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Abstract 
The purpose of the research is to develop a universal algorithm for partial 
texture segmentation of any visual images. The main peculiarity of the pro-
posed segmentation procedure is the extraction of only homogeneous 
fine-grained texture segments present in the images. At first, an initial seed 
point is found for the largest and most homogeneous segment of the image. 
This initial seed point of the segment is expanded using a region growing 
method. Other texture segments of the image are extracted analogously in 
turn. At the second stage, the procedure of merging the extracted segments 
belonging to the same texture class is performed. Then, the detected texture 
segments are input to a neural network with competitive layers which accom-
plishes more accurate delineation of the shapes of the extracted texture seg-
ments. The proposed segmentation procedure is fully unsupervised, i.e., it 
does not use any a priori knowledge on either the type of textures or the 
number of texture segments in the image. The research results in develop-
ment of the segmentation algorithm realized as a computer program tested in 
a series of experiments that demonstrate its efficiency on grayscale natural 
scenes. 
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1. Introduction 

The principal problem in the field of image processing is that of object-ground 
separation, i.e. the task of detecting the area of an object in the image. Then, this 
object should be recognized. Any object is recognized, to a large degree, by its 

How to cite this paper: Goltsev, A., Grit-
senko, V. and Húsek, D. (2020) Segmenta-
tion of Visual Images by Sequential Ex-
tracting Homogeneous Texture Areas. Jour-
nal of Signal and Information Processing, 
11, 75-102. 
https://doi.org/10.4236/jsip.2020.114005 
 
Received: August 12, 2020 
Accepted: November 7, 2020 
Published: November 10, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jsip
https://doi.org/10.4236/jsip.2020.114005
https://www.scirp.org/
https://doi.org/10.4236/jsip.2020.114005
http://creativecommons.org/licenses/by/4.0/


A. Goltsev et al. 
 

 

DOI: 10.4236/jsip.2020.114005 76 Journal of Signal and Information Processing 
 

shape. Therefore, in order to recognize an object in a real-world visual scene, it 
is necessary, at first, to detect its borders in the image. In natural images, borders 
of texture segments are, often, borders of objects or their parts. Thus, the first 
step of the object recognition should be division of the image into separate tex-
ture segments. When texture segments are delineated, it becomes possible to 
start solving such tasks as object-ground separation, object recognition and im-
age understanding.  

In the majority of works devoted to the texture segmentation problem, statis-
tical analysis of input images is performed for description, recognition and seg-
mentation of textures. In the statistical approach, the image is usually processed 
by a sliding window within which various statistical characteristics are measured 
(e.g. [1] [2] [3] [4] [5]).  

In the approach which falls into category of unsupervised texture segmenta-
tion the segmentation algorithm uses some universal texture features to extract 
any texture regions (e.g. [6] [7] [8] [9] [10]). For the majority of the unsuper-
vised segmentation algorithms it is necessary to specify the number of the tex-
ture segments to be extracted.  

The complexity of the texture segmentation problem may be facilitated by 
providing a segmentation device with a number of distinctive patches of those 
textures that should be recognized and segmented in the image. Using these 
patches, it is possible to measure characteristics of the indicated textures and to 
adjust parameters of the segmentation device according to them. Adjustment of 
segmentation parameters may be done by means of supervised learning. In this 
approach, the segmentation device is preliminarily learnt on a training set of the 
texture class samples (e.g. [11] [12]). Many supervised feed-forward neural net-
work-based models for texture segmentation and recognition are of this ap-
proach (e.g. [13] [14] [15] [16] [17]). Some of them use supervised neural net-
work classifiers, such as [15] [16] [18] [19] [20], and associative (assembly) 
neural networks [13] [14] [21] [22].  

The textures may be subdivided into fine-grained and coarse (-grained) ones. 
Image regions representing objects with discontinuities in depth, in material, or 
in illumination, etc., correspond to coarse texture segments. And a fine-grained 
texture is characterized by a smooth variation of image brightness and fine gra-
nularity. Texture segmentation of images may be performed as by means of 
coarse texture region extraction, as by extraction of homogeneous fine-grained 
texture segments. The presented approach belongs to the latter one. It is worth 
to note that the discrimination of textures to “coarse” or “fine-grained” is, to a 
large extent, rather relative. Indeed, by increasing the degree of image resolution, 
fine-grained segments may turn into coarse ones. In the presented work, the size 
and image resolution are fixed.  

It is well known that the concept of “texture” is intuitive and it does not have 
any formal or commonly accepted definition (e.g. [17]). Therefore, there is no 
possibility to evaluate formally texture segmentation results. Various researchers 
understand somewhat different things by the term “texture”. In many publica-
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tions, the term “texture” is used in relation to any areas occupied by the entire 
objects such, for example, as faces, flowers, animals, trees, buildings, bicycles and 
so on. So, in this works, the term “texture” is equivalent to that of the object. 
This understanding of the texture notion is dominating in the world. And 
therefore, all databases for texture and object segmentation and recognition have 
been constructed for testing different segmentation and recognition algorithms 
within this understanding of texture.  

We have a different opinion about the concept of texture. We define the “ho-
mogeneous texture segment” as an image area all small parts of which have sim-
ilar texture characteristics (texture features). And, in this approach, we use only 
homogeneous texture areas as texture segments.  

Let us notice, that the idea to start the analysis of visual images by extraction 
of homogeneous texture areas is almost conventional. For example, the follow-
ing sentence is a quote from [23]: “The task of partitioning a natural image into 
regions with homogeneous texture, commonly referred to as image segmenta-
tion, is widely accepted as a crucial function for high-level image understanding, 
significantly reducing the complexity of content analysis of images”. 

It is worth to note that the problem of image segmentation has been tried to 
solve not only by means of texture extraction. For example, the language model 
LDA (Latent Dirichlet Allocation), based on the design of spatial documents, 
have been used to segment images of greenhouse plants [24]. Color analysis me-
thods have been proposed for image segmentation (e.g. [25] [26]). The method 
for automatic segmentation of color images presented in [25], despite the dif-
ferences in details, is very similar in its basic ideas to our approach.  

The competitive layer models (CLM) have been also applied for image (tex-
ture) segmentation (e.g. [27] [28]). In [27] [28], the segmentation procedure is 
based on features that are local Gabor filter responses at different spatial fre-
quencies and orientations. Generally, a competitive layer model is proposed for 
grouping and clustering data of different types. The CLM architecture was first 
introduced as a model for spatial feature linking in [29]. Here we mention CLM 
not only as effective technique for solving the problem of image segmentation, 
but, also, because we use the same architecture of competitive layers to improve 
the results of texture segmentation obtained in our previous works [30] [31] 
[32]. However, our system of competitive layers is not a full CLM, since it uses 
somewhat other algorithms and solves somewhat other tasks. The prototype of 
this neural network is described in [33] [34].  

