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Abstract 
In this paper, inspired by the multiplicative generators of overlap func-
tions, we mainly propose the concepts of multiplicative generator pairs of 
n-dimensional overlap functions, in order to extend the dimensionality of 
overlap functions from 2 to n. We present the condition under which the pair 
(g, h) can multiplicatively generate an n-dimensional overlap function ,g hO . 

we focus on the homogeneity and idempotency property on multiplicatively 
generated n-dimensional overlap functions. 
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1. Introduction 

Overlap functions [1] [2] and grouping functions [3] are two particular cases of 
bivariate continuous aggregation functions. Those two concepts have been ap-
plied to some interesting problems, for example, image processing, classification 
or decision making. In [4], Gómez et al. introduced the definition of n-dimensional 
overlap functions and the conditions under which n-dimensional overlap func-
tions are migrative, homogeneous or Lipschitz continuous. In [5], Dimuro et al. 
introduced the notion of additive generator pair for overlap functions and ana-
lyzed the influence of the migrativity, homogeneity and idempotency properties 
in the overlap functions obtained by such distortion and their respective additive 
generator pairs. Qiao and Hu [6] proposed the concept of multiplicative genera-
tor pair for overlap functions and grouping functions, and investigated the mi-
grativity, homogeneity, idempotency, Archimedean and cancellation properties 
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for the overlap functions and grouping functions obtained by such multiplicative 
generator pairs. The main purpose of [6] is to present one new way to construct 
overlap function and grouping function by use of multiplicative generator pairs. 
In a fuzzy classification system, one always need to measure the degree of over-
lapping of an object with more than two classes. From the theoretical and ap-
plied point of view, we need to study how to construct n-dimensional overlap 
function by use of multiplicative generator pairs. In this paper, we will propose 
the notions of multiplicative generator pairs of n-dimensional overlap functions. 
Furthermore, we study the homogeneity and idempotency property on multip-
licatively generated n-dimensional overlap functions. 

The rest of this paper is organized as follows. In Section 2, we present some 
basic definitions on overlap functions and n-dimensional overlap functions. We 
introduce the concept of multiplicative generators of n-dimensional overlap 
functions in Section 3. We study the homogeneity and idempotency property on 
multiplicatively generated n-dimensional overlap functions in Section 4. Finally, 
we end this paper with some conclusions. 

2. Preliminaries 

In this section, we recall some basic concepts of overlap functions and 
n-dimensional overlap functions, which shall be needed in the sequel. 

Definition 2.1. (See Bustince et al. [1]) A bivariate function [ ] [ ]2: 0,1 0,1O →  
is said to be an overlap function if it satisfies the following conditions: 

(O1) O is commutative; 
(O2) O(x, y) = 0 iff xy = 0; 
(O3) O(x, y) = 1 iff xy = 1; 
(O4) O is increasing; 
(O5) O is continuous. 
Definition 2.2. (See Gómez et al. [4]) An n-dimensional aggregation function 
[ ] [ ]: 0,1 0,1n →O  is an n-dimensional overlap function if and only if: 

(O1) O is symmetric. 
(O2) ( )1, , 0nx x =O  if and only if 

1 0n
ii x

=
=∏ . 

(O3) ( )1, , 1nx x =O  if and only if xi = 1 for all { }1, ,i n∈  . 
(O4) O is increasing. 
(O5) O is continuous. 
Definition 2.3. (See Dimuro et al. [5]) A function [ ] [ ]: 0,1 0,1F →  is said 

to be a pseudo-automorphism if the following conditions hold: 
(F1) F is increasing; 
(F2) F is continuous; 
(F3) F(x) = 1 iff x = 1; 
(F4) F(x) = 0 iff x = 0. 
A function [ ] [ ]: 0,1 0,1ϕ →  is an automorphism if it is a continuous and 

strictly increasing function such that φ(0) = 0 and φ(1) = 1 [7]. Obviously, any 
automorphism is a strictly increasing pseudo-automorphism. 
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3. Multiplicative Generators of n-Dimensional Overlap  
Functions 

In this section, we try to extend the notion of multiplicative generators of over-
lap functions to the n-dimensional case, and characterize the basic properties of 
multiplicative generators of n-dimensional overlap functions. 

