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Abstract 
This paper outlines the vibrational motion of a nonlinear system with a 
spring of linear stiffness. Homotopy perturbation technique (HPT) is used to 
obtain the asymptotic solution of the governing equation of motion. The nu-
merical solution of this equation is obtained using the fourth order 
Runge-Kutta method (RKM). The comparison between both solutions reveals 
high consistency between them which confirms that, the accuracy of the ob-
tained solution using aforementioned perturbation technique. The time his-
tory of the attained solution is represented through some plots to reveal the 
good effect of the different parameters of the considered system on the mo-
tion at any instant. The conditions of the stability of the attained solution are 
presented and discussed. 
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1. Introduction 

Many problems related to mathematicians, physicists, biologists, chemists and 
engineers are formulated in differential equations whether linear or nonlinear. 
The solutions of a linear one can be obtained easily using some of well-established 
methods on the contrary with nonlinear differential Equations (NDE) that we 
often refuge to approximate solutions. Nonlinear oscillations had shed the inter-
est of many scientists due to that most of the problems dealing with vibrations 
are nonlinear, see [1] [2]. 

Since it is difficult to find the exact solutions of such equations, many re-
searchers have turned their attention to obtain the approximate solutions of 
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these problems using perturbation techniques [3] [4] [5] through inserting a 
small parameter like Krylov-Bogolubov-Mitropolski technique (KBMT), Lindstedt 
Poincar? technique (LPT), the multiple scales technique (MST), averaging tech-
nique (AT) and others. These solutions are given by expansions in powers of the 
small parameter. On the other side, if this parameter can’t be introduced into the 
solution procedure of these equations, the researchers have faced a difficulty to 
obtain the solutions of the classical perturbation problems. Therefore, a great 
difficulty in solving these equations will be arisen by using the traditional per-
turbation methods which are not convenient for solving the strongly vibrations 
problems. 

Over the past two decades, many mathematicians and physicists have done 
their great efforts to find new mathematical tools to deal with the dynamical 
systems that mathematically described by nonlinear differential equations [5] [6] 
[7]. In [5], the authors have overcome this difficulty through establishing effec-
tive ways to deal with the nonlinearity that arises in these problems. A combina-
tion between homotopy perturbation technique (HPT) and Frobenius approach 
was stated in [6] to get the exact solution of NDE. However, for non-linear con-
servative systems, the generalization of some perturbation methods has over-
come this restriction. Moreover, the generalization of the HPT of He’s [7] and 
LPT has fructified the desired results for strongly nonlinear vibrations [8]-[14]. 
The analytic and numerical solutions of three different problems are obtained in 
[15] using HPT and RKM respectively. Another analytic method called Energy 
Balance Method (EBM) is used to compare the attained results with each other. 

A max-min method is presented in [9] to get the approximate solutions of 
NDE and it is applied to some examples. In [10], the authors have applied a 
modified HPT to obtain more accurate approximate solution of a coupled two 
strongly NDE. Another version of HPT is applied in [12] for excited nonlinear 
problems and the Mathieu equation is studied as the simplest example. The same 
author suggested a modified version of HPT by absorbing MST in [13] for non-
linear oscillators systems. Recently, he outlines his work on asymptotic solution 
for delayed self-feedback of a nonlinear dynamical problem in [14] and the sta-
bility configuration is presented. 

In [16], the author compared the results obtained by HPT with the results ob-
tained by homotopy analysis technique to reveal that HPT results are more ac-
curate than the second one. HPT was applied in [17] to obtain the asymptotic 
solutions of the non-linear equation of Fredholm integral of second kind. In [18], 
the authors suggested a modification of HPT which is considered an adjustment 
tool for obtaining the periodic solutions of nonlinear oscillatory systems. The-
reby, the difficult problem can be transformed into an easier one to be handled. 
A new technique is introduced in [19] through a combination between HPT and 
modification of LPT in order to get the solutions of certain non-smooth oscilla-
tors while the work in [20] can be considered as a standard HPT in which it can 
be used as an application of several nonlinear differential equations. 
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In [21], the authors presented a modification of HPT to get the solution of a 
dynamical model consists of the motion of a rod in a circular surface without 
slipping. The obtained results are in good agreement with the numerical ones. 
This problem was treated in [22] using the modified harmonic balance tech-
nique [23]. A combination of MPT and Laplace transformation to achieve the 
asymptotic solution of the governing equation of motion of the same problem is 
studied in [24], in which the stability of the obtained solutions is examined. The 
approximate solutions of some tested vibrating systems are obtained in [25] us-
ing a modification of HPT and Amplitude frequency formulation (AFF). 

