
=

≥ ≥ ∀ =∑ 

                (7) 

where H D S= −  shows the Laplacian matrix, D is a diagonal matrix with di-
agonal elements 1 1, 1, ,m

ijj S i m
=

≥ ∀ =∑  , the constraint 10, 1m
ij ijjS S

=
≥ ≥∑  in 

Equation (7) is to prevent trivial solutions (i.e., 0, , 1, ,ijS i j m= ∀ =  ). To our 
best knowledge, the brain is not a fully connected network. To estimate the 
sparse FBNs, we can utilize the following step: 1) deciding the number of edges 
of estimated FBNs based on utilizing k-nearest neighbor (k-NN) [18], that is, the 
brain region i and j are connected by an edge if i is among k nearest neighbors of 
j or j is among k nearest neighbors of i; 2) choosing the weights to edges between 
ROIs based on Equation (7) reasonably. In particular, the brain region i and j are 
spatially connected close together, they will share the stronger similarity. In con-
trast, they will obtain the small weight. In Table 1, we summarize the main algo-
rithm for solving the proposed FBN estimation methods. 

4. Experimental Results 
4.1. Experimental Setting 

In our paper, we utilize PC and SR as the baseline methods to compare our me-
thod. Note that, the proposed method constrains the edge weights to be nonneg-
ative. Thus, besides PC and SR, we also select PC+ and SR+ as the baseline me-
thods based on the original PC and SR. In particular, PC+ and SR+ only keep the 
positive edges and turn the negative edges into zero in PC and SR. Since the 
threshold, regularization parameter or the number of nearest neighbor involved 
in both five methods (i.e., PC, PC+, SR, SR+ and ours) play a significant impact 
on the final classification accuracy, we set the threshold corresponding to dif-
ferent sparsity level in the set of [0, 10% ∙∙∙, 90%, 99%] for PC-based method, in 
which each percentage represents the proportion of edges that are removed, set 
the regularization parameter in the range of [2−5, 2−4, ∙∙∙, 24, 25] for SR-based  
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Table 1. The optimization algorithm of the proposed model. 

Input: X—data matrix 
k—parameter 
σ—Iterative stop threshold 
ε—Maximum Iteration 

Output: S—connectivity matrix 

Procedure: 

Step 1 

Construct the connectivity matrix based on k-NN 

Step 2 

For 1, ,N ε= 
 

Calculate S by solving Equation (7), and initial objective function value of Equation (7): 0 Sf f←  

If 1N Nf f σ−− <  

Break, and Return S 

End If 

End If 

 
methods, and search the nearest neighbor in the range of [10, 12, ∙∙∙, 28, 30]. 

However, numbers of features (or functional connectivity) from the con-
structed FBNs is larger than the amounts of participants. In fact, not all features 
contribute to the diagnosis labels and even may capture redundant information 
already uncovered by other features. Therefore, to remove irrelevant features not 
contributing to the prediction power of the model and achieving higher identi-
fication accuracy rates, we apply the simplest t-test with four accepted p-values 
(0.001, 0.005, 0.01, 0.05) for feature selection and choose the linear support vec-
tor machine (SVM) with default parameter C = 1 to conduct the subsequent 
classification task. Further, we choose leave-one-out cross validation (LOOCV) 
to evaluate the performance of involved methods. Finally, we utilize a series of 
statistical measurement indices, including accuracy (ACC), sensitivity (SEN), 
specificity (SPE), balanced accuracy (BAC), positive predictive value (PPV), 
negative predictive value (NPV) and the area under the receiver operating cha-
racteristic (ROC) curve (AUC) to evaluate the classification performance of dif-
ferent methods. In particular, their definitions are shown as follows:  

( ) ( )ACC TP TN TP FP TN FN= + + + + , ( )SEN TP TP FN= + ,  
( )SPE TN TN FP= + , ( )BAC SEN SPE 2= + , ( )PPV TP TP FP= + ,  
( )PPV TP TP FP= +  and ( )NPV TN TN FN= + , where TP, TN, FP and FN 

indicate the true positive, true negative, false positive and false negative. 

4.2. FBN Estimation 

In this section, we take one of the participants from ADNI dataset as an example 
to visualize the FBNs estimated by five different methods (i.e., PC, PC+, SR, SR+ 
and ours). In Figure 2, we show the experimental results, in which the thre-
sholds or regularization parameters involved in PC- and SR-based methods are  

https://doi.org/10.4236/jamp.2020.811179


L. Sun, T. T. Guo 
 

 

DOI: 10.4236/jamp.2020.811179 2433 Journal of Applied Mathematics and Physics 
 

 
Figure 2. The FBN construction estimated by five methods. Note that, the adjacency matrices of FCNs constructed by 
five different methods (i.e., PC, PC+, SR, SR+ and ours), in which the elements have been normalized into interval of 
[−1, 1] for the convenience of comparison. In particular, PC+ and SR+ only keep the positive edges in PC and SR, and 
turn their negative edges into zero, respectively. 