Definition 3.1. Consider two continuous and increasing functions  
[ ] [ ]: 0, 1, 1 0,→g h . The n-dimensional function [ ] [ ], : 0,1 0,1n →g hO  given by 

( ) ( ) ( ) ( )( )2 2, 1 1, , , n nx x x x x x= g h g h h hO             (1) 

If ,g hO  is an n-dimensional overlap function, then (g, h) is said to be a mul-
tiplicative generator pair of the overlap function ,g hO  and ,g hO  is called mul-
tiplicatively generated by the pair (g, h). 

Proposition 3.1. Consider two continuous and increasing functions  
[ ] [ ]: 0, 1, 1 0,→g h  such that 

1) h(x) = 0 iff x = 0; 
2) h(x) = 1 iff x = 1; 
3) g(x) = 0 iff x = 0; 
4) g(x) = 1 iff x = 1. 
Then, the n-dimensional function [ ] [ ], : 0,1 0,1n →g hO , given by 

( ) ( ) ( ) ( )( )2 2, 1 1, , , n nx x x x x x= g h g h h hO             (2) 

is an n-dimensional overlap function. 
Proof. We check out one by one that ,g hO  satisfies the conditions of Defini-

tion 2.2 as follows. 
(O1) The commutativity is obvious by the definition of ,g hO . 
(O2) ( )1 2, , , , 0nx x x =g hO  ⇔  ( ) ( ) ( )( )1 2 0nx x x =g h h h  
⇔  ( ) ( ) ( )1 2 0nx x x =h h h  by item (3) 
⇔  ( )1 0x =h  or ( )2 0x =h  or   or ( ) 0nx =h  
⇔  1 0x =  or 2 0x =  or   or 0nx =  by item (1) 
⇔  1 2 0nx x x = . 
(O3) ( )1 2, , , , 1nx x x =g hO  ⇔  ( ) ( ) ( )( )1 2 1nx x x =g h h h  
⇔  ( ) ( ) ( )1 2 1nx x x =h h h  by item (4) 
⇔  ( )1 1x =h  and ( )2 1x =h  and   and ( ) 1nx =h  
⇔  1 1x =  and 2 1x =  and   and 1nx =  by item (2). 
(O4) By the monotonicity of g and h, it is easy to get that ,g hO  is increasing. 
(O5) From the continuities of g and h, the continuity can be obtained imme-

diately. 
Proposition 3.2. Consider two continuous and increasing functions  
[ ] [ ]: 0, 1, 1 0,→g h  such that 

1) g(x) = 0 iff x = 0; 
2) g(x) = 1 iff x = 1; 
3) ( ) ( ) ( ) ( )( )2 2, 1 1, , , n nx x x x x x= g h g h h hO  is an n-dimensional overlap 

function. 
Then the following statements hold: 
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1) h(x) = 0 iff x = 0; 
2) h(x) = 1 iff x = 1. 
Proof. 1) (⇒ ) If h(x) = 0, then ( ) ( ) ( )1 1 0nx x x − =h h h  for any ( ]0,1ix ∈  

( 1, , 1i n= − ). Furthermore, by items (1) and (3), one can get that 

( ) ( ) ( ) ( )( )1 1, 1 1, , , 0n nx x x x x x− −= = g h g h h hO . 

Thus, it follows that x = 0 from (O2). 
(⇐ ) If x = 0, then, by item (3), we can obtain that 

( ) ( ) ( )( ) ( ), , , , 0x x x x x x= = g hg h h h O . 

Furthermore, one has that h(x) = 0 by item (1). Hence, we get that h(x) = 0 iff 
x = 0. 

