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Abstract 
This research has used the L-band radar from ALOS-2 PALSAR-2 and field 
work data for evaluation of seasonal effects of backscattering intensity on re-
trieval forest biomass in the tropics. The effects of seasonality and HH, and 
HV polarizations of the SAR data on the biomass were analyzed. The dry 
season HV polarization could explain 61% of the biomass in this study re-
gion. The dry season HV backscattering intensity was highly sensitive to the 
biomass compared to the rainy season backscattering intensity. The SAR data 
acquired in the rainy season with humid and wet canopies were not very sen-
sitive to the in situ biomass. Strong dependence of the biomass estimates with 
season of SAR data acquisition confirmed that the choice of right season SAR 
data is very important for improving the satellite based estimates of the bio-
mass. This research expects that the results obtained in this research will con-
tribute to monitoring of the quantity and quality of forest biomass in Viet-
nam and other tropical countries. 
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1. Introduction 

The role of forests to mitigate climate change has been strongly recognized again 
in the Paris Agreement in 2015 like as “key components of landmark climate 
deal agreed as well as an instrument to contribute to reducing emissions and 
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enhancing carbon sinks” on Paris Agreement (COP 21, 2015). The information 
of forest biomass is essential for increasing understanding of the terrestrial car-
bon cycle and judicial management of forest resources. Forests sequestrate at-
mospheric carbon dioxide in the form of biomass during photosynthesis (IPCC, 
2003; FAO, 2009; Way & Pearcy, 2012). Therefore, forest biomass has an impor-
tant role in the global carbon cycle (Brown, 1997; IPCC 2006; Gibbs et al., 2007). 
When forests are destroyed, more carbon is added to the atmosphere which ac-
celerates climate change. Accurate monitoring of forest biomass and CO2 se-
questration rates are immensely important for increasing understanding of 
global carbon cycles, improving climate change forecasting models, and climate 
change mitigation and adaptation strategies (FAO, 1997; GCOS, 2006; Gibbs et 
al., 2007; FAO, 2009, 2010; Stone & León, 2011). Global monitoring of forest 
carbon is also urgently needed for the United Nation program on Reducing 
Emissions from Deforestation and Degradation (REDD+), a financial payment 
mechanism for environmental services (Stone & León, 2011; UN-REDD Viet-
nam, 2012). However, estimating biomass from satellite data is challenging due 
to the diverse nature of forests, especially tropical forests (Lefsky et al., 2002; Lu, 
2006; Gibbs et al., 2007; FAO, 2010; Sinha et al., 2015).  

Satellite remote sensing technology has many advantages for biomass esti-
mates over traditional field survey based methods, particularly at larger scales. 
Therefore, it has been used by many researchers for biomass estimates (Lu, 2006; 
Gibbs et al., 2007; Ghasemi et al., 2011). Satellite based estimation of biomass re-
lies on optical, radar, and more recently lidar techniques. Limitations of optical 
data based biomass estimates have been reported by researchers including satu-
ration over large biomass regions, very low correlation, and difficulties in de-
tecting vertical structure (Ripple et al., 1991; Vincent & Saatchi, 1999; GCOS, 
2006; Gibbs et al., 2007; Gonzalez et al., 2010; Brewer et al., 2011; Sinha et al., 
2015; Pham et al., 2019).  

Lidar sensors have performed excellent estimates even in forests with high 
biomass and woody volumes by directly measuring the structure of the forest, 
i.e., canopy height and vertical distribution (Vincent & Saatchi, 1999; Lefsky et 
al., 2002; Zhao et al., 2009; Bortolot & Wynne, 2005; Moskal & Zheng, 2011; 
Kankare et al., 2013; Sheridan et al., 2014; Hansen et al., 2013). However, large 
scale application of lidar data is not economically feasible at present (Lu, 2006; 
Gibbs et al., 2007; Brewer et al., 2011). 

