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Abstract 
Iteration problems such as compound interest calculations have well-specified 
parameters and aim to derive an exact value. Not all problems offer well-specified 
parameters, even for well-defined dynamic equations; the linear “weak field 
approximation” of general relativity is iteratively equivalent to Einstein’s 
non-linear field equation, but the exact parameters involved in some applica-
tions are unknown. This paper develops a theory based on “fuzzy” parameters 
that must produce exact results. The problem is analyzed and example calcu-
lations are produced.  
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1. Introduction 

Fundamental concepts in physics may lack rigor. For example, Newton’s force 
equation f ma=  defines each term in terms of the other two: a f m= , 
m f a= . Feynman noted that while this definition of force is somewhat circu-
lar, it is valuable in that, when objects are observed to accelerate, it tells us to 
search for an appropriate force. Yet fundamental forces are not unambiguously 
understood; of the four forces—gravitational, electromagnetic, weak and 
strong—detailed understanding of at least the strong force is missing. And gen-
eral relativity effectively replaces the concept of force with geodesic paths.  

Similarly ill-defined is kinetic energy, defined as the “energy of motion”. In-
troduced in this way to high school students, it is still understood in this way by 
Ph.D. physicists. The other key energy, potential energy, is typically understood 
as “energy of position”; however in 2015 Holland [1] proposed “quantum poten-
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tial energy as concealed motion”: “…since what is termed ‘kinetic energy’ in 
quantum mechanics may be regarded literally as energy due to motion”. 

The anomaly is that most forms of energy, gravitational, electromagnetic, 
chemical, nuclear are associated with real physical fields, whereas energy of mo-
tion does not define any physical entity or medium to store energy as it accumu-
lates. The vagueness of the mechanics does not typically detract from its utility 
in dynamic equations, but it may underlie Feynman’s [2] view of the continuity 
of movement, conservation of linear momentum, as an unexplained mystery: 

“The reason why things coast forever has never been found out. The law of 
inertia has no known origin”. 

A hypothesis that kinetic energy at the particle level is stored in a field faces 
several obstacles—identification of the field; coupling of the field to inertial 
mass; calculation of the energy stored in the field; explanation of the dynamics of 
the field. These issues are treated in this paper.  

2. Relevant Background 

Kinetic energy typically shows up in Lagrangian physics: L T V= −  where T is 
kinetic energy and V is potential energy; the Euler-Lagrange equation leads to 
the equations of motion. Holland addressed the issue of quantum potential as 
“concealed” energy associated with kinetic energy of particle interactions—hidden 
degrees of freedom. To this end he breaks kinetic energy T into qT  and QT  
where coordinates iq  are observable and coordinates iQ  are “concealed” in 
typical quantum treatments. Via the standard definition of canonical momen-
tum, he defines  

( )i ij j
i

LP A q Q
Q
∂

= =
∂





                       (1) 

In these terms the modified Lagrangian function is 

( ) ( ) ( )1, , i i ij i j ij i jL q q P L PQ B q q q A q PP−′ = − = −

               (2) 

The Euler-Lagrange equations for iq  derive from L′ : 

d
d i i

L L
t q q
 ′ ′∂ ∂

= ∂ ∂ 
                        (3) 

such that the motion proceeds as if this q-component of the system possesses 
potential energy 

q QV T= , q qL T V′ = − .                      (4) 

That is, in the physics of the concealed motion, the kinetic energy of the 
Q-system now shows up as potential energy of the q-system. The above was es-
sentially shown by Routh [3]. Holland applies these results to quantum potential 
via a series of complex choices leading to a Lagrangian in which the effects due 
to the concealed motion are attributed to the quantum potential energy

( )2
08 i jm u uρ . He obtains the quantum mechanical formula for what is termed 

kinetic energy in quantum mechanics, regarded literally as energy due to mo-
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tion, iu . The resulting Hamiltonian is: 

( ) ( ) ( ) ( ) ( ) 3
01 2 dH m x g x x x xµν µ νρ ξ ξ= ∫               (5) 

Holland’s model has the status “proof of concept”; no explanation exists for 
the density-dependent factor in the concealed kinetic energy. It appears in the 
continuity equation where it differs from the quantum [probability] expression 

2
0 ~ρ ψ . His specific choices allow other ways to formulate this problem; in 

fact, an alternate model would let the concealed variables represent internal 
freedoms, such as rotation. We focus on an interpretation of “energy due to mo-
tion”.  

