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Abstract 
We employ a recently amended Born-Oppenheimer (hereafter shortly BO) 
approximation [1] to treat inelastic scattering of slow electrons from highly 
excited Rydberg atoms like ( )e He 1  Hes ns− −∗∗+ →  for 1n . Along these 
lines we replace the standard BO set of potentials by an evolution operator. In 
this way we take a momentum-momentum coupling inadvertently disre-
garded by BO into account. The BO eigenvalue problem is now replaced by 
an evolution equation. One eigen-evolution has been identified as Wanner 
channel. That channel describes the diffraction of electron pairs from a po-
tential ridge. That diffraction causes a phase jump of π⁄2 in the channel evolu-
tion. Moreover we present a new conservative attractive force controlling the 
motion of the electron pair as a whole in the nuclear field whose potential is 

given by ( ) 3 2

gW R
R

= − . The coupling constant g has been calculated. That 

potential foreign to the standard BO approximation manifests itself by an en-
tirely new series of isolated resonances located slightly below the double io-
nization threshold. This resonance ensemble compares favorably with expe-
rimental data. Further we present an evolution which forces the electron pair 
to the electrostatically unstable top of the potential ridge. That evolution may 
be regarded as quantum version of Wannier’s converging trajectory, and ma-
nifests itself here as Fresnel distribution. 
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1. Introduction 

In 1953 Wannier surprised the atomic community with an entirely unusual 
threshold ionization law for electron impact ionization of the hydrogen atom 
[2]. On the basis of classical mechanics he came to a power law with fractional 
exponent, given by 
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1.127Eσ ∝  .                          (1) 

In the meantime there exists highly accurate experimental data which confirm 
that exponent (see [3] and references therein). 

Wannier’s picture is basically as follows. As long as the scattering electron is still 
away from the target atom the bound electron performs periodic Bohr orbits. As 
soon as the incident electron comes closer to the target these Bohr orbits expe-
rience a strong distribution due to correlation. At very low energy the elec-
tron-electron repulsion forces the three bodies into a collinear configuration (elec-
tron-nucleus-electron). Within that collinear configuration the electron pair expe-
riences an unstable equilibrium position when both electrons have equal distances 
from the nucleus, say 1 2r r= . Actually a cut through the potential surface, 

1 2 12

1 1 1V Z
r r r

 
= − + + 

 
                      (2) 

shows a repulsive barrier whose top is located at 1

2

1
r
r
= . In (2) 12r  is the elec-

tron-electron separation. Wannier has therefore introduced an angular coordi-
nate 

1 1

2

tan
r
r

α −=                           (3) 

and studied the Langrage equations in the subspace (R, α) where 
2 2

1 2R r r= +                          (4) 

is the so called hyperradius orthogonal to α. That subspace constitutes geometr-
ically a ridge. Unfortunately, the coordinates R, α are neither in the classical 
Hamilton function nor in its quantum counterpart separable. Nevertheless, 
Wannier was able to show the existence of two special trajectories during the 
evolution along R. One trajectory converges to the top of the ridge whereas the 
other one diverges away from it. It is the aim of the present paper to present a 
mathematical frame within quantum theory which delivers two kinds of wave 
propagation which reduce in the classical limit to Wannier’s trajectories. 

We do that in two steps. First we introduce an angle different from Wanniers 
α (see Section 2). Our angle (below denoted by φ) may be obtained by a rotation 
in the space 6  such that the better suited angle φ becomes a cyclic coordinate 
(see for instance [4]). Inspection of the Hamiltonian in hyperspherical coordi-
nates shows that the whole system depends only smoothly on the coordinate R. 
That observation invites us to apply a BO approximation where R is the adiabat-
ic coordinate. That procedure was used already many years ago by Macek [5], 
later also by us [6]. But the BO approximation does not deliver the wave propa-
gations we are looking for. The reason is a fundamental mistake in the BO ap-
proximation. The author showed recently [1] that BO has inadvertently disre-
garded a portion of the kinetic energy, namely a momentum-momentum 
coupling. Ref [1] avoids that shortcoming, and derives a new evolution equation 

https://doi.org/10.4236/jamp.2020.811178


H. Klar 
 

 

DOI: 10.4236/jamp.2020.811178 2418 Journal of Applied Mathematics and Physics 
 

replacing the BO eigenvalue problem by an evolution equation. It is the aim of 
this paper to transfer our molecular method to electron-atom/ion scattering in 
the critical spectral range near ionization. Along these lines we discover the de-
sired Wannier mode of motion as one particular eigen-evolution. Section 3 de-
velops the amended BO technique for the present application, and finally we 
treat the discussion of the resonance spectrum of two-electron atoms close to the 
threshold of double escape (see Section 4). Section 5 summarizes our conclusions. 