Radar remote sensing from satellites has high potential for biomass estimates 
at large scale because of its penetrability through clouds, applicability with night 
time, coverage at large scale, availability of seasonal data, and lower saturation in 
dense forests (Ulaby et al., 1981; Wu, 1987; Jensen, 2005; Kellndorfer et al., 2004; 
Ramankutty et al., 2007; Gibbs et al., 2007; Le Toan et al., 2011; Brolly & Wood-
house, 2012; Sinha et al., 2015; Luong et al., 2016; Luong et al., 2019). The 
long-wavelength SAR satellite is expected to have much promise for estimates of 
forest biomass (Ramankutty et al., 2007; FAO, 2009; Le Toan et al., 2011; Pham 
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et al., 2020).  
The backscattering intensity of L-band and P-band SAR data have demon-

strated sensitivity to structure, cover, volume, and biomass of the forests pene-
trating into the branches and stems of trees (Jensen, 2005; Sun et al., 2002; Balz-
ter, 2001; Balzter et al., 2007; Luong et al., 2016). A number of previous studies 
have shown an impressive relationship between the SAR data and biomass (Wu, 
1987; Le Toan et al., 1992; Dobson et al., 1992; Ranson & Sun, 1994; Luckman et 
al., 1997; Santos et al., 2002; Mitchard et al., 2011; Sandberg et al., 2011; Peregon 
& Yamagata, 2013). On the other hand, several researchers have reported satura-
tion problems with the L-band SAR backscattering over high biomass regions. 
The major techniques for SAR based estimates of biomass attempted by a num-
ber of researchers so far are regression modelling (Le Toan et al., 1992; Morel et 
al., 2011; Englhart et al., 2011; Carreiras et al., 2013), dual-wavelength SAR in-
terferometry (Balzter et al., 2007); image texture analysis (Champion et al., 
2008); random volume over ground model (Hajnsek et al., 2009), water cloud 
model (Cartus et al., 2012), combination of forest structure and radiative trans-
fer models (Brolly & Woodhouse, 2014), electromagnetic modelling (Mermoz et 
al., 2015), multivariate relevance vector regression (Sharifi et al., 2016). SAR data 
have been used for estimating biomass at different scales from local to region-
al/country level: pine plantation in Southwest Alabama (Wu, 1987), Mount 
Sharsta region of Northern California (Richards et al., 1987), plantation forest of 
the Landes forest in southwestern France (Le Toan et al., 1992), Brazilian Ama-
zon (Luckman et al., 1997; Santos et al., 2002), Nuuksio Natural Park in South-
ern Finland (Mika et al., 2008), the Queensland in Australia (Lucas et al., 2010), 
Mozambique in Zambézia province (Carreiras et al., 2013), Cambodia (Avtar et 
al., 2013), and Cameroon (Mermoz et al., 2015). 

Several studies have shown that: backscattering intensity is also affected by a 
number of site conditions such as environmental temperatures (Ranson & Sun, 
1994), moistures (Bindlish & Barros, 2001; Kasischke et al., 2009; Koyama, 2011; 
Huang et al., 2015). 

In this research used the Advanced Land Observing Satellite-2 (JAXA, 2014), 
a Japanese satellite launched in 2014, which operates in L-band radar and col-
lects very high spatial resolution. Currently, satellite image data from ALOS-2 
is available and meets the global supply capability to many different applica-
tions. 

The objective of this study was to assess the effects of seasons in the tropics on 
the quality of the ALOS-2 PALSAR-2 (L-band) satellite imagery. 

2. Study Area and Data 
2.1. Study Area 

This research was carried out in Yok Don National Park (YDNP) is located in 
Dak Lac and Dak Nong provinces, Central Highlands of Vietnam. This park was 
chosen for this study because of several reasons: 1) It is located in the tropical 
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forest with characteristics of the typical structure in Vietnam; 2) This park is the 
largest national park in Vietnam; 3) It is located on relatively flat ground, aver-
age slope from 7˚ - 10˚, thereby minimizing the effect of topography on this 
study; 4) The road network around and inside the study area is not too difficult 
to transport, and perform fieldwork. 