HPT is used in [26] to obtain the periodic solution of the fractional sine-Gordon 
equation beside the Riemann-Liouville fractional derivative. The authors ob-
tained a relationship between the frequency and amplitude, and the impact of 
the order of fractional derivative on the vibration property is investigated. In 
[27], the authors investigated the periodic solution of the nonlinear Duffing os-
cillator with fractional order utilizing a modification of HPT which is the inser-
tion of an auxiliary parameter and using two homotopy parameters. A nonlinear 
packaging system has been solved analytically using HPT of Li-He’s in [28], in 
which the energy method is utilized to progress the frequency and the maximal 
displacement of the system. 

In this paper, the solution of a nonlinear oscillating dynamical system is in-
vestigated. This system consists of a mass m1 connected with a spring of linear 
stiffness and with other mass m2 through a massless string of length l. HPT is 
utilized to obtain the solution of the equation of motion. This solution is graph-
ically represented for different values of the system parameters and compared 
with the numerical solution of the governing equation of motion using the 
Runge-Kutta method [29] from fourth order. This comparison reveals high con-
sistency between them which emphasizes the accuracy of the results obtained by 
HPT. The stability of the investigated model is presented and analyzed. 

This paper is designated as follows. In Section 2, a description of the investi-
gated problem and the derivation of the equation of motion are presented. Sec-
tion 3 sheds light on the basic idea of HPT. Section 4 is devoted to reduce the 
equation of motion into appropriate equation and to obtain the solution of this 
equation analytically using HPT. In Section 5, we are going to represent the at-
tained solution graphically and to obtain the numerical solution using the 
Runge-Kutta method. The stability of the obtained solution is discussed in Sec-
tion 6. Finally, the manuscript is finished with some concluding remarks. 

2. Description of the Problem 

In this section, we are going to obtain the governing equation of motion of a 
nonlinear oscillation system using HPT of a dynamical model. This model con-
sists of two masses; a first one m1 moves horizontally in which it is attached to a 
spring of linear stiffness k and connected with the second mass m2 with a mass-
less string of length l see (Figure 1). Therefore let us consider that S0, x and y are 
the natural length of the given spring, the horizontal coordinate of the centroid  
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Figure 1. The dynamical model. 

 
of m1 and the vertical coordinate of the centroid of m2, respectively. Therefore, 
the potential and kinetic energies V and T of the system can be written in the 
forms 

( )
2

2 2 2 2
2 1 2

1, ,
2 2

kxV m g l x T m x m y= − − + = +            (1) 

where g is the gravitational acceleration, x is the extension of string after time t, 
dots denote to the differentiation with respect to time and ( ),x y   is the Carte-
sian velocity of the point ( ),x y . 

According to (1), the Lagrangian L T V= −  has the form  
2 2

2 2 22
1 22 2

1 .
2 2

m x kxL m x m g l x
l x

 
= + + − − 

− 
             (2) 

An inspection of the Lagrange’s function (2) shows that the investigated sys-
tem has only one degree of freedom. Therefore, Lagrange’s equation for con-
servative system may be written as  

d 0.
d

L L
t x x

∂ ∂  − = ∂ ∂ 
                       (3) 

Here, x and x  are the generalized coordinate and velocity of the system re-
spectively. Making use of (2) and (3) yields to the following form of the govern-
ing equation of motion  

( ) ( )

2 2
22 2

1 22 2 2 12 2 2 2 2

0
m x m l x xm x x m g kx

l x l x l x

 
+ + + + = 

−  − −

         (4) 

3. Homotopy Perturbation Technique 

This section is devoted to illustrate HPT [7] through solving the following gen-
eral nonlinear differential equation  

( ) ( ) 0, ,K u f r r− = ∈Ω                    (5) 
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beside the following boundary condition  

, 0, .uB u r
n
∂  = ∈Γ ∂ 

                    (6) 

Here K and B represent the general differential operator and the boundary 
operator respectively, ( )f r  denotes a known analytical function, Γ  is the 
boundary of a domain Ω  and 

u
n
∂
∂

 refers to differential along the normal 
drawn outwards from Ω . 