2. The Hyperspherical Description of Atoms 

Wannier [2] has demonstrated why hyperspherical coordinates are particularly 
useful to describe collective motions of atomic electrons. The reason is as fol-
lows: Let us consider an atom with N electrons. It is trivial to describe their posi-
tions in a hypersphere, i.e. we introduce a hyperradius now for N electrons given 
by 

2
1

N
iiR r

=
= ∑                          (5) 

and complete that generalized coordinate with 3N − 1 hyperpolar angles corres-
ponding to unit vectors on the hypersphere 3 1N − . Each single electron position 
vector has then the form 

ˆ ( )i iRR ω=r                           (6) 

where ω stands for the set of angles, and R̂  is a unit vector depending on these 
angles. It is then straightforward to see that the Hamiltonian of any atom has in 
non-relativistic description the structure 

( )2

2

Λ
2R

C
H T

RR
ω

= + + .                     (7) 

where 2Λ  is the Casimir operator of the rotation group SO6 and ( )C ω  is the 
potential multiplied by R. 

In the case of two electrons Wannier pointed out that (7) at zero-energy obeys 
a similarity principle which describes classical trajectories in which the whole 
electron cloud performs at a set of constant angles hyperradial breathing mo-
tions. This requires of course that the electron cloud has an equilibrium confi-
guration. Actually this is the case for few-electron atoms (see [4]). These mo-
tions including their stability constitute the so-called zero-energy Wannier phe-
nomenon we are looking for. 

The case of two electrons in the field of one nucleus has been worked out in 
great detail. We follow here Klar et al. [6]. For the description of the electrons we 
need five angles. Three of them may be chosen as Euler angles to describe the 
overall rotation of the atom in space. Since that rotation has nothing to do with 
the Wannier phenomenon we are looking here only for S-states. That reduces 
the number of necessary body-fixed angles to two. 

One of them we chose to describe the relative motion within the collinear 
configuration (electron-nucleus-electron). Following Sommerfeld [7] we intro-
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duce in the collinear configuration the hyperspherical azimuth angle already 
mentioned above 

2 2
1 1 2

1 2

tan
2

r r
r r

ϕ − −
=                         (8) 

( 0 2ϕ≤ ≤ π ) whereas the bending motion may be described by the ratio of 
moments of inertia, 

11 tan
2

xx

yy

ψ −
 Θ
 =
 Θ 

.                      (9) 

Macek [5] used instead of our φ the Wannier angle 1 1

2

tan
r
r

α −= . Our angle φ, 

however, has the advantage to be a cyclic coordinate in the kinetic energy ex-
pression, whereas α is not. 

The equilibrium configuration occurs in terms of our coordinates at 0ψ =  
corresponding to the collinear configuration and at ϕ = π  corresponding to 
equal electron-nucleus separations 1 2r r= . Since the Wannier phenomenon oc-
curs only in the subspace ( ),R ϕ  we fix below the angle 0ψ = . 

3. Amended Born-Oppenheimer Approximation Applied to 
Excitation and Ionization of H by Electrons 

Although the standard BO approximation [8] was developed for molecules, that 
method appears suitable to treat also other non-separable systems like elec-
tron-atom/ion collisions [5] [6]. The pioneer work by Macek [5] has demon-
strated that a small parameter like a mass ratio (electron to nucleus mass) is not 
necessary for the BO validity. Actually it is the smoothness of the Coulomb po-
tentials which justifies the BO approximation, also referred to as adiabatic ap-
proximation. The BO technique applied to He and H− delivers indeed good re-
sults for singly and doubly excited states. The method fails, however, to describe 
the Wannier phenomenon. This is not surprising if the hyperradius R is selected 
as adiabatic coordinate. In the BO approximation the hyperradius R is treated as 
a constant in the channel expansion. 