2) It can be verified in a similar way as item (1). 
Proposition 3.3. Consider two continuous and increasing functions  
[ ] [ ]: 0, 1, 1 0,→g h  and g, h such that 

1) h(x) = 0 iff x = 0; 
2) h(x) = 1 iff x = 1; 
3) ( ) ( ) ( ) ( )( )2 2, 1 1, , , n nx x x x x x= g h g h h hO  is an n-dimensional overlap 

function. 
Then the following statements hold: 
1) g(x) = 0 iff x = 0; 
2) g(x) = 1 iff x = 1. 
Proof. 1) ( ⇒ ) Since [ ] [ ]: 0,1 0,1→h  is continuous, we have that 
[ ] [ ]: 0,1 0,1n →h  is continuous, where hn is defined by ( ) ( )( )nn x x=h h  for all 
[ ]0,1x∈ . Furthermore, we can obtain that for all [ ]0,1x∈ , there exists 
[ ]0,1x′∈  such that ( )n x x′ =h  by items (1), (2). Thus, if g(x) = 0, then it fol-

lows that ( )( ) 0n x′ =g h  for ( )nx x′= h . Moreover, by item (3), one can get 
that 

( ) ( ) ( ) ( )( ) ( )( ), , , , 0nx x x x x x x′ ′ ′ ′ ′ ′ ′= = = g h g h h h g hO . 

Thus, using item (3) again, one has that 0x′ = . Furthermore, using item (1) 
again, it follows that ( ) ( )0 0n nx x′= = =h h . 

(⇐ ) If x = 0, then, by item (3), it follows that 

( ) ( ) ( )( ) ( ), , , , 0x x x x x x= = g hg h h h O . 

Furthermore, by item (1), one has that 

( ) ( ) ( ) ( ) ( )( )0 0x x x x= = =g g g h h h . 

Hence, we have that g(x) = 0 iff x = 0. 
2) It can be proven in a similar way as item (1). 
Proposition 3.4. Suppose that [ ] [ ]: 0,1 0,1F →  is a pseudo-automorphism. 

Then, for any n-dimensional overlap function [ ] [ ]: 0,1 0,1n →O , the n-dimensional 
function [ ] [ ]: 0,1 0,1n

F →O , given by 

( ) ( )( )1 2 1 2, , , , , ,F n nx x x F x x x= O O               (3) 

is an n-dimensional overlap function. 
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Proof. We verify that OF satisfies the conditions of Definition 2.2 one by one 
as follows. 

(O1) The symmetry is obvious by the definition of OF. 
(O2) ( )1 2, , , 0F nx x x =O  ⇔  ( )( )1 2, , , 0nF x x x =O  
⇔  ( )1 2, , , 0nx x x =O  
⇔  1 2 0nx x x = . 
(O3) ( )1 2, , , 1F nx x x =O  ⇔  ( )( )1 2, , , 1nF x x x =O  
⇔  ( )1 2, , , 1nx x x =O  
⇔  1 2 1nx x x = . 
(O4) Since F is increasing, one has that OF is increasing immediately. 
(O5) The continuity can be obtained immediately from the continuities of F 

and O. 
Proposition 3.5. Suppose that [ ] [ ]: 0,1 0,1F →  is a pseudo-automorphism. 

If (g, h) is a multiplicative generator pair of n-dimensional overlap function 
[ ] [ ]: 0,1 0,1n →O , then (F◦g, h) is a multiplicative generator pair of the 

n-dimensional overlap function OF given in Proposition 3.4. 
Proof. Since O is multiplicatively generated by the pair (g, h), we have that 

( ) ( ) ( ) ( )( )1 2 1 2, , , n nx x x x x x= g h h hO . 

for all [ ], 0,1x y∈ . Moreover, by the definition of OF, it follows that for all 
[ ], 0,1x y∈ ,  

( ) ( )( )
( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )

1 2 1 2

1 2

1 2

, , , , , ,F n n

n

n

x x x F x x x

F x x x

F x x x

=

=

=

 



 

g h h h

g h h h

O O

 
Thus, since F is continuous and increasing, by Definition 3.1, we conclude 

that (F◦g, h) is a multiplicative generator pair of the overlap function OF. 
Proposition 3.6. Suppose that [ ] [ ]: 0,1 0,1F →  is a pseudo-automorphism 

and [ ] [ ]: 0,1 0,1n →O  is an n-dimensional overlap function. If (g, h) is a mul-
tiplicative generator pair of n-dimensional overlap function OF given in Propo-
sition 3.4, then (F−1◦g, h) is a multiplicative generator pair of the n-dimensional 
overlap function O. 