3. Field Energy 

Unlike discrete mass 0m  at a point, physical fields distribute energy over three 
dimensions, plus time. A field ( ), tF r  has energy density proportional to 

⋅F F . Field equations are expressed in terms of the source of the field, s, and 
are typically solved via 

1f s f s−∇ = ⇒ = ∇                      (6) 

where 1−∇  is a Green’s function-based anti-derivative [4] of the form: 
1

M M

f s s s−

∂

′= ∇ ⇒ +∫ ∫ . 

The gravitomagnetic field, denoted by C , is described by the following equa-
tions [5]: 

tκ ρ× = − + ∂C v G∇                     (7a) 

κ ρ= ×C v r                         (7b) 

1ρ κ −= ⋅C C C .                      (7c) 

Consider the C-field circulation induced by rest mass 0m  in motion. At dis-
tance r , the circulation is ~ ρv  where 3

0m rρ =  is local mass density. At 
rest 0m  is not accompanied by C-field circulation. The minus sign in Equation 
(7a) is associated with the direction of circulation, not its magnitude. Gravito-
magnetic torsion supports only left-handed circulation; for momentum pointing 
in the direction of the left thumb the C-field curls in the directions of the fingers 
of the left-hand. Transition from rest 0=v  to velocity = ∆v v  at time t is 
analogous to transition from velocity v  to velocity + ∆v v . Every increase in 
velocity d dv t  is accompanied by positive definite change in magnitude of 
C-field circulation, an iterative condition.  

4. Iteration Rate 

A defining parameter is speed of sound in a field viewed as a perfect fluid. The 
“speed of sound” in gravity is now known to be the speed of light [6]. The rec-
ognition that every increase in local velocity → +∆v v v  induces a corres-
ponding increase in C-field circulation means that acceleration is an iterative 
procedure. A field cannot self-interact over a region of interest faster than the 
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speed of light. For a region with radius r this implies a “cycle time” ~r/c. For an 
electron, if 810 mr −≈  and 810 m secc ≈  then the iteration period is ~10−16 
sec or 100 attosec; the iteration process can repeat approximately 1016 times 
every second. The limiting factor becomes the “interest rate” which will be used 
to compound ~1016 times. Every step of acceleration produces an induced circu-
lation, which, in turn, implies increased energy of the circulating field, hence in-
creased induction.  

The initial density of the rest mass is ρ . After acceleration to velocity v
C-field circulation is proportional to ρ  while C-field energy-density is propor-
tional to 2κ ρ′  where κ ′  subsumes velocity and radius parameters and any 
other necessary dimensional factors. This naïve interpretation leads to the rele-
vant density at this step 2ρ ρ κ ρ′ ′= + : ( )1ρ ρ κ ρ′ ′= + . The next acceleration 
step is based on added density ρ′ ; the corresponding increased density is 
represented ( ) ( ) ( )( )1 1 1 1ρ ρ κ ρ ρ κ ρ κ κ ρ′′ ′ ′′ ′ ′ ′′ ′= + = + + + . We simplify this 
formalism by unrealistically fixing κ κ κ′ ′′= = =  such that the iterated form 
becomes ( )1 1n n nρ ρ κρ+ = + , 

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )( )

1
1 1 1

1 1 1 1 1 1 1

ρ
ρ κρ

ρ κρ κρ κρ

ρ κρ κρ κρ κρ κρ κρ κρ

+
+ + +

+ + + + + + +

       (8) 