The Yok Don National Park is located between latitude 12˚45' - 13˚10'' and 
longitude 107˚29'30'' - 107˚48'30'' (Figure 1). 

Topography: The whole area is divided into two main geographical terrain 
forms: fairly smooth pen plain, and being lower towards the Mekong River. The 
other terrain form, low hills, and mountains is lying along the north riverbank. 
The topography of this park contains relatively plain topography and is located 
at an altitude of 200 - 300 m above sea level. Most of the terrain with an average 
slope from 7˚ - 10˚ (Nguyen, 2009).  

Climate: This region is a tropical monsoon that has well-defined and dis-
tinct dry and rainy seasons. The rainy season runs from May to November. 
The average rainfall obviously changes among months of the rainy season and 
the dry season. It is very low in the dry season from October to April; the av-
erage value is less than 50 mm. In contrast, it is very high from April to August 
and then quickly decreases in September and October at the end of the rainy 
season. The average annual rainfall about 1530 mm, while the average annual 
evaporation is 1470 mm, and the mean monthly temperature is around 25˚C 
(Nguyen, 2009). 

Compared to rainfall and humidity, the monthly change of air temperature is 
very high. April and May are months whose average air temperature is highest, 
about 27˚C, while the average temperature in December and January is lowest, 
about 14˚C.  

Biodiversity: This park is very rich in biodiversity: 854 species, belonging to 
478 vascular plant species and 129 families of 4 phyla have been recorded (Canh 
et al., 2009; Nguyen, 2015). This park has two major types of forest: deciduous 
broadleaf forest and evergreen broadleaf forest. The dominant tree species in the 
deciduous broadleaf forest are Dipterocarpus tuberculatus, Dipterocarpus obtu-
sifolius, Terminalia tomentosa, and Shorea obtuse. The evergreen broadleaf for-
est mainly comprises of Michelia mediocris, Cinamomum iners, Syzygium zey-
lanicum, Syzygium wightianum, Garruga pierrei, Gonocaryum lobbianum, 
Schima superba, Camellia assamica, and Lithocarpus fenestratus. This park has 
21 tree species in the list of the Red Data Book of Vietnam (Nguyen, 2015). A 
total of 89 species of mammals, 250 species of birds, 48 species of reptiles, 16 
species of amphibians, 31 species of fish, and 437 species of butterflies were rec-
orded (Canh et al., 2009; Nguyen, 2015). This park is one of the most important 
protected areas and provides a suitable habitat for conservation of globally en-
dangered species in Southeast Asia such as wild elephants, wild cow, deer and a 
lot of birds such as peacocks and several species of birds of prey and large water 
birds (Nguyen, 2015). 
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Figure 1. Location of the study area Yok Don National Park in Vietnam 
(boundary is the yellow polygon). 

2.2. ALOS-2 PALSAR-2 Data 

In this study, we used the Advanced Land Observing Satellite-2 Synthetic Aper-
ture Radar (ALOS-2 SAR), provided by Japan Aerospace Exploration Agency 
(JAXA), a Japanese satellite launched in 2014, which operates in L-band radar 
and collects very high spatial resolution data. ALOS-2 SAR data with level 2.1, 
which has 6.25 m pixel resolution was selected from October 2014 (rainy season) 
to February 2015 (dry season). The digital number (DN) values of the SAR im-
ages in both the HH and HV polarizations were calibrated by calculating the 
backscattering intensity using Equation (1) (JAXA, 2014).  

( )o 2
10 10 log DN CFσ = × +                    (1) 

In Equation (1), the σo is the sigma-naught backscattering intensity in the 
units of decibels (dB), and CF is the calibration factor which is currently set as 
−83 (JAXA, 2014).  

The details on the ALOS-2 SAR images used in this research are described in 
Table 1. Both dry and rainy season SAR images were used, acquired with the 
same off-nadir angle (32.9˚) in descending modes in order to avoid bias related 
to observation angles.  