The present paper is a continuation of our previous researches [30] [31] [32]. 
The aim of all works of this series is to develop a universal algorithm that should 
segment any input image into a number of homogeneous fine-grained texture 
segments. In other words, the proposed algorithm should perform partial texture 
segmentation of the image by delineating the homogeneous texture areas present 
in the image while its inhomogeneous areas remain unsegmented.  

The algorithms of sequential extraction of all homogeneous texture segments 
of an input image are described in [31]. This set of algorithms belongs to a re-
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gion growing approach (e.g. [35]-[41]), more precisely, to the pixel-based region 
growing method (e.g. [41]) which is rather computationally expensive.  

According to [31], initially, a set of texture features characterizing the largest 
and most homogeneous texture segment of the input image is found. To do that, 
an exemplary patch of pixels is firstly detected in the image. Somewhat different 
versions of this procedure are described in [30] [32]. The texture features ex-
tracted from the exemplary patch are considered to be those that best character-
ize the selected texture segment to be extracted. Then, the exemplary patch is 
used as starting points from which the expansion of this segment starts taking 
into account its characterizing feature set. After extracting the segment, its re-
gion is excluded from further consideration. Then, the next homogeneous tex-
ture segment is extracted by the same algorithms. This process of sequential 
segmentation is completed when no more sizable homogeneous segments re-
mains in the image. The process is fully unsupervised, i.e., it does not use a pri-
ori knowledge on either the type of textures or the number of texture segments 
present in the image.  

The segmentation procedure described in [31] does partly solve the task of 
preliminary segmentation of an input image into a set of homogeneous seg-
ments. However, since the segmentation procedure is purely local, it extracts 
separately all texture segments of the same texture class that are not adjacent. As 
a result of that, some number of homogeneous texture segments of the same 
texture class may be marked by different colors in the image. In the present 
work, we consider the processes described in [31] as the first stage of entire seg-
mentation procedure. At the second stage, the procedure of merging the ex-
tracted segments belonging to the same texture class is performed.  

Also, the segmentation procedure of [31] segments the homogeneous regions 
rather roughly. In this paper we include a neural network with competitive lay-
ers which accomplishes more accurate delineation of the shapes of the extracted 
texture segments.  

Many algorithms of a post-processing type are proposed, e.g. [10] [25] [36] 
[40] [42] [43] [44]. For example, the methods described in [42] [43] use the 
segmentation results obtained by such segmentation algorithms as the mean 
shift [45] and graph-based image segmentation [46] as the initial segments. 
There are different types of post-processing algorithms, e.g. the merge impor-
tance based method [44], the Markov random field based method [40], the over-
all coding length minimization method [10].  

After accomplishment of the merging operation, the final third stage of our 
entire segmentation procedure starts; it is processing of the merged segments by 
means of a neural network with competitive layers. Due to the neural network 
functioning, the shapes of homogeneous texture regions present in the image 
become delineated more precisely. In addition, a larger area of the image be-
comes segmented than that reached at the first stage of the entire texture seg-
mentation procedure.  

The paper is organized as follows. Section 2 gives an overview of the entire 
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segmentation procedure and briefly characterizes algorithms of all its stages. 
Section 3 contains a short description of the texture features used to evaluate 
texture characteristics of different image points and describes formation of an 
etalon feature pattern. In Section 4 we explain algorithms of computation of a 
degree of integral similarity between exemplary patch of the segment to be ex-
tracted and all texture windows of this segment. Section 5 depicts the procedure 
of merging the segments of the same texture class. Section 6 introduces a neural 
network with competitive layers and algorithms of its functioning. Section 7 
demonstrates experimental results of different stages of the entire texture seg-
mentation procedure. Section 8 is devoted to discussion and conclusions.  

2. An Overview of the Texture Segmentation Process  

A set of predetermined texture features is used to describe peculiarities of tex-
tures. These features allow the segmentation algorithm to distinguish different 
textures between one another. The same texture features are applied in all stages 
of the texture segmentation process. The procedure of feature extraction is per-
formed by means of a set of sliding texture windows that cover the whole image 
(with overlaps between one another). A texture window is a comparatively small 
square frame which serves to evaluate generalized texture characteristics of the 
image within the window. Now, the window-based method for evaluation of 
texture characteristics is the most prevalent technique.  

At first, the largest and most homogeneous texture segment is extracted in the 
image. The first operation of the segmentation process is finding a set of texture 
features characterizing this segment (see [30] [32]). The essence of this operation 
is as follows.  

In order to evaluate homogeneity of different points of the image, it is covered 
with a number of test windows. The test window is also a square frame but it is 
larger than the texture window. Therefore, each test window contains quite a 
large number of overlapping texture windows within it. In each test window, the 
degree of texture homogeneity is measured by means of sequential comparisons 
between all texture windows contained in the test window under consideration. 
Then, among all test windows of the image, a window with the maximum degree 
of homogeneity is selected. Inside this test window, an initial seed spot (starting 
seed) is detected.  

The initial seed spot is, actually, a patch of pixels. The detected initial spot is 
considered as a compact area of the exemplary seed pixels that certainly belongs 
to the texture segment to be extracted. The procedure of finding the exemplary 
pixels is described in details in [32]. Earlier (and outdated) version of this pro-
cedure is presented in [30].  

Sets of texture features are measured in the detected exemplary pixels using 
the texture windows associated with them. Then, these features are averaged in 
order to form an exemplary feature set (representing feature set) which best 
characterizes the homogeneous texture segment to be extracted. Using this ex-
emplary feature set, the segmentation algorithm starts to delineate the segment.  
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For each segment under processing, the detected initial seed pixels are gradu-
ally expanded by means of including the pixels of its neighborhood into the 
segment. In other words, the label of belonging of the image pixels to the seg-
ment gradually spreads from the initial seed pixels to the borders of the segment. 
In this region growing procedure, the algorithm examines each appending pixel 
by comparison of its texture features with the exemplary feature set. If these fea-
ture sets are similar enough, the neighboring pixel is appended to the growing 
segment, if not, the pixel is excluded from it. The procedure for growing the seed 
region continues until the segment reaches its borders. Note, that this procedure 
is sequential, pixel-based, and, therefore, is rather computationally expensive.  

As a result of this expansion procedure, a more or less homogeneous and 
(usually) simply connected fine-grained texture area is delineated. After delinea-
tion of the current segment, its area is excluded from the further consideration. 
Thereby, each subsequent segment does not intersect with the segments that 
were extracted earlier. Extracting the next texture segment begins again with a 
search for a new set of representing seed pixels belonging to the largest and most 
homogeneous texture segment present in the rest of the image. The segmenta-
tion process is completed when the image contains no more sizable homogene-
ous areas. After that, the coarse texture and non-texture areas remain unclassi-
fied in the image.  