Physically the local mass density 3
0m r , when put in motion, induces a local 

circulation ×C∇ , that itself induces more local circulation, etc. In this way, a 
macroscopically tiny force of gravity, can deliver surprising energy at realistic 
density, say that of an electron, experimentally claimed to have a radius less than 
10−18 m and theoretically claimed to be greater than Planck’s length, 10−33 m. Our 
immediate goal is to show that ( )1 1n n nρ ρ κρ+ = +  “can keep up with” reality 
[i.e., finite acceleration] and that the key to the “compound interest” formula is 
periodicity at which the “principle” [C-field energy] is compounded. The com-
pound interest can grow at any natural growth as long as the compounding pe-
riod is sufficiently short. The goal is to show that the C-field iteration implied by 
equations 

κ ρ= ×C v r , tκ ρ× = − + ∂C v G∇ , and 1ρ κ −= ⋅C C C , 

can “keep up with” any quadratic force applied to 0m . If change in circulation 
can “keep up with” change in velocity of source density, then every erg of energy 
injected via accelerating force d dm m t= =F a v  is stored in the circulating 
C-field induced thereby. The plot shown in Figure 1 is “capped” at 10 on the 
vertical axis; the slope becomes nearly vertical; density grows from 10 to the 
greatest number supported by the system, ~10247, at which point the calculation 
stops; implying that density can keep up with the energy being applied to acce-
lerate the particle for variable ranges: 0 0.3κ< <  and 0 0.3ρ< < . If these 
“fuzzy” parameters are chosen to be significantly smaller, then many more itera-
tions are required to achieve the same result. In physical reality, these occur on 
the order of 1016 per second, but computer calculations take far longer. 

https://doi.org/10.4236/am.2020.1111072


E. E. Klingman 
 

 

DOI: 10.4236/am.2020.1111072 1074 Applied Mathematics 
 

 

Figure 1. Plot of ( )1 1n n nρ ρ κρ+ = + . 

 
The variables are chosen to demonstrate iterative behavior rather than exact 

physical simulation. The ground plane shows a density contour plot with colors 
chosen by the system; the small initial blue density is smoothly varying. As the 
corner is turned the larger density shows yellow, then orange, then red. The 
white region is where calculated density exceeds 10247, the largest number that 
the system supports. Iterated density rises from 10 to >10247 almost vertically. 
Iteration in this region should “keep up with” any acceleration from physically 
real forces.  

5. Calculations 

In order to discuss physical reality, we derive approximate values for real par-
ticles and perform dimensional analysis to check the integrity of our expressions. 
Begin with 2g cκ =  where g is Newton’s gravitational constant, 6.67 × 10−11 
m3∙kg−1∙sec−2. If length = l, mass = m, and time = t, the dimensional representa-
tion of g is 3 2l mt . For the speed of light, 83 10 m secc = × , then  

2 27~ 10 m kgg cκ −= , with dimension l m , i.e., length over mass. Therefore, 
for mass density 3~mass vol m lρ = , velocity m sec ~ l tv , and distance 

~r l  we have: 

3

1
1

l m l l
m t tl

κ ρ= × → =C v r . The C-field has dimensions of frequency. (9) 

A field defined by circulation is reasonably characterized by circular frequen-
cy. Real physical fields have energy density proportional to the field strength 
squared, so we write the definition of C-field energy density ρC  as 

1 1 2 2 2v rρ κ κ κκρ− −= ⋅ =C C C                   (10) 
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The dimensional check: 
2 2 2 2 2

27
6 2 3 2~ ~ 10

1
m l l m l l m l mv
l m m voll t l t

ρ −= →C            (11) 

C-field energy density has dimensions of kinetic energy distributed over vo-
lume: 2~ vρ ρC . For an electron with rest mass 31

0 ~ 9.1 10 kgm −×  and meas-
ured radius ≤10−18 m the density of the electron is large ~1024 kg/m3, but the 
density we are most concerned with is relative to the volume associated with the 
field induced by a moving electron with kinetic energy 2

0 2m v . Assume the 
C-field induced by a moving electron is distributed over several atomic radii, 
typically 10−10 m. If we assume a radius of 10 angstroms, 10−9 m, the relevant 
C-field volume becomes ~10−27 m3. According to the above equations the C-field 
energy density over the relevant volume is on the order of the kinetic energy of 
the electron: 

27
2 2

27

10~
10

mv mvρ
−

− →C                    (12)  

with inertial mass 0m mγ=  where inertial factor ( )2 2 1 2
1 v cγ

−
= − , Einstein’s 

2E mc=  yields: 
2

2 2 2
0 0 02

11 2
2

vE m c m c m v
c

 
≅ + ⇒ + 

 
            (13) 

The 2
0m c  term represents the rest energy of the particle and the 2

0 2m v  
term represents the C-field energy induced by the accelerating force. In these 
calculations based on “fuzzy” variables the symbol ~ means approximately or 
“on the order of”. It may, for example, indicate that scalar constants such as 4π 
have been suppressed in favor of focusing on the physical variable of interest.  