3. Methodology 
3.1. Field Work  

The in situ measurements were conducted by establishing the sample plots ac-
cording to the inventory guideline available for the Central Highlands region 
(Van Vo et al., 2006; Vu Tan et al., 2012). All sample plots were established by 
meeting the criteria of representativeness of different forest types across the 
study areas such as 1) Evenly distributed in the study area; 2) Representativeness 
of the forest types in the study area; 3) Representativeness for topographic con-
ditions; 4) At least 100-m apart from trains, roads, streams, and rivers. We care-
fully designed the sample plots in such a way that they were at least 100-m apart  

https://doi.org/10.4236/gep.2020.811002


L. V. Nguyen et al. 
 

 

DOI: 10.4236/gep.2020.811002 31 Journal of Geoscience and Environment Protection 
 

Table 1. The ALOS-2 PALSAR-2 data used in this research. 

No. Obs. date Scene ID Polar. Obs. angle Seasons 

1 5 Oct. 2014 ALOS2019900240-141005-FBDR2.1GUA HH, HV 32.9˚ Rainy 

2 5 Oct. 2014 ALOS2019900250-141005-FBDR2.1GUA HH, HV 32.9˚ Rainy 

3 22 Feb. 2015 ALOS2040600240-150222-FBDR2.1GUA HH, HV 32.9˚ Dry 

4 22 Feb. 2015 ALOS2040600250-150222-FBDR2.1GUA HH, HV 32.9˚ Dry 

 
from trails, roads, streams, and rivers to avoid the signals from unwanted surface 
types for sensitivity analysis. 

Each sample plot established during the forest inventory was (50 m × 50 m) 
with an area of 0.25 ha. Measurement of the diameter at breast height (D) and 
total tree height (H) of all the trees larger than 5 cm diameter at breast height 
located inside the sample plots. The tree diameter and height were measured by 
using laser diameter (Criterion RD1000 Laser) and laser height (Trupulse 360B 
Laser) instruments. The central geo-location (latitude and longitude) of each 
sample plot was recorded by using GPS instruments.  

The RGB color composite image was created by using the HH channel for red 
(R), HV channel for green (G), and the ratio HH/HV for blue (B). The distribu-
tion of sample plots used in this research is shown in Figure 2 and Figure 3 us-
ing RGB color composite of the SAR color composite images. Distinct variation 
between the rainy season and dry season RGB images in Yok Don National Park 
were observed as shown in Figure 2 and Figure 3. 

3.2. Estimation of Forest Biomass 

This research converted the individual tree biometry data: diameter at breast 
height (D) and total tree height (H) measured during the forest inventory into 
above ground biomass (AGB) using the allometric equations. The research used 
separate allometric equations for calculating the AGB of the deciduous and 
evergreen forests (Vu Tan et al., 2012). The allometric equations used for calcu-
lating the AGB of deciduous and evergreen forest types are given in Equation (2) 
and Equation (3) respectively.   

2.31AGB 0.14 D= ×                        (2) 

( ) ( ) ( )( )AGB 0.098 exp 2.08 Ln D 0.71 Ln H 1.12 Ln WD= ∗ ∗ + ∗ + ∗    (3) 

In Equation (2) and Equation (3), where: AGB is the above ground biomass of 
a tree in kilograms (kg); D is the diameter at breast height measured at 1.3-m 
above the ground level; H is the total height of tree in meters (m); WD is the 
wood density of tree in tones dry matter per fresh cubic meters (Mg·m−3).  

4. Results and Discussions 
4.1. Field Survey Results 

The plot wise distribution of forest structural variation shows that: In total, 110 
sample plots were established in the study area. Of which, 10 sample plots were 
from the evergreen forest and 100 sample plots were from the dipterocarp forest, 
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the sample plots represent larger variation of the diameter at breast height (8.14 
- 48.74 cm), tree height (6.13 - 18.23 m), tree density (220 - 2800 trees·ha−1) and 
biomass (42 - 450 Mg·ha−1). 