Almost the same segmentation procedure is used in the present work with 
small changes indicated in Sections 3 and 4. Since, this procedure is presented in 
detail in [31], we describe it here briefly. Since the segmentation procedure is 
designed to extract only fine-grained homogeneous texture segments, it cannot 
extract a coarse texture segment as an entire area. Moreover, the algorithm 
should divide every coarse texture area into a number of smaller homogeneous 
texture patches. This inherent peculiarity distinguishes the proposed segmenta-
tion procedure from related techniques that can classify a mixture of areas with a 
fine-grained texture and coarse ones as belonging to the same texture segment.  

As mentioned above, now we subdivide the whole segmentation process into 
three stages, the first of which is the extraction of all significant texture segments 
present in the analyzed image. After completion of that, the next task arises. 
Since some number of the extracted segments may be of the same texture, natu-
rally, they should be merged into the same texture class.  

The merging procedure is performed as follows. The averaged texture charac-
teristics of all extracted texture segments are computed and compared in pairs. 
The comparison between two segments within a pair is accomplished using four 
texture characteristics. If all four characteristics of two compared segments are 
similar enough, all pixels of both segments are combined as belonging to the 
same texture class. In the figures presented in Section 7, this is expressed by 
marking the segments with the same color. In our approach, the merging pro-
cedure is considered as the second stage of the whole segmentation procedure.  

After the merging procedure, the obtained texture segments are input to a 
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neural network with competitive layers. Processing the segments by the neural 
network with competitive layers is the final third stage of the whole segmenta-
tion procedure. The goal is to achieve more accurate shapes of homogeneous 
texture segments present in the image. Prototypes of the neural network with 
competitive layers are described in [33] [34].  

The layered network contains such number of neural layers that is equal to the 
number of texture segments obtained after the merging procedure. Each layer of 
the network is used to represent only one texture segment. As a result of input-
ting all merged texture segments into the neural network, each segment becomes 
represented in its own layer by means of activation of the corresponding neu-
rons in the layer. Then, the network neurons begin to interact with each other by 
excitatory and inhibitory manner. Excitatory connections link the neurons of the 
same layer. The interaction between neurons of different layers is competitive 
(inhibitory). The network functioning is performed in a series of iterations; its 
number is variable and is not limited. As a result of the network functioning, 
configurations of active neurons change in the layers. When the configurations 
of active neurons in all layers become stable, the process ends. In addition to 
more precise delineation of shapes of homogeneous texture segments present in 
the image, processing leads to such a result that a larger area of the image be-
comes segmented than after the first stage of the whole segmentation procedure.  

3. Texture Features, Their Representation, and Formation  
of the Etalon Feature Pattern  

Now, a brief description of the features is proposed. Let us notice that the algo-
rithms described below can work with any other feature set, provided that this 
set is represented in the same format of normalized vectors (see below).  

Only grayscale images are processed; each of them is of N = I × J pixels, with 
the range within 0 - 255 brightness values. In order to evaluate texture characte-
ristics of different image points, the whole image is covered by overlapping 
square texture windows of the same size. For simplification, we postulate that 
the number of texture windows is equal to the number of image pixels N and 
each image pixel corresponds to the center of the associated texture window.  

A set of M texture features (feature types) is computed in every texture win-
dow. At the beginning of processing a given image, all texture features are com-
puted in all N texture windows covering the image and saved for further usage.  

The following simple set of texture features is used. The first part of the fea-
ture set is the averaged histogram of the brightness of all pixels of the texture 
window; it consists of 11 bins. The second part is a histogram of the orientation 
of all pixels of the texture window. This histogram is computed based on filter-
ing the image by the Scharr filter [47]. Orientation histogram consists of 9 bins. 
The next feature is the average brightness of the texture window. The last texture 
feature is the average non-uniformity brightness in the window. This feature is 
calculated by averaging the outputs of all Scharr filters of the window. The fea-
ture is useful to distinguish texture patches of the same average brightness but 
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with different internal texture structure.  
So, a total of M = 22 texture features are computed in each texture window. 

All these M values constitute the feature set representing the texture peculiarities 
of the corresponding window.  

Thus, we use the same set of texture features as in [30] [31] [32]. However, in 
the present work, unlike [31], the feature description of the whole image (of all 
N texture windows) is presented in somewhat simpler format. Videlicet, each 
feature value is represented as an integer value in an integer three-dimensional 
array G[i][j][m] of I × J × M elements (instead of a binary four-dimensional ar-
ray in [31]). The array G is calculated only once at the beginning of the texture 
segmentation procedure and saved for further usage.  

As mentioned in Section 2, extraction of every homogeneous texture segment 
starts with finding the exemplary patch (seed pixels) of the sought-for texture 
segment ([32]). Let us introduce a binary matrix PEXMPL(k)[i][j] of N = I × J ele-
ments to represent the exemplary seed patch of the k-th segment. In this matrix, 
its one-valued elements indicate the image pixels belonging to the patch. The 
matrix is used to create some etalon of texture features (etalon feature pattern) 
which describes the texture peculiarities of the segment to be extracted. An in-
teger vector W(k)[m] of M elements is introduced to represent the etalon feature 
pattern of the k-th segment. Actually, the vector contains averaged combination 
of all feature sets extracted from the exemplary seed patch PEXMPL(k). Unlike the 
array G[i][j][m], which is computed only once, the vector W(k) is formed anew 
for each k-th segment. The procedure of formation of the vector W(k) is de-
scribed in a (C++ like) pseudo-code in Algorithm 1.  

 
Algorithm 1. Combining all feature sets extracted from the exemplary seed patch PEXMPL. 

Input: binary matrix PEXMPL(k)[I][J]; // Exemplary seed patch for the k-th segment.  

  integer array G[I][J][M];  // Feature description of the whole image.  

Output: integer vector W(k)[M];  // Etalon feature pattern: combination of features  

       // representing the k-th segment.  

W(k) = 0;      // Zeroing vector W(k). 

U = 0;       // Zeroing number of pixels U in PEXMPL(k).  

{  

| for (i = 0; i < I; i++)   // Cycle through X coordinates of image.  

| | for (j = 0; j < J; j++)  // Cycle through Y coordinates of image.  

| | | if (PEXMPL(k)[i][j] = = 1) // Testing: if pixel belongs to PEXMPL(k).  

| | | {  

| | | | U++;     // Incrementing the number of pixels U.  

| | | | for (m = 0; m < M; m++)  // Cycle through all features.  

| | | |  W(k)[m] += G[i][j][m]; // Summation in the m-th element of  

| | | |      // the vector W(k).  

| | | }  

}  

for (m = 0; m < M; m++)    // Cycle through all features.  

| W(k)[m] = W(k)[m] / U;   // Averaging m-th feature value of vector W(k).  
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4. Computation of the Degree of Similarity between the  
Representing Patch and Texture Windows  

In the first stage of the whole segmentation procedure, the process of extraction 
of all homogeneous fine-grained texture segments is sequential and iterative, one 
segment per iteration. The algorithm of extraction of every k-th texture segment 
is based on comparison between the etalon feature pattern W(k) and feature sets 
fixed in the integer three-dimensional array G[i][j][m]. Let us introduce an in-
teger matrix E(k)[i][j] of N = I × J elements to represent results of this compari-
son. In the notations W(k) and E(k), the letter k serves only to indicate that it is 
the process of extracting the k-th segment in which the matrix E and the vector 
W are currently used. In fact, each element of the matrix E(k) reflects the degree 
of similarity between the etalon feature pattern W(k) of the k-th texture segment 
and the feature set of each (i, j)-th texture window covered the image. Therefore, 
we name the matrix E(k) a matrix of similarity (similarity matrix). The similarity 
matrix E takes a great part in all stages of the texture segmentation procedure. In 
particular, it is used in the process of extraction of every texture segment in the 
same manner as in [31].  