Actually, the standard BO approximation suffers from a serious mistake. It is 
usually believed that the validity rests on a small radial momentum in our 
present problem given by 

1 d
d

p
i R

= .                          (10) 

That is not true, neither in the molecular nor in the atomic case. The small 
quantity for the definition of a collision channel is the radial kinetic energy given 
by 

2
2

2

1 1 d
2 2 dRT P

R
∝ = −                     (11) 

We look now to the Hamiltonian applied to a product wave function, see (6), 
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( ) ( ){ } ( ) ( )( ) ( )2 2

2 2

2 2

1 1;
2 2

1 d d 1
2 d 2d

ang

ang

H F R R P F PF P F P Fh

F F F Fh
R RR R

ωΦ = Φ + Φ + Φ + Φ

∂Φ ∂ Φ
= − Φ − − + Φ

∂ ∂

  (12) 

where the angular Hamiltonian reads, see [6] 

( )2

22ang

C
h

RR
ωΛ

= + .                     (13) 

BO introduces now mistakenly an adiabatic Hamiltonian disregarding the 
term PΦ. That corresponds to the assumption of constant values of R. It is ob-
vious that this primitive approximation cannot deliver the Wannier mode since 
already in Wannier’s classical treatment R is a function of time. We need there-
fore an improvement which allows for variable values of R. 

Recently [1] we went one step ahead introducing radial zero-energy channels 
by asking 2 2d dF R  to be the small quantity. That non-adiabatic description 
rejects only the channel coupling term 2 2R∂ Φ ∂  identified by Macek as coupling 
operator Q. To this end we arrive at the amended channel operator 

( ){ }angPF P Fh+ Φ .                     (14) 

For a finite radial function 0F ≠  that leads to post-adiabatic eigen-channels 
defined by 

d
d ang
F h W
R R

∂ − + Φ = Φ 
∂ 

                   (15) 

Before we go more deeply into the new development we review briefly the ap-
plication of the standard BO approximation to two-electron atoms. After splitting  

off a factor of 
5
2R  from the wave function the time-independent wave equation 

shows in hyperspherical coordinates the structure 

( ) ( )
2 2

2 2 2

,15 , , 0
8 2

C
E R

RR R R
ψ ϕ

ψ ϕ
 ∂ Λ
− + + + − Ψ = 
∂ 

         (16) 

see [6] for details. Following [8] and Macek [5] we try to construct the solution 
in product form 

( ) ( ) ( ), ;R F R Rω ωΨ = Φ                    (17) 

where the channel function Φ solves (15) at constant values of R, i.e. 

( )2

2 2

,15
8 2

C
U

RR R
ψ ϕ Λ

+ + Φ = Φ 
 

.                (18) 

The separation parameter U constitutes in the case of helium for example an 
e-He+ (nl) potential. The channel function Φ represents standing waves on the 
hypersurface 5 . The Wannier mode, however, we expect to be a travelling 
wave, and therefore is not member of the adiabatic channel family. 

The present sketch derivation above suffers from an incorrect separation of 
variables. 
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The zero-momentum approach identical to the standard BO approximation 
delivers for two-electron atoms good results for the lowest channels. But it be-
comes shaky for increasing excitation, and breaks down near threshold of double 
escape. Directly at threshold the classical Wannier modes of motion show a fi-
nite radial velocity ( ) 0R t ≠ , see [2]. We need therefore an improved descrip-
tion beyond a zero-momentum approach. To this end we employ the amended 
channel Equation (15). There we are, however, confronted with a further diffi-
culty. The separation of variables is still incomplete because of the presence of 
the radial function F(R) which is still unknown. Fortunately we need only its de-
rivative d dF R . That invites us to apply a trick introduced long ago by Som-
merfeld1, and expresses the derivative by its logarithmic one, i.e. 