An inspection of Equation (5), broadly speaking, the operator K can be sepa-
rated into two parts; which are a linear part L and a nonlinear one N. Therefore 
Equation (5) can be rewritten in the form  

( ) ( ) ( ) 0L u N u f r+ − =                    (7) 

It is worthwhile to notice that according to HPT, we can construct the homo-
topy ( ) [ ], : 0,1v r Rρ Ω× → , which satisfies  

( ) ( ) ( ) ( )( ) ( ) ( )( ) [ ], 1 0, 0,1H v L v L U K v f rρ ρ ρ ρ= − − + − = ∈    (8) 

or in an equivalent form as  

( ) ( ) ( ) ( ) ( ) ( )( ) [ ], 0, 0,1H v L v L U L U N v f rρ ρ ρ ρ= − + + − = ∈    (9) 

where [ ]0,1ρ ∈  is a homotopy parameter and U (initial guess) is an initial ap-
proximation of Equation (5), in which it satisfies the boundary conditions. 

In order to investigate the solution of (8) or (9), we express about this solution 
as a power series of ρ  as 

2
0 1 2 .v v v vρ ρ= + + +                    (10) 

At 1ρ → , Equations (8) or (9) corresponds to Equation (5) and the results in 
the approximation to the solution of Equation (5) can be expressed as  

0 1 21
lim .u v v v v
ρ→

= = + + +                  (11) 

It is important to note that, series (11) is convergent for more cases. Some cri-
teria are suggested for convergence of this series, see [7].  

4. Method of Solution 

Dividing both sides of (4) by m1 and consider that  

2 2
0

1 1

, , , 1
mk Rg xR u u

m l m l
ω = + = =              (12) 

to reduce the equation of motion (4) to a more appropriate as  

( ) ( ) ( )

2 2
22 2 2

2 12 2 2 2 2 2 11 21 1

1 0.
m x m l x gm x kxx x

mm l x m l x m l x

  
  + + + + =
  − −    − 

   

On the use of (12), the previous equation can be rewritten in the form  

( ) ( )

2
2

2 2 12 2 12

1 0.
1 1 1

Ru Ru Rgu kuu u
mu u l u

    + + + + =   −  −  − 

   
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Expanding the previous equation to obtain  

( ) ( )

( )

2 2 2 2

2

1

1 1 1 2

11 0; 1 .
2

Ru u u Ru u u

Rg kuu u u
l m

 + + + + + + 
 + + + + = 
 

 
 

 

 

Therefore, we obtain the following equation  

( )2 2 2 3
01 0.

2
RgRu u Ruu u u

l
ω+ + + + + = 

              (13) 

A closer look of this equation reveals that it is a second order differential equ-
ation with high nonlinearity. 

The aim of this section is to obtain the approximate solution of the governing 
equation of motion utilizing HPT in the presence of the following initial condi-
tions  

( ) ( )0 , 0 0.u A u= =                     (14) 

By virtue of Equations (13) and (7), the linear part ( )L u  and nonlinear one 
N(u) have the forms  

( ) 2
0 ,L u u uω= +                       (15) 

( ) 2 2 3 ,
2
RgN u Ru u Ruu u

l
= + +                  (16) 

where 

( ) 0.f r =                         (17) 

Equation (8) can be rewritten in the form  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) [ ], 1 0, 0,1H v L v L U L v N v f rρ ρ ρ ρ= − − + + − = ∈   (18) 

Substituting (15)-(17) into (18) to obtain  

( ) ( )( )2 2
0 0

2 2 2 3
0

, 1

2
0.