The procedure of the matrix E(k) formation is described in a (C++ like) 
pseudo-code in Algorithm 2.  

 
Algorithm 2. Formation of the matrix E(k).  

Input: integer array G[I][J][M],  // Feature description of the whole image.  

  integer vector W(k)[M];  // Etalon feature pattern: combination of features  

       // representing the k-th segment.  

Output: integer matrix E(k)[I][J];  // Degree of similarity between feature patterns  

       // of texture windows and etalon feature pattern.  

E(k) = 0;      // Zeroing the matrix E(k).  

for (i = 0; i < I; i++)    // Cycle through X coordinates of image.  

| for (j = 0; j < J; j++)   // Cycle through Y coordinates of image.  

| | for (m = 0; m < M; m++)  // Cycle through all M features.  

| | | {    // Finding max and min between G[i][j][m]  

| | | |    // and W(k)[m].  

| | | | if (G[i][j][m] > = W(k)[m])  

| | | | | {  

| | | | | | max = G[i][j][m]; // Calculation of the maximum value.  

| | | | | | min = W(k)[m];  // Calculation of the minimum value.  

| | | | | }  

| | | | else  

| | | | | {  

| | | | | | min = G[i][j][m]; // Calculation of the minimum value.  

| | | | | | max = W(k)[m]; // Calculation of the maximum value.  

| | | | | }  

| | | | E(k)[i][j] + = min / max;  // Calculating similarity of m-th feature.  

| | | }  
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As follows from Algorithm 2, the procedure of the matrix E(k) formation in-
cludes a series of sequential comparisons in pairs of feature sets. One part of 
every pair is constant; it is the etalon feature pattern W(k). The other part of the 
pair changes in each comparison; it is the feature set of the (i, j)-th texture win-
dow. The similarity value between these feature sets is estimated by the sum of 
the ratios between the minimum and maximum values for all M features. So, the 
similarity value is a single integral characteristic by means of which we evaluate 
the similarity between both compared feature sets. The similarity value is fixed 
in the (i, j) element of the matrix E(k)[i][j]. Those elements of the matrix E(k), 
that have much higher values than its other elements, correspond to the k-th 
texture segment.  

Figure 1 illustrates this description by a demonstration experiment with a real 
image. The figure shows the process of extraction of the first texture segment in 
the image. The figure consists of two parts that are in mutual coordinate corres-
pondence. The left part is the input image. The first texture segment extracted by 
the segmentation algorithm (in the first iteration) is the ground area. The loca-
tion of the exemplary seed patch PEXMPL(1), found by using the algorithm de-
scribed in [32], is indicated by a black square in the left part of the figure. The 
right part of the figure presents the similarity matrix E(1) computed according 
to Algorithm 2. Thus, in this first iteration, the matrix E(1) is computed spe-
cially to extract the ground texture segment in the image. In the right part of the 
figure, the values of the matrix E(1) elements are expressed by the intensity of 
white. As seen in Figure 1, the elements of the matrix E(1) corresponding to the 
ground texture segment have much higher values than all other its elements.  

So, we consider the value of each (i, j)-th element of the similarity matrix E(k) 
as a measure of its belonging to the sought-for k-th texture segment. This value 
is used in the process of extracting each k-th texture segment in order to make a 
decision about including (or excluding) the considered image pixel (associated 
with the (i, j)-th texture window) into the segment. That is, starting from the  
 

 
(a)                                        (b)  

Figure 1. (a) A photograph of a bench and a black square in the figure that indicates lo-
cation of the exemplary seed patch detected by the algorithm of finding a set of texture 
features characterizing the most homogeneous texture segment present in the input im-
age. (b) The similarity matrix E(1) computed at the first iteration of the segmentation 
process.  
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example patch, the initial seed region of the sought for k-th texture segment is 
gradually grown by including pixels of its neighborhood into the segment. More 
precisely, in the seeded region growing process, the (i, j)-th element of the ma-
trix E(k) is compared with some decreasing threshold. If the value of the (i, j)-th 
element of the matrix E(k) exceeds the threshold, the currently considered 
neighboring (i, j)-th test pixel is assigned the label of the sought-for k-th seg-
ment, if not, the pixel is skipped.  

The subsequent procedures of delineation of each homogeneous segment are 
performed exactly in the same way as in [31].  

Let us introduce a binary matrix R(k)[i][j] of N = I × J size to represent the 
k-th texture segment that has been extracted during the k-th iteration of the first 
stage of the whole segmentation procedure: the pixels belonging to the k-th seg-
ment are represented by one-valued elements of the matrix R(k), other its pixels 
are zero-valued. Thus, according to above description, the last operation of ex-
tracting the k-th texture segment is a sequential comparison of all elements of 
the matrix E(k)[i][j] with a threshold D:  

( )[ ][ ] ( )[ ][ ]( )k i j k i j D= −R E1 ,                 (1) 

where D is the threshold which is gradually decreases in the process of extraction 
of each texture segment; 1(x) is the unit step function:  

( )
1,  for 0,
0,  for 0.

x x
x

x x
= ≥

=  = <
1  

5. Algorithm for Combining the Segments of the Same  
Texture  

As mentioned above, the second stage of the whole segmentation process is 
merging the segments of the same texture class. The merging procedure is rather 
simple. First, a list of all extracted segments is formed, which is sorted in des-
cending order of their size. Then, the pair of the largest segments is compared in 
their texture characteristics, whether they are similar enough to be referred to 
the same texture class. The comparison procedure is as follows.  

To assess the similarity of textures while testing two segments, four values are 
used. Each of these values is some measure of similarity between the segments 
which is computed by comparing the texture feature sets of both segments. The 
first value evaluates the similarity of the segments by brightness histograms; it is 
computed by comparison between all corresponding bins of the histograms. The 
second value evaluates the proximity of the prevailing orientations within the 
segments; it is calculated by comparing all corresponding bins of the orientation 
histograms. The third value reflects the proximity between the average bright-
ness of the segments. The fourth value describes the closeness between the aver-
age non-uniformity brightness of the segments (on the base of Scharr filtration). 
Each value of these four ones is computed according to the pseudo-code of Al-
gorithm 2. Tested segments are recognized as belonging to the same texture on-
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ly in the case if each of the values exceeds a predefined threshold. The thresholds 
are determined experimentally.  