( ) ( )
d log

log
d

FFF F F iP F F
F R
′

′ = = =               (19) 

The logarithmic derivative, moreover, we use to define collision channels, in 
our case 

( ) ( )logP F K R=                       (20) 

K being the hyperradial wavenumber. That trick leads us to the channel equa-
tion 

( ){ } ( ) ( );PF P Fh F iK h R FW R
R

ω∂ + Φ = + Φ = Φ 
∂ 

       (21) 

which reduces for a finite radial function 0F ≠  to 

( ) ( ) ( );iK R h R W R
R

ω∂ + Φ = Φ 
∂ 

               (22) 

The radial wavenumber is given by twice the radial kinetic energy, expressed 
by total energy minus potential energy, 

( ) ( )( )2R W RK E= ± −                    (23) 

Equation (22) constitutes therefore a nonlinear eigenvalue equation because 
the lhs of (22) depends on the eigenvalue W, too. The quantity in curly brackets 
of (22) resembles a time-dependent wave equation where time has been replaced 
by radius. Like the time-dependent wave equation or the heat equation or our 
(22) describes an evolution. Therefore (22) may be rewritten as evolution Equa-
tion. To this end we introduce an evolution operator ( )| , 0E Rω  which de-
scribes the evolution from the united atom corresponding to 0R =  to a finite 
value 0R ≠ . Let us denote the channel function at 0R =  with ( );0ωΦ  we 
put 

( ) ( ) ( ); | ,0 ;0R E Rω ω ωΦ = Φ                  (24) 

with the initial condition 

( )| 0,0 1E ω =                         (25) 

 

 

1Sommerfeld [7] uses that in the context of emitted radiation. We do it here for electrons. 
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The evolution operator itself satisfies then an equation identical to (22) 

( ) ( ) ( ) ( )
2

2 2

,d 15 | ,0 | ,0
d 8 2

C
iK E R W R E R

R RR R
ψ ϕ

ω ω
 Λ

+ + + = 
 

.    (26) 

With help of the wavenumber K we are now able to introduce collision chan-
nels, for instance by the energy level of the hydrogen-like target, here He+, with 
energy levels 

2

22n
ZE
n

= −                          (27) 

In the following, we intent to treat also nuclei with arbitrary charges Z. 
The wavenumber K in (23) reads in the present case, see [1] 

( )
2

22n
ZK K W R
n

= = ± − −                   (28) 

The wavenumber in the Wannier spectral range needs a modification. The 
zero-energy domain is there controlled by a long-range Coulomb force. Note, at 
threshold E = 0 the Coulomb zone extends to R = ∞ . The Equation (28) needs 
therefore a modification since we expect W(R) to be short-range potential. We 
proceed as follows. 

Near threshold we expect the electron pair to be located near the ridge top. 
Therefore we approximate the ridge top by a Taylor expansion, 

( ) ( ) ( )2
0 20, 3C C C Oψ ϕ ϕ= = − − − π + .             (29) 

The coefficients are given by 

0
4 1

2
ZC −

=                          (30) 

equal to the net charge of the correlated electron pair on the ridge top, and the 
ridge curvature 

2
12 1

4 2
ZC −

=                          (31) 

(29) identifies a long-range interaction representing a Coulomb potential in 
the space 6 . i.e. the correlated electron pair as a whole with a charge C0 is at-
tracted by the nucleus. Thus we have to replace the eigenvalue W in (28) by 

0– C R . Along these lines and using (28) the Wannier wavenumber becomes 

02
limn n

C
K K

R→∞ ∞= =                     (32) 

Finally, we need the operator 2Λ . That reads in the frame of our model at 
fixed 0ψ =  simply 

2
2

24
ϕ
∂

Λ = −
∂

                        (33) 

since the azimuth angle φ is a cyclic coordinate, see [4] [6]. The Wannier chan-
nel evolution equation to be treated reads therefore 
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( ) ( ) ( ) ( )
2

20 2
2 2 2

2 15 2 | ,0 | ,0
8

C Ci E R W R E R
R R RR R

ϕ ϕ ϕ
ϕ

 ∂ ∂ + − − − π = 
∂ ∂  

 (34) 

The following Section 4 solves that equation (34) and discusses the result. 

4. The Wannier Evolution 

We solve now the partial differential Equation (34) in the Coulomb zone em-
ploying the initial condition ( )| 0,0 1E ϕ = . To this end we disregard the cen-
trifugal term, and try the exponential Ansatz 

( )( ){ }2expE i g Rγ ϕ − π=                    (35) 

with ( )0 0g =  and a constant γ ∈ . Along these lines we conclude imme-
diately ( )g R R=  provided the constant γ  satisfies the quadratic equation 

2 0
28 0

2
C

Cγ γ− − =                      (36) 

Equation (36) may be interpreted as description of a potential surface curva-
ture deformation. 