H v v v U U

Rgv v Rv v Rvv v
l

ρ ρ ω ω

ρ ω

= − + − −

 + + + + + 
 

=





            (19) 

Let 0U = ; the previous equation have the form  

( ) ( )( )2 2 2 2 3
0 0, 1 0.

2
RgH v v v v v Rv v Rvv v

l
ρ ρ ω ρ ω = − + + + + + + = 

 
      (20) 

Making use of (10) and (20), then equating the coefficients of similar powers 
of ρ  in both sides to obtain 

Coefficient of 0ρ : 
2

0 0 0 0,v vω+ =                        (21) 

Coefficient of ρ : 

2 2 2 3
1 0 0 0 0 0 1 0 0,

2
Rgv Rv v Rv v v v

l
ω+ + + + =                (22) 

Coefficient of 2ρ : 
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2 2 2 2
2 0 1 0 0 1 0 0 1 1 0 0 2 1 0

32 2 0.
2
Rgv Rv v Rv v v Rv v v Rv v v v v
l

ω+ + + + + + =           (23) 

The previous Equations (21)-(23) can be solved subsequently with the aid if 
the following conditions  

( ) ( )
( ) ( )
( ) ( )

0 0

1 1

2 2

0 , 0 0,

0 0, 0 0,

0 0, 0 0,

v A v

v v

v v

= =

= =

= =







                     (24) 

to get 

( )0 0cos ,v A tω=                        (25) 

( ) ( ) ( ) ( )
3

0 2 2
1 0 0 0 02

0

sin
2 4 3 4 sin 2 ,

32
A R t

v l g t l g t
l

ω
ω ω ω ω

ω
 = − + −       (26) 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )}

5 2
2 2 2

2 0 0 0 0 02 4
0

2 2
0 0 0 0 0

3 4 2
0 0 0 0 0

2 5
0 0 0

22cos cos 3 sin 3 8sin
1024

3sin 3 2 2 9 6 cos 2 4 cos 4 cos

24 sin 2sin 3 24 2 2 cos 2

cos 4 cos 16 3 2sin

A Rv g t t t g t t
l

t g l gt l t l t t

gl t t t l l gt l t

l t t l t

ω ω ω ω ω
ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω

  = − +  

 − − + − +  
 + + + − + +  

+ − ( ) ( ){
( )}

0 0

0 0

sin 3

2 cos .

t t

t t

ω ω

ω ω

 + 

−

(27) 

Since [ ]0,1ρ ∈ , one gets directly the desired solution when 1ρ →  in the 
form 

( ) ( ) ( )

( ) ( ) ( ){
( ) ( ) ( ) ( )

( ) ( ) ( )

3
0 2

0 0 021
0

5 2
2 2
0 0 02 4

0

2 2
0 0 0 0 0

2 2
0 0 0 0

sin
lim cos 2 4 3

32

4 sin 2 22cos
1024

cos 3 sin 3 8sin 3sin 3

2 2 9 6 cos 2 4 cos 4 cos

A R t
u v A t l g t

l

A Rl g t g t
l

t t g t t t

g l gt l t l t t

ρ

ω
ω ω ω

ω

ω ω ω
ω

ω ω ω ω ω

ω ω ω ω

→
= = + −

 + − + 

  − + −  
 − + − + 

 

( ) ( )
( ) ( ) ( )}

( ) ( ) ( ){ }

3 4 2
0 0 0 0

0 0 0

2 5
0 0 0 0 0

24 sin 2sin 3 24 2 2

cos 2 cos 4 cos

16 3 2sin sin 3 2 cos .

gl t t t l l gt

l t l t t

l t t t t t

ω ω ω ω

ω ω ω

ω ω ω ω ω

 + + + − +  

+ + 

 − + − 

         (28) 

5. Results and Discussion 

In this section, we are going to shed light on the great accuracy of the results ob-
tained by HPT when they are compared with the numerical results of the go-
verning equation of motion (4) using the fourth order Runge-Kutta method 
[26]. 