If the segments of a pair of the currently tested segments are enough similar, 
they are merged as follows. Videlicet, if the textures of the s-th and the u-th 
segments are found to be sufficiently similar, and the s-th segment is larger than 
the u-th one, all pixels of both segments are combined in the binary matrix R(s) 
representing the largest s-th segment according to the formula  

( )[ ][ ] ( )[ ][ ] ( )[ ][ ]s i j s i j u i j= ∨R R R ,             (2) 

where ˅ is disjunction.  
After that, the matrix R(u) is zeroed: R(u) = 0; and the u-th segment is ex-

cluded from the list of the segments sorted in descending order of their size, and 
the list is updated. Then, a new tested pair of the largest segments is chosen and 
the same comparison procedure is performed to find out whether they are of the 
same texture, or not.  

In Section 7, we present experiments with real images that demonstrate results 
of the merging procedure.  

6. A Neural Network with Competitive Layers  

In our segmentation procedure, a neural network with competitive layers is used 
in order to improve the segmentation results, that is, to attain a more precise de-
lineation of the shapes of all homogeneous texture segments extracted in the 
image. As mentioned above, our system of competitive layers is not a full com-
petitive layer model (CLM) [27] [28] [48]. Although our system and CLM are 
very similar, they have some differences, at that, our system is rather simpler. 
The main difference is as follows. In CLM, each neuron in every layer is laterally 
interacting with all other neurons of the same layer by means of a complex func-
tion which is excitatory for short distances and weakly inhibitory for larger dis-
tances. Unlike that, in our neural network, the lateral interaction between the 
neurons of the same layer is only excitatory and local with a simple transfer 
function. Namely, this interaction between the neurons is transmitted by local 
excitatory connections with the weights that are equal throughout the network. 
There is no learning in this neural network.  

The neural network with competitive layers consists of several neural layers 
which number is equal to the number of the extracted segments remaining after 
the previous merging procedure; let us designate this number by K. Every neural 
layer is intended to represent all pixels of a certain texture segment and, there-
fore, contains such number of neurons that is equal to the number of image pix-
els: N = I × J. So that, each neuron of every neural layer corresponds to one pixel 
of the image. In other words, all neural layers have one-to-one correspondence 
with one another and with the input raster. And the configuration of neural ac-
tivity in the layers represents the shapes of the corresponding texture segments.  

Let us introduce such a functional unit of the neural network as a competitive 
neural column. Each competitive neural column includes all neurons of all net-
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work layers that correspond to the same pixel of the input raster.  
Figure 2 illustrates this description depicting the competitive neural network 

of 8 layers and one competitive neural column.  
There is competitive (inhibitory) interaction between all neurons of every 

competitive neural column which crosses the network layers. This competitive 
interaction is realized by means of a “winner-take-all” (WTA) procedure which 
is used to select the column’s neuron with the maximum excitation. Then, the 
selected neuron is set active. The WTA procedure is performed in each neural 
column of the network independently from all others. So, only one neuron 
within each competitive neural column can be active. If some neuron of the layer 
is active, this means that the corresponding image pixel belongs to a certain tex-
ture segment.  

The network uses an iterative procedure which includes interactions of neu-
rons inside each layer through excitatory connections and competitive WTA in-
terrelations between all neurons of every neural column. The network has un-
changeable connection structure. All connection weights are fixed and equal 
between one another.  

An output of each neuron of the network is binary. Activity of all neurons is 
calculated synchronously in a series of time steps. The number of time steps varies 
for each processed image. Let us designate the time steps by t; 1,2,3, ,t T=  , 
where T is the final time step for the currently processed image.  

Each neuron of the network has the same structure of lateral connections with 
other neurons of its layer. More exactly, each (i, j)-th neuron the k-the layer has 
mutual excitatory connections with all neurons of the same k-the layer that lie 
within the square of Z size with the (i, j)-th center. All these mutual excitatory 
connections have equal gradual weights throughout the network. Spreading the 
neural activity within the network layers by means of these lateral excitatory 
connections exacts a strong influence on the excitation levels of all network 
neurons.  

All K segments represented in the matrix R are used for input excitation of the 
competitive neural network. More exactly, all these segments are used in the 
process of formation of a set of K similarity matrices ( ) ( )1,2,3, ,k k K=E   
according to description of Section 4, where each matrix E(k) is computed by 
sequential application of Algorithm 1 and Algorithm 2. Now, to form the ma-
trix E(k), the same Algorithm 1 and Algorithm 2 are also applied in sequence, 
but with the following small modification. As distinct from the case of Section 4, 
the entire k-th extracted segment represented in the matrix R(k) is used instead 
of the exemplary seed patch PEXMPL (see Algorithm 1). Consequently, some new 
etalon feature pattern W(k) is created on the basis of all texture windows be-
longing to the k-th segment. As above, the etalon W(k) reflects the peculiarities 
of the k-th texture segment. Thus, each (i, j)-th element of the matrix E(k) 
represents the degree of similarity between the k-th texture segment and the (i, 
j)-th texture window of the image under consideration.  
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Figure 2. A schematic picture of a neural network with competitive 
layers. In the figure, the network is depicted as consisted of 8 neural 
layers. One neural column is highlighted in gray.  

 
So, K matrices E(k) are used for input excitation of the neural network with 

competitive layers. That is, at every t-th time step, the value of each (i, j)-th ele-
ment of the similarity matrix E(k) is fed to the input of the (i, j)-th neuron of the 
k-th neural layer.  

As mentioned above, the segmentation procedure is intended to delineate on-
ly homogeneous fine-grained texture segments present in the analyzed image. 
Since, in all real images, there are boundary regions and regions of coarse 
(-grained) textures, these regions should be excluded from consideration. Let us 
introduce a binary matrix Q[i][j] of N = I × J elements to partition the homoge-
neous fine-grained texture segments and those image areas that certainly are not 
homogeneous. These areas are partitioned in the matrix Q in such a way that its 
one-valued elements represent the homogeneous texture segments and its ze-
ro-valued elements represent the areas that should not be processed.  