 

 
(a) 

 
(b) 

Figure 2. Distribution of sample plots. (a) Dry season 
RGB color composite images; (b) Forest in rainy season. 

 

 
(a) 

 
(b) 

Figure 3. Distribution of sample plots. (a) Rainy season 
RGB color composite images; (b) Forest in rainy season. 
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4.2. The Polarizing Difference of L-Band SAR to the Retrieval  
Forest Biomass 

The sensitivity of biomass with the backscattering intensity of the HH and HV 
polarizations for the dry season was analyzed using the coefficient of determina-
tion (R2) and Root Mean Square Error (RMSE). As shown in Figure 4(a) and 
Figure 4(b), the HV polarization was highly related to both the biomass (R2 = 
0.61, RMSE = 38.28 Mg·ha−1); whereas the HH polarization did not show a sig-
nificant relationship with the above ground biomass (R2 = 0.33, RMSE = 65.87 
Mg·ha−1).  

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4. The relationship between the biomass, and back-
scattering intensity. (a) HV in dry season; (b) HH in dry sea-
son; (c) HV in rainy season; and (d) HH rainy season. 

 
The high sensitivity of the HV polarization towards biomass was found for 

both the dry and rainy season SAR data. This result highlights the importance of 
HV polarization for the estimates of biomass. 

The saturation of the radar signal was clearly observed at high biomass level 
(250 - 300 Mg·ha−1 biomass). None of the biomass data correlated with the rainy 
season HV polarization data as highly as the dry season HV polarization data.  

4.3. The Seasonal Difference of L-Band SAR to the Retrieval Forest  
Biomass 

The sensitivity of the ALOS-2 PALSAR-2 data (HV and HH polarizations) ac-
quired during dry season and rainy season on biomass was analyzed. The rela-
tionship between biomass and dry season SAR data is shown in Figure 4(a) and 
Figure 4(b); and the relationship between biomass and rainy season SAR data is 
shown in Figure 4(c) and Figure 4(d). The dry season backscattering intensity 
of the HH and HV polarizations was highly sensitive to the biomass than the 
rainy season backscattering intensity. The higher relationship between the dry 
season HV polarization and biomass (R2 = 0.61, RMSE = 38.28 Mg·ha−1) was ob-
tained. However, the relationship between the rainy season HV polarization and 
biomass was relatively lower (R2 = 0.27, RMSE = 71.60 Mg·ha−1) than the dry 
season. The relationship between rainy season HV polarization. This analysis 
suggests that dry season SAR data is more important for estimating the biomass 
than the rainy season data. The effect of seasonality for the SAR data was clearly 
observed in this research.  

4.4. Validation Result 

In this research used 38 sample plots data were used to test the validity of the 
fitted linear regression models for the prediction of biomass. In Figure 5 shown, 
our model could explain 59% variation of the biomass (R2 = 0.59, RMSE = 40.28 
Mg·ha−1). 
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Figure 5. Validation of the SAR data based predicted results of above ground 
biomass. The 1:1 plot between the predicted and field data are shown. 

5. Conclusion 

In this research, the sensitivity of the biomass to the polarizations of ALOS-2 
PALSAR-2 data (SAR data), and the season of acquisition of SAR data were ana-
lyzed. The relationship between the ALOS-2 PALSAR-2 based HV polarization 
backscattering intensity and field measured biomass since 59% variation in for-
est biomass could be explained by the HV polarization data.  

This study found out that dry season SAR data is more important for estimat-
ing the biomass than the rainy season data. The effect of seasonality for the SAR 
data was clearly observed in this research. This result confirmed that: the im-
portance of SAR data mainly from the dry season. 

Therefore, the choice of season in which SAR data is acquired is very impor-
tant for satellite based estimates of the biomass.  

We expect that the results obtained in this research would be useful for pro-
moting emission reduction programs in the forestry sector, and to achieve sus-
tainable forest management goals in Vietnam and other tropical countries. 
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