Figures 2-4 are calculated at 1 3 kg,5 kgm =  and 1 7 kgm =  respectively for 
different values of 0.1 m,0.6 ml =  and 1 m, in which their parts (a), (b) and (c) 
are plotted when 2 0.2 kg,0.4 kgm =  and 2 0.6 kgm =  respectively. It is  
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Figure 2. Describes the variation of the solution v via time t for different values of l at 

1 3 kgm =  when (a) 2 0.6 kgm = , (b) 2 0.4 kgm = , (c) 2 0.2 kgm = . 
 

 

Figure 3. Illustrates the variation of the solution v via time t for different values of l at 

1 5 kgm =  when (a) 2 0.6 kgm = , (b) 2 0.4 kgm = , (c) 2 0.2 kgm = . 

https://doi.org/10.4236/am.2020.1111073


T. S. Amer et al. 
 

 

DOI: 10.4236/am.2020.1111073 1089 Applied Mathematics 
 

 

Figure 4. Shows the time history of the solution v for different values of l at 1 7 kgm =  
when (a) 2 0.6 kgm = , (b) 2 0.4 kgm = , (c) 2 0.2 kgm = . 

 
worthwhile to notice that these drawings have periodic forms and therefore the 
attained solution has a stable manner. 

An inspection of the corresponding parts of these figures reveals that when l 
increases from 0.1 m to 1 m passing the value 0.6 m; the number of oscillations 
decreases and the wavelength of the ripples increases while the amplitudes of 
these ripples remain unchanged. 

When parts (a) of Figures 2-4 are generally compared to parts (b) and (c) of 
the same figures, we observe that when m2 increases from 0.2 kg to 0.6 m 
through the value 0.4 m; the number of oscillations increases and the wavelength 
of waves decreases beside the constancy of their amplitudes. 

Moreover, these results are plotted in some figures for the same considered 
parameters; see Figures 5-7 when 1 5 kgm =  and ( )2 0.2,0.4,0.6 kgm = . Fig-
ures 5-7 are calculated at 0.1 m,0.6 ml =  and 1 m respectively. It is not diffi-
cult to notice from the parts of Figure 5 that, the difference between both results 
seems to be small as in Figure 5(a) in which this difference increases in Figure 
5(b) and Figure 5(c) to some extent during the time interval [ ]5.5,10 . 

On the other side, this difference becomes very slightly which can be neglected 
as in Figure 6 and Figure 7. Then we can conclude that the results become bet-
ter when the length l equals 0.6 m and 1 m, than the value 0.1 m which gives 
more opportunity of the extension x. 

Tables 1-8 reveal a comparison between the results obtained by HPT with the  
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Figure 5. Shows a comparison between the numerical solution (Num) and the approx-
imate one obtained by HPT at 1 5 kgm =  and 0.1 ml =  when (a) 2 0.2 kgm = , (b) 

2 0.4 kgm = , (c) 2 0.6 kgm = . 
 

 

Figure 6. Describe the comparison between the numerical solution (Num) and the ap-
proximate one obtained by HPT at 1 5 kgm =  and 0.6 ml =  when (a) 2 0.2 kgm = , (b) 

2 0.4 kgm = , (c) 2 0.6 kgm = . 
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Table 1. Error percentage of HPT for 1 25, 0.2, 0.1m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 −0.470208 −0.460229 0.0212217 

2 0.144114 0.111063 0.229342 

3 0.239213 0.286819 0.19901 

4 −0.526688 −0.556329 0.0562768 

5 0.591097 0.56918 0.0370788 

6 −0.400474 −0.314833 0.21385 

7 0.0452104 −0.0731896 2.61886 

8 0.327927 0.423236 0.290642 

9 −0.568019 −0.586387 0.0323366 

10 0.564724 0.463692 0.178905 

 
Table 2. Error percentage of HPT for 1 25, 0.4, 0.1m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 −0.595921 −0.59828 0.00395892 

2 0.583752 0.593003 0.0158477 

3 −0.563693 −0.583815 0.0356974 

4 0.536067 0.570128 0.0635394 

5 −0.501313 −0.551128 0.0993686 

6 0.45997 0.525782 0.143079 

7 −0.412657 −0.492854 0.194344 

8 0.360058 0.450927 0.252375 

9 −0.302906 −0.398435 0.315377 

10 0.241969 0.333704 0.379119 

 
Table 3. Error percentage of HPT for 1 25, 0.6, 0.1m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 −0.445572 −0.464127 0.0416424 