To form the matrix Q[i][j], the following operations are performed. For each 
(i, j)-th competitive neural column, the maximal value Emax[i][j] is calculated 
(among all K elements of the (i, j)-th column)  

[ ][ ] ( )[ ][ ]max

1
MAX .

K

k
i j k i j

=
=E E                   (3) 

And, the matrix Q is formed according to the following formula 

[ ][ ] [ ][ ]( )max ,i j i j L= −Q E1                    (4) 

where L is some constant threshold, which is determined experimentally.  
So, Equations (3) (4) mean that for each (i, j)-th competitive neural column, 

all K values of the (i, j)-th elements of the matrices E(k) are compared with the 
threshold L. If all these values are less than L, the corresponding (i, j)-th pixel of 
the analyzed image is attributed as belonging to the boundary regions or regions 
of coarse (-grained) textures and, therefore, are excluded from further 
processing. This is expressed in zeroing the (i, j)-th element of the matrix Q by 

https://doi.org/10.4236/jsip.2020.114005


A. Goltsev et al. 
 

 

DOI: 10.4236/jsip.2020.114005 89 Journal of Signal and Information Processing 
 

Equation (4).  
To describe the image processing by the neural network with competitive lay-

ers, we introduce the following matrices. Let us designate by H t(k)[i][j] the level 
of input excitation of the (i, j) th neuron of the k-th layer at the t-th time step 
( 1,2,3, ,t T=  ). We also denote by P t(k)[i][j] the binary matrix for representa-
tion of the binary output neural activity of the k-th layer at the t-th time step. 
Actually, the neural activity configuration of the k-th layer P t(k) depicts the 
shape of the k-th texture segment at the t-th time step. This configuration 
changes during the network recalculation.  

The zero time step of the network recalculation is somewhat different from 
the subsequent steps. That is, at the zero time step there are no active neurons in 
the network at all. Therefore, there are no excitatory interactions between the 
neurons of the same layers through lateral connections. The only excitation ef-
fects at the input of network neurons are those that are obtained from the cor-
responding elements of the similarity matrix E. So, for the zero time step, P 0(k) 
= 0 for all k; 1,2,3, ,k K=  . Accordingly, the level of input excitation of the (i, 
j)-th neuron of the k-th layer at the first time step is calculated by the formula  

( )[ ][ ] [ ][ ] ( )[ ][ ]1 .k i j i j k i j=H Q E                (5) 

The matrix-multiplier Q is introduced in Equation (5) to underline the fact 
that those competitive neural columns which correspond to the zero-valued 
elements of the matrix Q are not processed.  

The “winner-take-all” procedure is carried out in every processed neural col-
umn at each t-th time step. That is, the maximum excitation level H t(max)[i][j] is 
calculated among K neurons of every (i, j)-th competitive neural column at each 
t-th time step, according to the formula  

( )[ ][ ] ( )[ ][ ]
1

max MAX .
K

t t

k
i j k i j

=
=H H               (6) 

Then, the most excited neuron is chosen among all K neurons of each neural 
column. The chosen neuron is set active (with one-valued output), while all oth-
er neurons of the column are set inactive (with zero-valued output). So, as a re-
sult of the WTA procedure, activity of each (i, j)-th neuron of the k-th layer at 
the t-th time step is computed by the formula  

( )[ ][ ] ( )[ ][ ] ( )[ ][ ]( )max .t t tk i j k i j i j= −P H H1          (7) 

Note that Equations (6)-(7) describe the WTA procedure at an arbitrary t-th 
time step, including the first one. Consequently, at the first step of the network 
recalculation, the configuration of active neurons P 1(k) in all K layers represents 
the shapes of the segments computed on the basis only the similarity matrices 
E(k).  

In the process of subsequent recalculation of the network, at each time step t, 
every (i, j)-th neuron of the k-th layer receives an exciting effect from the fol-
lowing two sources. The first source is constant for all time steps, it is the excita-
tion that comes from the (i, j)-th element of the similarity matrix E(k). The 
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second excitation component for every (i, j)-th neuron comes from all those ac-
tive neurons of the same k-th layer that surround this neuron and have lateral 
excitatory connections with it. These active neurons are located inside the square 
of size Z with center (i, j). They exert their excitatory effect through connections 
with gradual weights that are equal throughout the network; let us designate 
these weights as U, U < 1. So, the input excitation level of the (i, j)-th neuron of 
the k-th layer at the (t + 1)-th time step is calculated by the formula  

( )[ ][ ] [ ][ ] ( )[ ][ ] ( )[ ][ ] ( )[ ][ ]
2 2

1

2 2
.

i Z j Z
t t

l i Z f j Z
k i j i j k i j U k l f k l f

+ +
+

= − = −

 
= + 

 
∑ ∑H Q E P E

 
(8) 

In Equation (8), the operation, denoted by double-sum symbols, describes the 
summation of the excitations obtained from all active neurons that are located 
inside the square of size Z, which surrounds the considered (i, j)-th neuron. As 
above, the matrix-multiplier Q is used to underline the fact that those competi-
tive neural columns that correspond to the zero-valued elements of the matrix Q 
are not processed.  

Then, the “winner-take-all” procedure is carried out in every processed neural 
column of the network according to Equations (6)-(7). The configuration of 
neural activity in the k-th layer P t(k) reflects the shape of the corresponding 
k-th texture segment at the t-th time step.  

In the next iteration, the active neurons spread their excitatory influence in 
the corresponding layers. Other neurons of the (i, j)-th neural column, being in-
active, do not influence the neural activity re-distribution within their layers. 
With increasing the number of time steps, the configuration of active neurons at 
all network layers changes less and less. The process stops after a variable num-
ber of iterations, when the configuration of active neurons becomes stable. This 
means that the segmentation procedure is completed. Thus, the final configura-
tion of active neurons in all K layers are the resultant shapes of homogeneous 
texture segments extracted in the image as a result of the whole segmentation 
procedure.  

Note that during the process of the network recalculation, it may turn out that 
a few initial segments may disappear in the corresponding neural layers. Of 
course, this can usually happen with relatively small segments. This statement is 
illustrated by the experiments shown in the next section.  

7. Experiments  

The computer program simulating the whole texture segmentation procedure 
has been designed. The program has the following basic parameters. Experi-
ments deal with grayscale images of 427 × 320 pixels each as in [31] [32]. Tex-
ture window of 15 × 15 pixels is used. A total of M = 22 texture features are ex-
tracted from every texture window as it is described in Section 3.  

The program has been tested on natural images of different types. The test 
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images have been taken from Internet and several databases, such, for exam-
ple, as The Prague Texture Segmentation Datagenerator and Benchmark, 
MSRC_ObjCategImageDatabase, the Berkeley segmentation database, and the 
Stanford dataset.  

Examples of texture segmentation results are shown in Figures 3-6. With 
these figures, we would like to give readers an impression of the main stages of 
the whole texture segmentation procedure in several natural images. For this, 
every figure is composed of six parts; all of them are in mutual coordinate cor-
respondence.  

Figures 3-6 are organized as follows. Each figure is arranged in two lines. A 
grayscale photograph (input image) is placed in the left corner of the top line. 
The middle part of the top line shows the texture segments extracted as a result 
of the first stage of the whole segmentation procedure.  

The top right corner part presents the results of combining the segments of 
the same texture into the same texture class according to the merging procedure 
described in Section 5.  

 

 
Figure 3. Grayscale photograph of the dog (the left corner part of the top line) and the 
main stages of its texture segmentation. 
 

 
Figure 4. Grayscale photograph of the plant (the left corner part of the top line) and the 
main stages of its texture segmentation. 
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Figure 5. Grayscale photograph of a scene with a bicycle (the left corner part of the top 
line) and the main stages of its texture segmentation. 