6. Iterations 

Thus, depending upon volume occupied by C-field circulation, the initial in-
duced energy density 2

0~ m v  may be quite small, say 2
00.001m v . This energy 

density represents new mass density, which itself induces C-field circulation; the 
increased circulation induces still more circulation in iterative fashion. The ini-
tial energy density is 2 3

0m c rρ = . A more realistic physical iteration is: 
ρ ρ=  

( )2 2
1 11v vρ ρ α ρ ρ α′ = + = + , 1.0α <  

( ) ( )( )2 2 2
2 1 21 1 1v v vρ ρ α ρ α α′′ ′= + = + +  

( ) ( )( )( )2 2 2 2
3 1 2 31 1 1 1v v v vρ ρ α ρ α α α′′′ ′′= + = + + +  

Actually, iv  is increasing 1 di i i−= +v v v , d di
i

q t
m

=
Ev . 

Note that increment d iv  decreases with mass.  
In Figure 2, the velocity v  is linearly increased from zero to 30 and 

0.05α = . Compare this to compound interest formula ( )1 ntA p r n= +  or  
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Figure 2. Plot of ( )2
1 11i i ivρ ρ α+ += + . 

 
Wikipedia’s ( )1 nα+ . Here α  is not an annual rate, but a “per period” rate 
where the period is the cycle time, ~10−16 sec for electrons. The ρC  we have 
calculated is the energy density of the C-field. In the iteration above it is added 
to mass density ρ  of the electron, therefore ρC  must be converted to mass 
density, i.e., the scalar α  must contain a factor 21 c  if we choose units other 
than 1c = .  

7. Kinetic Energy Has Value mv2/2 

Kinetic energy depends only on mass and velocity. One might wonder how an 
iterated formula can produce exactly this result, which is required if kinetic 
energy actually is he C-field. In the above calculations, we found approximately 

2
0 2m v , based on several approximations. Clearly, C-field energy induced by the 

accelerating force cannot exceed the value of the kinetic energy, but our results 
do not preclude the C-field energy immediately induced being much less than 
the kinetic energy. In the following we consider the immediate C-field circula-
tion induced by 2mv  to be on the order of 20.001mv , for purposes of discus-
sion.  

According to our electron example, the exact density of the electron is un-
known as the electron radius has been measured only down to ~10−18 m. It could 
be much smaller, with corresponding higher density. Nor do we know the exact 
volume that C-field energy is distributed over during the acceleration process. 
Nevertheless, reasonable guesses lead to a “per cycle” rate ~0.001. This “interest 
rate”, compounded every 100 attosec-onds, yields an increase in energy density 
as large as we desire (limited, of course, by the available driving energy). If this 
assumption is valid, as can be shown for typical cases, then we are provided with 
a limiting process that yields 2 2mv  regardless of the unknown parameters. 
We know the accelerating force is inputting energy to accelerate the rest particle 
to velocity v , and the energy transferred to the particle is 2 2mv . This energy 
is assumed to be stored in the C-field induced by the acceleration.  
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A process that involves the transfer of energy from the work ⋅F x  done by 
accelerating force, F  accelerates the particle to velocity v . The total energy 
transferred is 2 2mv . There is no more available energy to be stored in the 
C-field at this point, therefore the self-interacting process cannot continue to in-
crease the local energy 2 2mv> . That is, energy compounding every 100 attosec 
can keep up with the energy available to the process but it cannot get ahead of it. 
When all available energy has been extracted from the driving force, the 
self-interactive process stops.  