2 0.067099 0.121775 0.814853 

3 0.344045 0.272124 0.209045 

4 −0.584389 −0.544756 0.0678198 

5 0.524674 0.564912 0.0766916 

6 −0.198083 −0.31593 0.594938 

7 −0.225545 −0.0692667 0.692891 

8 0.538462 0.39216 0.271704 

9 −0.576907 −0.503061 0.128003 

10 0.319492 0.326598 0.0222431 
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Table 4. Error percentage of HPT for 1 25, 0.2, 0.6m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 0.0235546 0.0275701 0.170475 

2 −0.598121 −0.597439 0.00113993 

3 −0.0705211 −0.0824829 0.16962 

4 0.592496 0.589777 0.00458767 

5 0.11706 0.136712 0.167885 

6 −0.583162 −0.57708 0.0104286 

7 −0.162888 −0.189802 0.165227 

8 0.57018 0.559452 0.018816 

9 0.207727 0.241293 0.161591 

10 −0.553637 −0.537039 0.0299789 

 
Table 5. Error percentage of HPT for 1 25, 0.4, 0.6m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 −0.108747 −0.102759 0.0550631 

2 −0.560058 −0.564482 0.0078988 

3 0.312164 0.296315 0.050769 

4 0.445702 0.46227 0.037171 

5 −0.474821 −0.455237 0.0412442 

6 −0.272606 −0.305748 0.121575 

7 0.574763 0.560593 0.0246535 

8 0.0639964 0.113599 0.775091 

9 −0.598273 −0.599561 0.00215312 

10 0.15289 0.0915716 0.401061 

 
Table 6. Error percentage of HPT for 1 25, 0.6, 0.6m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 −0.2203 −0.213465 0.0310281 

2 −0.437498 −0.447683 0.0232808 

3 0.542499 0.532471 0.0184855 

4 0.0386421 0.0686075 0.775458 

5 −0.571011 −0.581362 0.0181276 

6 0.380935 0.345017 0.094289 

7 0.290291 0.335323 0.155126 

8 −0.595001 −0.583698 0.0189959 

9 0.146686 0.0798101 0.455913 

10 0.48678 0.525629 0.0798072 
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Figure 7. Shows a comparison between the numerical solution (Num) and the approx-
imate one obtained by HPT at 1 5 kgm =  and 1 ml =  when (a) 2 0.2 kgm = , (b) 

2 0.4 kgm = , (c) 2 0.6 kgm = . 

 
Table 7. Error percentage of HPT for 1 25, 0.2, 1m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 0.0849478 0.0871748 0.0262152 

2 −0.575847 −0.574597 0.00217201 

3 −0.248074 −0.254183 0.024628 

4 0.505338 0.50056 0.0094552 

5 0.391384 0.399766 0.0214169 

6 −0.394196 −0.384207 0.0253417 

7 −0.503322 −0.511601 0.0164498 

8 0.251453 0.235423 0.0637503 

9 0.574791 0.580176 0.00936958 

10 −0.0886238 −0.0667953 0.246305 

 
numerical ones of the governing equation of motion (4) that obtained using the 
fourth order Runge-Kutta method and the corresponding error percentage of 
HPT; for different values of parameters of the considered dynamical model. This 
compression shows high consistency between them which expresses the great 
accuracy of the obtained solutions using HPT. 
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Table 8. Error percentage of HPT for 1 25, 0.6, 1m m l= = = . 

Time Numerical Results (NR) HPT Results (HPTR) |(HPTR − NR)/NR| 

0 0.6 0.6 0 

1 −0.0786568 −0.0744064 0.0540374 

2 −0.579581 −0.58166 0.00358832 

3 0.230568 0.218613 0.0518523 

4 0.519584 0.52774 0.0156975 

5 −0.366616 −0.3493 0.0472322 

6 −0.423893 −0.44148 0.041489 

7 0.477398 0.458431 0.0397306 

8 0.29899 0.3281 0.0973608 

9 −0.555316 −0.539339 0.0287718 

10 −0.153496 −0.194521 0.267272 

6. Stability Analysis 

In this section, we investigate the stability of the governing equation of motion 
(13). It is obvious from the preceding section that, this investigation will be un-
successful in view of Equation (28). Therefore, we are going to obtain a periodic 
solution of (13). 