The solution (35) delivers for the rhs of (34) 3 2

4i E
R
γ . We stress that the Her-

miticity of the lhs of (34) excludes an imaginary eigenvalue. We conclude there-
fore that the diffraction of the correlated two-electron wave from the ridge has 

caused a phase jump2 of 
2
π , and forces the rhs of (34) to the interpretation 

( )2exp
2

W i Rγ ϕ π  + − π  
  

                  (37) 

with the real eigenvalue 

( ) 3 2

4W R
R
γ

=                          (38) 

provided γ  is real. Actually we get the from (35) two real solutions given by 

( )
4

1,2
2 4 1 100 9

32
Z Zγ = − ± −

                 (39) 

where we have used (30), (31). 
The existence of two solutions is in agreement with Wannier’s observation. 

He got one trajectory converging to the equilibrium point ϕ = π  and one di-
verging away from it. Our positive γ  value describes indeed an evolution con-
verging to the ridge top as may be seen as follows. The evolution (35) constitutes 
a Fresnel distribution with the property 

( ){ } ( ) ( )
1

2 4lim exp ; 1R
ii R R E Rγ ϕ δ ϕ ϕ
γ

−

→∞
π

− π = − π = π 
.    (40) 

Here we have used the definition of a Fresnel Distribution given by 

 

 

2Such a phase jump was also observed by Fano [10] in his resonance theory. 
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2

Fresnel expa iax
i η η

 
∆ =  

π  
                   (41) 

valid for x real and real a > 0, see [9]. 
The diverging solution ( 0γ < ) leads Wannier’s study to double electron es-

cape. In our quantum description the corresponding solution delivers an attrac-
tive potential operating in the 6  space controlling the motion of the electron 
pair as a whole. That potential is given by 

( ) 3 2

gW R
R

= −                         (42) 

with the coupling constant 

( )
4 2 100 9 4 1
8

g Z Z= − − −                  (43) 

see (35). That result deserves several comments. First, a fractional power of R in 
(36) is entirely unexpected. At a first glance one would expect the Coulomb law 

0C R− . But the diffraction pattern of the pair wave from the ridge leads to an 

6  rotational symmetry breakdown and yields the surprising potential (42). 
The corresponding effective potential 

( ) 2 3 2

15
8

gU R
R R

= −                       (44) 

predicts a series of resonances below the double escape threshold. Such levels 
have been observed a long time ago by Cvejanovic and Read [3] in the system 
He−. The scattering of slow electrons from highly excited helium  

( )e He 1 , Hes ns− −∗∗+ →  showed a series of isolated lines below the ionization 
threshold of helium. A pilot analysis of their observed level spacing shows a de-
crease slower than in a Rydberg series. We believe that ref [3] shows only the 
upper part of the spectrum. The lower part of the eigenvalue spectrum of the 
potential (43) is covered over the regular spectral part described by the standard 
BO theory. Our analysis indicates a potential tail decreasing faster than a Cou-
lomb potential. We conclude presently that the potential (42) is not inconsistent 
with the measurement [3]. 

5. Conclusions 

Shell structure and circular orbits constitute since the early days of quantum 
mechanics the theoretical frame for multi-electron atoms although these terms 
stem from the exactly solvable hydrogen atom. Nevertheless models based on 
that theoretical frame have been surprisingly successful provided correlation is 
only a small effect. Near thresholds of multiple ionization, however, exist no 
longer circular orbits. They have been replaced by Wannier modes of motion. 

Wannier [2] showed within classical mechanics that two slow highly excited elec-
trons in nuclear field must be treated as one object in the larger pair-configuration 
space 6  rather than two electrons and each in a single-electron configuration 
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space 3 . Wannier’s very unusual threshold cross section (1) let us suspect that 
a quantum version of that new description will discover more surprises. 