8. Simplifying the Problem 

The physics involved is quite sophisticated and actual numbers hard to come by. 
For this reason, it may be useful to remove the physics and focus on the calcula-
tions. Compound interest is an analogy that everyone understands. For example 
(Wiki) the periodic compounding formula ( )1 ntP P r n′ = + , if the principle P = 
1500 is compounded quarterly at 4.3% for six years, yields: 

4 60.0431500 1 ~ 1938.84
4

P
×

 ′ = × + 
 

                (14) 

An operational analogy: Most businessmen learn that bankers loan money 
only if you don’t need it, i.e., loans are 100% secured. Assume that I have 1 mil-
lion cash and I borrow $10,000 at a rate of 0.001 compounded hourly for three 
years. The question is when I will run out of money. As soon as the payments 
exhaust my $1 million assets, I will be unable to pay back the bank (assuming I 
have not put the borrowed cash to productive use.) Also assume that the bank is 
broke and cannot loan me more. The process halts, unless I can acquire more 
money, which immediately goes to the bank.  

In place of assets guaranteeing a loan, the physics analogy begins by pouring 
energy 0E  into an object by accelerating it to velocity v  at which point the 
object has ( )2

02mv E=  kinetic energy; with no more energy left to accelerate 
the object further; the process halts. If new energy becomes available, com-
pounding will continue until that energy is used up also. This continues as long 
as the self-interaction (compounding) can keep up with the transfer of available 
energy.  

9. To Summarize 

Self-interaction of the C-field, modeled by an iterative procedure, occurs over an 
infinitesimal (~100 attosec) period and compounds every such period. We hy-
pothesize that this process, in reality, can “keep up with” any accelerating force. 
That is, the C-field can absorb energy from the driving force as fast as it is deli-
vered; that is all that is required! When the force is accelerated to particle veloci-
ty v , the energy stored in the C-field is 2 2mv .  

Infinite energy, force, or acceleration does not exist in the physical world. 
Schiller [7] has shown that the hypothesis of maximum force 4c g≤  leads to 
Einstein’s field equations. This places an upper bound on acceleration, thus giv-
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ing the self-interactive “compounding” a maximum target with which it has to 
keep up. The iteration process that keeps up with but does not get ahead of the 
transfer of energy from the accelerating force is not sensitive to local parameters 
such as the exact radius of the particle or the exact volume occupied by the 
C-field. Iteration is assumed to keep up based on any realistic parameters. Itera-
tion is thus not used to calculate C-field energy. It is used to prove that this 
process can keep up with the physics. The final result, 2 2mv , is not calculated 
from the iteration process; it is typically based on conservation of ener-
gy-momentum.  

One might ask why one would wish to calculate via iteration a result that one 
derives from quite another physical formulation, e.g. Newton’s equations. The 
answer is that self-interaction of the gravitational field explains a number of is-
sues that have not heretofore been explained.  

10. Discussion of Results 

Gravitomagnetic field equations were first derived by Heaviside [8] in 1893 and 
later derived from Einstein’s field equations in the weak field approximation. 
Existence of the C-field was established circa 2006 by Tajmar [9] and 2011 by 
Gravity Probe B [10]. The utility of the C-field was recently demonstrated by C. 
Will [11] who calculated the C-field contribution of the other planets to the ad-
vance of the perihelion of Mercury. The iterated C-field equations are identical 
to Einstein’s full nonlinear field equations, per Feynman [12] and Ohanian and 
Ruffini [13].  

Energy analysis of a C-field induced by an accelerating object describes a for-
mulation of C-field energy yielding kinetic energy, 2 2mv . This is of physical 
interest since the mechanism by which kinetic energy is actually stored has never 
been explained. The key assumption is that C-field circulation induced by acce-
lerating mass density possesses its own mass density, which increases the mass 
being accelerated and hence induces even more C-field energy. Where does this 
iterative process end? The process does not drive itself. When the driving force 
terminates, the increase in C-field energy terminates. Nor can the C-field process 
extract energy from the power source at a rate faster than the power couples to 
the mass. The self-interacting C-field extracts all available local energy, then cir-
culation ceases to increase. We know from Newton’s laws that the moving object 
will have kinetic energy 2 2mv . Thus the interesting situation where a 
self-interacting process with unknown parameters must iterate an unknown 
number of times and yet must produce a precise result 2 2mv . The iteration 
process must produce sufficient field energy to match the kinetic energy of an 
object accelerated to v , but cannot overshoot this well-defined value.  