It should be noticed that Equation (13) is transformed into linear and nonli-
near parts as indicated in Equations (15) and (16) respectively in which 0ω  
denotes a natural frequency of Equation (15). It is clear that the linear part 
represents a simple harmonic equation. Therefore, the stability of this part de-
pends upon the frequency 0ω  which is always positive and consequently, the 
represented figures have periodic forms as expected. Therefore the system is al-
ways stable. 

Now, let us focus attention on the stability of a nonlinear part in which we 
consider a nonlinear frequency analysis. Therefore, a nonlinear frequency 2Ω  
is assumed to be in the following form  

2 2 2
0 1 2 ,ω ρϖ ρ ϖΩ = + + +                  (29) 

where 1 2, ,ϖ ϖ   are arbitrary parameters can be estimated. 
According to the reported work [30] and HPT, we can write the approximate 

nonlinear frequency in the form  
2 2

0 11
lim i

iiρ
ω ρ ϖ∞

=→
Ω = + ∑                  (30) 

Substitution of (29) into (20) yields  

2 2 2 3
1 0

2
i

ii

gv v R v v vv v v
l

ρ ρ ϖ∞

=

 +Ω + + + − =  
∑           (31) 

Making use of (10) and (31), then equating the coefficients of like powers of 
ρ  in both sides to obtain 
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Coefficient of 0ρ : 
2

0 0 0,v v+Ω =                        (32) 

Coefficient of ρ : 

2 2 2 2
1 0 0 0 0 0 1 1 0 0,

2
gv R v v v v v v v
l

ϖ  + + + +Ω − =    
             (33) 

Coefficient of 2ρ : 

( )2 2 2 2
2 0 1 0 0 1 0 1 1 0 0 2 1 1 2 0

32 0,
2
gv R v v v v v v v v v v v v v
l

ϖ ϖ  + + + + + +Ω − − =    
        (34) 

Taking into account conditions (24), one can solve Equations (32)-(34) sub-
sequently to get  

( )0 cos .v A t= Ω                        (35) 

It is worthy to mention that in order to get a uniform to expand solution, the 
terms that produce secular terms in Equations (33) and (34) must be deleted. 
Substituting (35) into (33) and (34), then expanding the trigonometric functions 
to obtain  

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )( )

2 2 2
1 1 1

3 2

2 2
2 2 2

2 2

2 2
1

2 2 2

cos

1 4 3cos cos 3 ,
8

1 8 16 3 cos
8
21 cos 2 cos 4
4
1 4 2 3 cos 3
4
1 16 3 cos 5 2 1 cos 6 .
8

v v A RA t

RA l g t t
l

v v A l QAR l g t
l

QA R t t

Q l A R l g t
l

QA R l g t l t
l

ϖ

ϖ

ϖ

+Ω = − Ω Ω

+ Ω − Ω + Ω  

 +Ω = + Ω − Ω 

+ Ω Ω + Ω  

 + − Ω + Ω 

 + Ω − Ω + Ω + Ω 





  (36) 

Omitting terms that lead to secular terms in (36) to get  

( ) ( )2 2 2
1 2

1 13 4 , 3 16 .
8 8

A R g l QAR g l
l l

ϖ ϖ= − Ω = − Ω          (37) 

According to (37), one can write the solutions ( )1v t  and ( )2v t  of (36) in 
the form  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1

2 2
1

2 2 2

2

2 2
12

2
2

cos 3 cos ,

631 7 cos sin
8 2 21 44

7 5cos 2 cos 4
20

3 7 4 cos 3
32

1 13 16 cos 5 cos 6 1 ,
16 12 35

v Q t t

Q A R g QA Rv t t
l

QA R t t

Q RA g l l t
l

RQA g l t t

ϖ

ϖ

= Ω − Ω  
  = + − Ω − Ω   ΩΩ Ω  

− Ω + Ω  

 + + Ω − Ω Ω
 + − Ω Ω − Ω +  

       (38) 

where  
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( )
3

2
2 .