 

 

Figure 6. Grayscale photograph of the bench (the left corner part of the top line) and the 
main stages of its texture segmentation. 

 
In the lower left corner part, the binary matrix Q is shown (see Section 6), 

which separates homogeneous fine-grained texture regions and such areas of the 
image, that certainly are boundary regions or regions of coarse (-grained) tex-
tures. The latter regions are not processed by the neural network with competi-
tive layers and are painted white, while the homogeneous texture areas are indi-
cated by dots.  

The middle part of the bottom line displays (in different colors) the initial 
neural activity P 1(k) obtained in the first time step of the recalculation of the 
neural network with competitive layers.  

The lower right corner part demonstrates the final segmentation results at-
tained after image processing by the neural network with competitive layers.  

All texture segments obtained in different stages of the segmentation proce-
dure are displayed in different colors (over the input image as a background) in 
the following order: green, red, dark-blue, violaceous, yellow, light-blue, brown, 
pink, light-grey, dark-grey, bronze, violet, cyan, amethyst, fawn, pine green, 
plum, pear.  
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Let us underline that all texture segmentation results shown in Figures 3-6 
are attained with the same values of parameters without tuning them for each 
image individually.  

Comparing all six parts of Figures 3-6 separately, we may conclude the fol-
lowing. The experimental results of Figures 3-6 demonstrate that the proposed 
segmentation procedure effectively accomplishes the extraction of homogeneous 
texture segments in images of different types. Doing so, the segmentation pro-
cedure usually performs rather reasonable segmentation of the input images 
from a human point of view.  

The difference between the middle and the right corner parts of the bottom 
line on every of Figures 3-6 clearly illustrates the effect of using the neural net-
work with competitive layers.  

Comparing the middle part of the top line and the lower right corner part one 
can see the advantages of the whole segmentation procedure in comparison with 
the segmentation results achieved after its first stage. These advantages, ob-
viously, consist in a more accurate delineation of the shapes of the homogeneous 
texture segments present in the image.  

As seen in Figures 3-6, the larger the texture segment, the more correctly it is 
extracted. And, the smaller the texture segment, the worse it is delineated. The 
reason for this fact is evident: it is a rather large size of the texture window (15 × 
15 pixels) versus to the relatively small size of the image (427 × 320 pixels).  

We also include Figures 7-10 in a set of demonstration experiments to give 
the reader an opportunity to visually compare the segmentation results achieved 
by the proposed texture segmentation procedure and the segmentation results 
obtained by the graph-based image segmentation algorithm [46], which is widely 
used (and recognized as an effective and popular segmentation method). The 
original images and segmentation results produced by the graph-based image 
segmentation algorithm of Figure 7 and Figure 8 are taken from [25]; those of 
Figure 9 are taken from Internet (Example Results, in the page Image Segmenta-
tion—Brown CS [48]); those of Figure 10 are taken from [46].  

Figures 7-10 are organized as follows. As above, each figure consists of six 
parts that are in mutual coordinate correspondence and are arranged in two 
lines. The original color input image is placed in the left corner part of the top 
line. Let us underline that since our segmentation algorithm is designed to 
process only grayscale images, we had to convert the original color images into 
the grayscale ones. The grayscale image converted from the original color one is 
presented in the middle part of the top line of each figure. The same grayscale 
image serves as a background for the left corner part and middle parts of the 
bottom line.  

The top right corner part of each figure displays the segmentation results ob-
tained by the graph-based image segmentation algorithm.  

The texture segments extracted by our whole segmentation procedure at its 
first stage are shown in the left corner part of the bottom line by different colors 
(over the grayscale image as a background).  

https://doi.org/10.4236/jsip.2020.114005


A. Goltsev et al. 
 

 

DOI: 10.4236/jsip.2020.114005 94 Journal of Signal and Information Processing 
 

The middle part of the bottom line of each figure depicts the initial neural ac-
tivity P 1 obtained in the first time step of the image processing by the neural 
network with competitive layers.  

The lower right corner part demonstrates the final segmentation results at-
tained after the image processing by the neural network with competitive layers. 
So, this part presents the final shapes of all homogeneous texture segments that 
our whole texture segmentation procedure was able to extract in the analyzed 
image. White spots in this part of the figures correspond to the boundary re-
gions or regions of coarse(-grained) textures that were not processed by the 
neural network with competitive layers.  

In the figures, all texture segments are displayed in different colors in the fol-
lowing order: green, red, dark-blue, violaceous, yellow, light-blue, brown, pink, 
light-grey, dark-grey, bronze, violet, cyan, amethyst, fawn, pine green, plum, 
pear.  

 

 

Figure 7. An original color photograph of hoses (the left part of the top line), results of its 
segmentation by the graph-based image segmentation algorithm and basic phases of 
processing of the corresponding grayscale image (converted from the original one) by the 
proposed texture segmentation procedure.  

 

 

Figure 8. A color photo of a house, results of its segmentation by the graph-based seg-
mentation algorithm and processing of the corresponding converted grayscale image by 
the proposed texture segmentation procedure.  
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Figure 9. A color photo of a scene with seeds, results of its segmentation by the 
graph-based segmentation algorithm and processing of the corresponding grayscale im-
age by the proposed texture segmentation procedure. 
 

 
Figure 10. A color photograph of a street scene (the left part of the top line), results of its 
segmentation by the graph-based image segmentation algorithm and basic phases of 
processing of the corresponding grayscale image (converted from the original one) by the 
proposed texture segmentation procedure.  

 
Note that in a series of experiments shown in Figures 7-10, the graph-based 

image segmentation algorithm takes advantage of all information available on 
the original color input images, while our texture segmentation procedure uses 
only reduced information of grayscale images converted from the color images.  

8. Discussion and Conclusions  

The purpose of this research is to develop a universal procedure for partial tex-
ture segmentation of any visual images. The developed procedure segments any 
input image into a number of non-intersecting areas of homogeneous fine-grained 
texture.  

The main advantages of the proposed procedure are as follows. It is fully un-
supervised, that is, it processes the input image without any a priori knowledge, 
neither of the type of textures, nor of the number of texture segments present in 
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the image. The procedure segments arbitrary images of all types, that is, to 
switch from one type of image to another, no changes to the procedure parame-
ters are required. In particular, the segmentation results shown in Figures 3-10 
are not obtained by means of tuning any parameters for each photo individually, 
but all these images have been processed with the same parameters.  

Another important advantage of the procedure is that in most cases it extracts 
homogeneous fine-grained texture segments in a similar way as people do. This 
result is confirmed by a series of experiments demonstrating this ability of the 
procedure on a wide range of images; some of these experiments are presented 
above. Of course, not all images are segmented ideally from a human point of 
view, but in most cases the main (largest) segments of a homogeneous texture 
are delineated correctly. However, humans always use some high-level features 
for image segmentation, such as the context of the scene being analyzed and the 
knowledge of the belonging of the considered segment to a specific object that 
the humans previously recognized in the image. This can explain the presence in 
Figures 3-10 the segments that a human would not consider as separate seg-
ments in these images.  