The present paper presents the necessary quantum version, and opens an en-
tirely new field of atomic physics full with surprises. We have shown that the 
new situation shortly referred to as Wannier phenomenon can be described with 
help of an amended BO approximation which replaces the set of BO potentials 
by an evolution operator. That operator delivers in fact an eigen-evolution which 
we refer to as Wannier channel. That channel delivers the threshold cross sec-
tion (1), as well as a set of new isolated resonances slightly below threshold. They  

manifest themselves as eigenvalues of the potential ( ) 3 2

gW R
R

= − , see (42).  

Moreover, we show the Wannier evolution to be identical to a Fresnel distribu-
tion converging to a Dirac delta distribution centered at an equilibrium confi-
guration of the electron pair. That corresponds to Wannier’s converging trajec-
tory which describes an electron-electron attraction. That attraction emerges 
from the diffraction of a dominantly correlated two-electron wave from a poten-
tial ridge. In summary we find out that the present work has confirmed our ear-
lier suspiciousness on that topic [11]. 

Finally, we remark that this Wannier phenomenon worked out here can be 
extended to three/four excited electrons [4]. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Klar, H. (2020) The Born-Oppenheimer Approximation Revisited. Journal of Ap-

plied Mathematics and Physics, 8, 1507-1514.  
https://doi.org/10.4236/jamp.2020.88116 

[2] Wannier, G.H. (1953) Ionization of an H Atom by an Electron at Threshold. Physi-
cal Review Journals Archive, 90, 857-875.  

[3] Cvejanovic, S. and Read, F.S. (1974) Studies of the Electron Impact Ionization of 
Helium. Journal of Physics B: Atomic and Molecular Physics, 7, 1841.  
https://doi.org/10.1088/0022-3700/7/14/008 

[4] Klar, H. (2018) Wave Propagation on a Potential Ridge. Physical Review Letters, 
120, Article ID: 053401.https://doi.org/10.1103/PhysRevLett.120.053401 

[5] Macek, J. H. (1968) Properties of Autoionizing States of Helium. Journal of Physics 
B: Atomic and Molecular Physics, 1, 831. https://doi.org/10.1088/0022-3700/1/5/309 

[6] Klar, M. and Klar, H. (1980) An Accurate Treatment of Two-Electron Atoms in 
Hyperspherical Coordinates. Journal of Physics B: Atomic and Molecular Physics, 
13, 1957-1072. https://doi.org/10.1088/0022-3700/13/6/014 

[7] Sommerfeld, A. (1944) Atombau und Spektrallinien. Springer, Berlin. 

[8] Born, M. and Oppenheimer, R. (1927) Zur Quantentheorie der Molekeln. Annalen 
der Physik, 389, 457-484. https://doi.org/10.1002/andp.19273892002 

[9] See Any Textbook on Functional Analysis. 

https://doi.org/10.4236/jamp.2020.811178
https://doi.org/10.4236/jamp.2020.88116
https://iopscience.iop.org/journal/0022-3700
https://doi.org/10.1088/0022-3700/7/14/008
https://doi.org/10.1103/PhysRevLett.120.053401
https://iopscience.iop.org/journal/0022-3700
https://doi.org/10.1088/0022-3700/1/5/309
https://iopscience.iop.org/journal/0022-3700
https://doi.org/10.1088/0022-3700/13/6/014
https://doi.org/10.1002/andp.19273892002


H. Klar 
 

 

DOI: 10.4236/jamp.2020.811178 2426 Journal of Applied Mathematics and Physics 
 

[10] Fano, U. (1961) Effects of Configuration Interaction on Intensities and Phase Shifts. 
Physical Review Journals Archive, 124, 1866.  
https://doi.org/10.1103/PhysRev.124.1866 

[11] Klar, H. (2020) Dominant Correlation Effects in Two-Electron Atoms. Journal of 
Applied Mathematics and Physics, 8, 1424-1433.  
https://doi.org/10.4236/jamp.2020.87108 

 

https://doi.org/10.4236/jamp.2020.811178
https://doi.org/10.1103/PhysRev.124.1866
https://doi.org/10.4236/jamp.2020.87108

	Quantum Theory of the Wannier Phenomenon
	Abstract
	Keywords
	1. Introduction
	2. The Hyperspherical Description of Atoms
	3. Amended Born-Oppenheimer Approximation Applied to Excitation and Ionization of H by Electrons
	4. The Wannier Evolution
	5. Conclusions
	Conflicts of Interest
	References