16
RAQ g l
l

= − Ω
Ω

 

Making use of (10), (35) and (38), then considering 1ρ → , to obtain the ap-
proximate periodic solution in the form  

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

2 2
1
2 2

2

2 2
12

2
2

cos cos 3 cos

631 7 cos sin
8 2 21 44
7 5cos 2 cos 4
20

3 7 4 cos 3
32

1 13 16 cos 5 cos 6 1 .
16 12 35

u A t Q t t

Q A R g QA Rt t
l

QA R t t

Q RA g l l t
l

RQA g l t t

ϖ

ϖ

= Ω + Ω − Ω  
  + + − Ω − Ω   ΩΩ Ω  

− Ω + Ω  

 + + Ω − Ω Ω
 + − Ω Ω − Ω +  

      (39) 

An inspection of the previous solution u is given as a function of time t and 
has a periodic form. Therefore, the arguments of the trigonometric functions 
must be real values. To achieve this aim substituting (37) into (29) and consi-
dering 1ρ → , we obtain  

( )
4 2 2

2 2 4 2 2 2 2
0

7 34 8 3 8 0.
16 64

A R gl A R A R A gR A R l
l

ω   − − Ω + − + Ω + =      
  (40) 

Under the present circumstances, the stability conditions require that Ω  
must be taken a real and positive quantity. Therefore, the necessary and suffi-
cient conditions for the stability have the forms  

( )2 2 2 2 2
0

74 8 0, 3 8 0
16

A R A R A gR A R lω − − > − + < 
 

          (41) 

To gain more insight into the existence of real roots, the distinction of (40) 
must be positive or becomes worthless i.e.,  

( ) ( )22 2 2 2 2 4 2 2 2 2
0 0

1 164 48 7 15 84 0
8 32

l gRA l A R A R g A R A Rω ω   + − + − + ≥    
(42) 

Therefore, one obtains the restrictions on the initial angular velocity 0ω  
have the forms 

( )( )2 2 2 2 2
0

1 7 48 4 3 4 24 ,
128

A gR A R A R A R
l

ω ≥ − + − −         (43) 

or 

( )( )2 2 2 2 2
0

1 7 48 4 3 4 24
128

A gR A R A R A R
l

ω ≤ − − − −          (44) 

Beside the first condition in (41), the stability region requires that 

( )( )

2 2 2
0

2 2 2 2 2
0

1 7 3 ,
8 16

with
1 7 48 4 3 4 24 ,

128

A gR A R
l

A gR A R A R A R
l

ω

ω

 < − 
 

≥ − + − −

        (45) 
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or 

( )( )

2 2 2
0

2 2 2 2 2
0

1 7 3
8 16

with
1 7 48 4 3 4 24

128

A gR A R
l

A gR A R A R A R
l

ω

ω

 < − 
 

≤ − + − −

        (46) 

Based on the above inequalities we can obtain another condition of the stabil-
ity between the parameters A and R as follows: From (45), one can deduce the 
following inequality easily 

( )
2

2 2 21 77 48 4 3 4 24 3
16 16

A RA R A R A R
  − + − − < −     

 

Therefore, one gets the stability condition between A and R in the form 

( )2 24 8A R A R− >                         (47) 

7. Conclusion 

The motion of a nonlinear oscillating dynamical system is studied. HPT is used 
to achieve the solution of the governing equation of motion. The graphical re-
presentations of the obtained solution are represented for some different values 
of the physical parameters of the studied system. The numerical results of the 
governing equation of motion are obtained utilizing the Runge-Kutta method 
from fourth order and compared with the obtained ones by HPT. The compari-
son between them reveals high consistency in both results which emphasize the 
accuracy of the obtained results by HPT. The stability criteria is investigated 
through a fourth order equation in terms of the initial frequency 0ω . 
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