 
determined based on their best classification accuracy. Specifically, the thre-
sholds used in PC and PC+ are 50% and 40%, while the values of the regulariza-
tion parameter or nearest neighbor used in SR and SR+ are 22, 25 and 22, respec-
tively. It can be visualized in Figure 2 that PC-based FBNs produces dense FBN 
easily. The reason for this is that the full correction is utilized to model the net-
work adjacency matrix, and thus generates false functional connections. Al-
though FBN estimated by PC+ improves the sparsity, it is still denser than SR 
and SR+-based FBN. That is because the original PC contains more redundant 
connections. In contrast, due to the introduction of regularization term, the es-
timated FBN by SR and SR+ are sparse. Compared with the baseline methods, 
the FBN estimated by the proposed method looks very clean, and its topological 
structure is similar to that of SR and SR+-based FBNs. We can argue that the 
spatial relationship between ROIs plays an important role in FBN estimation. 

4.3. Classification Results 

In Figure 3, we report the quantitative results achieved by five different methods 
under four accepted p-values in MCI classification tasks. According to the expe-
rimental results, we could have three main observations. First, the proposed 
method generally achieves better classification performance, compared with the 
baseline methods (i.e., PC, PC+, SR and SR+). For instance, in light of the aver-
age ACC values under four accepted p-values (i.e., 0.001, 0.005, 0.01, 0.05), the 
proposed method achieves the values of 80.29%, 81.75%, 87.59% and 88.32%, 
which largely outperforms the best results of baseline methods. These results 
suggest that the proposed method could perform better classification perfor-
mance. Second, in terms of SEN values under four p-values, the proposed me-
thod also obtains the highest classification results, indicating that the proposed 
method may have a practically meaningful advantage for timely diagnosis of 
MCI population. For the remaining metrics, the final results also show the effec-
tiveness of the proposed method. 

4.4. Sensitivity to Network Modelling Parameters 

In practice, the final classification accuracies are affected not only by p-values, 
but also by different network modelling parameters (e.g., thresholds and regula-
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rization parameters). In order to investigate the influence of parameters on the 
final classification accuracy, we conduct MCI classification experiments, and 
report their results with different values of thresholds or regularization parame-
ters under four accepted p-values in Figure 4. It can be observed that the results 
based on the baseline methods will significantly influence the parametric values. 

 

 
Figure 3. The classification results based on seven performance indices by five different methods. In particular, each subplot 
represents the classification results based on five methods with a different threshold under seven performance indices, where the 
vertical axis represents the average classification results. 
 

 
Figure 4. The MCI classification accuracies based on five FBN estimation methods (i.e., PC, PC+, SR, SR+ 
and ours) with different network modelling parametric values are shown in this figure. Note that, the ho-
rizontal axis for PC-based, SR-based, and our methods represents different thresholds, the regularization 
parameters, and for SR-based methods show while the vertical axis for five methods represents the average 
classification. 
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Figure 5. The discriminative features selected by t-test (p < 0.001) between MCI vs. NC 
classification task based on AAL atlas for brain parcellation. In particular, this figure is 
created by a specific function (i.e., Circular Graph) based on Matlab software). 
 
In contrast, the proposed method can obtain the higher classification results, 
compared with the competing methods in most cases, indicating the results of 
our method is reliable. 

4.5. Discriminative Features 

To visualize which features (i.e., functional connections) contribute more to the 
final classification task, we select the top 10 most discriminative features for 
identifying MCI population based on t-test for feature selection, and show the 
results in Figure 5. In particular, the thickness of each arc shown in Figure 5 
represents the discriminative power that is inversely proportional to corres-
ponding to p-value. In addition, according to these features, we further find sev-
eral of them correspond to the brain regions, such as the left postcentral region 
[19], the right precuneus region [20], are reported as potential biomarkers for 
MCI vs. NC classification task. The results further prove the effectiveness of the 
proposed method. 

5. Conclusion 

In this paper, PC and SR are utilized as the baseline methods to estimate FBNs. 
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PC is sensitive to the direct and indirect relationship between pairs of ROIs, and 
thus always produces false functional connections. In contrast, SR can construct 
sparse FBN based on the obtained BOLD time series, due to the introduction of 
the regularization term. Even so, this method also ignores the spatial relation-
ship between pairs of time series. Inspired by this, we propose a novel approach 
based on the spatial distance, and conduct MCI vs. NC classification task to ve-
rify the effectiveness of our method. Experimental results show that the pro-
posed method can obtain better accuracy than the baseline methods. In the fu-
ture, we will propose more novel FBN estimation methods corresponding to 
practical questions. 
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