The number and shapes of the homogeneous fine-grained texture segments 
extracted by the segmentation procedure in the input image depend on many 
circumstances. One of them is the procedure’s parameters. In particular, some 
parameters of the first stage of the segmentation procedure determine the degree 
of homogeneity of the texture segments that will be extracted in the images. For 
example, such parameters can be chosen that provide the extraction of a larger 
number of smaller but more homogeneous segments.  

An important parameter, which strongly influences the segmentation process, 
is the texture window size (in relation to the image size). The larger the window 
size, the less homogeneous and coarser texture segments are extracted. However, 
a very small texture window does not adequately describe the texture.  

Another circumstance, which largely determines the number and shapes of 
the extracted texture segments, is an internal texture structure of the image. This 
means that if the input image consists of separate homogeneous fine-grained 
texture segments with rather different texture characteristics, the segmentation 
algorithm reliably extracts the same segments, even if the algorithm’s parameters 
vary in a wide range. However, if the segment is bordered with other segment 
with very similar texture characteristics, the procedure may extract both them as 
one segment.  

As mentioned above, we divide the whole texture segmentation procedure in-
to three stages. The first stage is most important, since it determines, to a large 
extent, the subsequent stages of the segmentation process. The first stage of the 
whole texture segmentation procedure is performed by means of the seeded re-
gion growing approach which is a purely local method. That is, the delineation 
of each texture segment is performed in turn, separately from all others, i.e., 
without global view of the problem. And this also applies to the segments of the 
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same texture class present in the analyzed image. Due to this peculiarity, the re-
mote texture segments of the same texture class cannot be assigned to the same 
class at the first stage of the whole texture segmentation procedure in principle. 
Thus, this peculiarity leads to the necessity to use some post-processing method 
in order to merge the texture segments of the same class (see Section 5).  

The proposed segmentation procedure is not free of restrictions and disad-
vantages. Indeed, comparing the middle and the right corner parts of the top line 
in Figures 3-6, one can make the following conclusion. Although in many cases 
the merging procedure successfully combines segments belonging to the same 
texture class, the experimental results show that this operation is still far from 
perfect. Let us consider Figure 3 as an example. As seen in the figure, the seg-
mentation procedure could not delineate the dog’s body as one texture segment, 
whereas, from a human point of view, all parts of the dog’s body are of the same 
texture class. Instead of this, at the first stage of the segmentation procedure, the 
dog’s body is divided into three different segments painted in light blue, green 
and brown in the top middle part of the figure. Then, in the second stage of the 
segmentation procedure, the proposed merging operation could not recognize 
that all these three segments are of the same texture; only two of them—light 
blue and brown were combined by this merging operation and become painted 
yellow, as seen in the top right corner part of the figure.  

We see the problem, but we cannot solve it in the given set of texture features. 
Indeed, for the example of Figure 3, the sets of texture features of the light blue, 
green and brown parts of the dog’s body are really too different for merging 
these segments into the same texture class. Of course, it is possible to reduce the 
requirements for similarity of segments to be merged. But in this case, the seg-
ments of textures that are different from a human point of view could be also 
merged by this operation. Presumably, the problem can be solved by means of 
using a larger number of texture features in the process of comparison between 
those texture segments that are candidates for merging. But, in the present work, 
we use the same parameters for all stages of the segmentation procedure, and, in 
the merge operation, we apply such parameters that definitely prevent 
over-merging. Note, that there is no over-merging in all figures.  

At the third stage of the whole texture segmentation procedure, the neural 
network with competitive layers realizes more global image processing. Al-
though, only local operations are accomplished in the network within the layers 
at every time step of the network recalculation, but configurations of active 
neurons change in the layers with each new time step. These changes in the con-
figuration of active neurons in the layers transfer the influence of each initially 
active neuron, iteration by iteration, to other neurons that can be located at a 
longer distance than the distance of the lateral excitatory connections Z. More or 
less global image processing depends on the weight U of lateral intra-layer exci-
tatory connections and the parameter Z. Thus, in general, the network with 
competitive layers processes the input image taking into account not only the 
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neighborhood information but also more global information about the entire 
image.  

The experimental results presented in the paper are applicable only to qualita-
tive assessment of the effectiveness of the segmentation algorithm in such terms 
as correct (or incorrect) extraction of segments from a human point of view. 
This is so because of the following reasons. The proposed texture segmentation 
procedure is intended to extract only homogeneous fine-grained texture seg-
ments and it cannot extract a coarse texture segment as a whole region. Moreo-
ver, it should divide every coarse texture region into a number of small homo-
geneous fine-grained texture segments. However, in all databases used for test-
ing the algorithms for texture and object segmentation and recognition, the im-
age region occupied by any object is considered as a region of the same texture 
and is supplied with its ground-truth. For example, in Figure 3 the ground-truth 
for a dog is the whole region of its body; the ground-truth for a bicycle of Figure 
5 is the whole bike, and so on. Therefore, according to the rules of all databases, 
the correct segmentation results in Figure 3 and Figure 5 would be the extrac-
tion of the whole body of the dog and the whole bike, respectively. Since the 
proposed segmentation procedure divides any processed area into a number of 
homogeneous segments of fine-grained texture, it should be evident that no 
quantitative assessment of the proposed segmentation procedure can be done 
using these databases.  

The image processing by the proposed segmentation procedure leads to a sig-
nificant reduction in the uncertainty of the internal structure of the analyzed 
image because of the following reasons. In a typical case, the input image con-
tains a number of homogeneous fine-grained texture segments. And all of them 
will be extracted by the procedure. In most cases, only a small part of the ana-
lyzed image remains unsegmented, which consists of coarse textures and boun-
dary regions. Thus, as a minimum, the procedure provides helpful additional 
information about the image that might significantly facilitate the solution of 
such tasks as segmentation, analysis, object-ground separation and, finally, rec-
ognition of the objects present in the image.  

Although the proposed image processing algorithm provides rather reasona-
ble texture segmentation of any input images, the obtained segmentation results 
are still not ideal. Directions for further research include faster comparison of 
brightness and orientation histograms that is the key operation in our region 
growing procedure (see [31] and Section 2). Since the histograms are 
represented as binary vectors, this will allow us to use the methods for fast simi-
larity estimation of binary vectors (e.g. [49] [50]), as well as index structures for 
fast similarity search (e.g. [51]). However, the next obvious step of our work will 
be the extension of the proposed segmentation algorithm to all three compo-
nents of color images (RGB) (separately). The goal is to take advantage of very 
valuable information about the color of all image pixels in addition to its texture 
peculiarities and, due to this, achieve a more complete and accurate segmenta-
tion of the input images.  
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