Note that the force is not equal to the change in C-field circulation; only a 
fraction κ  of the force causes a change in circulation. But this change in the 
field induces further change in the field and this extracts more energy from the 
driving force; continuing until field energy equals 2 2mv . The self-interaction 
frequency limit is set by the speed of light over the region containing the field 
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and thus occurs much faster than typical mechanical motions. Iterative 
self-interaction extracts power from source, but cannot exceed the power availa-
ble from the source.  

Our analysis explains how a fuzzy iteration process whose local parameters are 
not known with precision can yield the well-specified kinetic energy value. We 
show by iterated examples that no matter how small the interest rate, if com-
pounded sufficiently frequently, iteration eventually reaches a point where it 
turns a corner, quickly yielding almost unlimited growth.  

Next, recall that m volρ =  and mv  is momentum, p ; we simplify by 
choosing 1vol = : 

( )d d d
d d dt vol t t

κ κ × = − ⇒ × = −  

p pC C∇ ∇             (15) 

where d dtp  is the accelerating force. This equation is symmetrical: if force 
d dtp  is non-zero, the field circulation changes (in left-handed direction) pro-
portional to the force. But let the external force d dtp  be zero, and assume that 
circulation changes. There is no reason to believe that the circulation can in-
crease with no external force applied, so any change must represent a decrease in 
field circulation. This effectively induces an internal force that resists the change. 
In electrodynamics, this force is the emf or electromotive force, known as the 
Lenz-law effect, upon which automobile “spark plug” operation was based for 
over a century. The Lenz-law-like phenomenon sustains the velocity; a decrease 
in velocity is opposed by a corresponding change in circulation. This action 
conserves linear momentum, which Feynman declared to be a mystery! Observe 
that Lenz-law operation also suggests relevance to quantum mechanical tunne-
ling.  

We have defined a problem that addresses several uncertainties in physics, 
from the nature of energy of motion to conservation of linear momentum. We 
have presented the relevant equations, invented by Heaviside and derived from 
Einstein’s field equations and have discussed an iterative procedure that pro-
duces an exact value, 2 2mv , based on approximate but unknown fundamental 
parameters, including density and volume of the relevant objects; particles and 
induced fields.  

By analyzing an electron in this framework, we have opened the way to apply 
this to quantum mechanics, based on Holland’s interpretation of “concealed 
motion” as quantum potential, perhaps most relevant to de Broglie-Bohm’s in-
terpretation of quantum mechanics. Holland’s unexplained term, 2

0 0m mρ ψ= , 
is compatible with field energy density ρ .  

The significance of our results in a nutshell: the gravitational field is 
self-interactive; as reflected in Einstein’s non-linear field equations, which, as 
noted above, are identically equal to the linear field Equations (7) iterated ap-
propriately. Nonlinearity generally presents unsolvable problems; the few inge-
nious and lucky guesses—Schwarzschild, Kerr, Kasner—yield exact mathemati-
cal solutions but do not resolve all physical questions. Over a century of effort 
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has failed to find an expression for the gravitational self-energy tensor in general 
relativity. It is proposed herein that actions of nonlinear gravity yield the world 
we live in while providing explanations for heretofore unexplained aspects of 
physics. If, as proposed, iteration based on “fuzzy” physical parameters can ex-
tract the available energy and this energy is described by the linear equations of 
Newton, then we are justified in calling upon nonlinear physics for explanation, 
while continuing to use linear physics based on conservation principles for 
computation. The iterative solution of linear equations is equivalent to the non-
linear solution, if such exists.  

Finally, we establish reasonable bounds on maximum force, maximum com-
pounding rate, and minimum densities involved in the problem. It is hoped that 
these bounds will enable a rigorous proof that this mechanism works for all rea-
listic ranges of physical parameters.  
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