Proof. Since OF is multiplicatively generated by the pair (g, h), one has that 

( ) ( ) ( ) ( )( )1 2 1 2, , ,F n nx x x x x x= g h h hO . 

for all [ ], 0,1x y∈ . Moreover, by the definition of OF, it follows that for all 
[ ], 0,1x y∈ ,  

( ) ( ) ( )( )
( )( )( )

( )( )
( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )

1
1 2 1 2

1
1 2

1
1 2

1
1 2

1
1 2

, , , , , ,

, , ,

, , ,

n n

n

F n

n

n

x x x F F x x x

F F x x x

F x x x

F x x x

F x x x

−

−

−

−

−

=

=

=

=

=

  







 

g h h h

g h h h

O O

O

O
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Thus, since F−1 is continuous and strictly increasing, by Definition 3.1, we 
conclude that (F−1◦g, h) is a multiplicative generator pair of the n-dimensional 
overlap function O. 

4. Homogeneity and Idempotency Property on  
Multiplicatively Generated n-Dimensional Overlap  
Functions 

Proposition 4.1. Suppose that [ ] [ ]: 0,1 0,1n →O  is an n-dimensional over-
lap function multiplicatively generated by the pair (g, h). If h is homogeneous of 
order k1 and g is homogeneous of order k2, then O is homogeneous of order 
nk1k2. 

Proof. If h is homogeneous of order k1 and g is homogeneous of order k2, then 
we can obtain that 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( )

1

21

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

, , ,

, , , n

n

n

n

n

nk

knk

nk k

k k
n

n

x x x

x x x

x x x

x x x

x x

x x x

x

α α α α α α

α

α

α

α

=

=

=

=

=













g h h h

g h h h

g h h h

g h h h

O

O

 

Hence, it follows that O is homogeneous of order nk1k2. 
Proposition 4.2. Suppose [ ] [ ]: 0,1 0,1F →  is a k1-homogeneous pseudo- 

automorphism and [ ] [ ]: 0,1 0,1n →O  is an n-dimensional overlap function. 
Consider the following conditions: 

1) O is homogeneous of order k2; 
2) OF is homogeneous of order k1k2. 
Then (1) ⇒  (2), and if F is an automorphism, then (1) ⇔  (2). 
Proof. (1) implies (2): If O is homogeneous of order k2, then we get that 

( ) ( )( )
( )( )

( ) ( )( )
( )

2

12

1 2

1 2

1

2

1

2

1

1

2 2, , , , , ,

, , ,

, , ,

, , ,

n n

k

kk

k k

F

n

n

F n

F

F x x x

F x x

x x x x x

x

x x

x

x

α α α α α α

α

α

α=

=

=

=







 O O

O

O

O

 

Hence, it follows that OF is homogeneous of order k1k2. 
Moreover, if F is an automorphism and OF is homogeneous of order k1k2, then 

we prove item (1) as follows. 

( )( ) ( )( )
( )

( )
( )( )

2 1 2

1 2

1 2 1

1

2

1 2

2

1 2

, , , , ,

, ,

,

, ,

,

, , ,

,

k k k

k k

n

n

n n

F n

F

x x x F x x x

x x

F

x x x

F x x x

x

α α

α

α α α

α α α

=

=

=

=

 







O O

O

O

O

 

Hence, it follows that ( ) ( )2
2 21 1, , , , ,, k

nnx x x x x xα α α α= O O , since F is 
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strictly increasing. Furthermore, we conclude that O is homogeneous of order 
k2. 

An element [ ]0,1x∈  is said to be an idempotent element of an n-dimensional 
function [ ] [ ]: 0,1 0,1nA →  if and only if ( ), , ,A x x x x= . 

Proposition 4.3. Suppose that [ ] [ ]: 0,1 0,1n →O  is an n-dimensional over-
lap function multiplicatively generated by the pair (g, h), where [ ] [ ]: 0,1 0,1→g  
is given by ( ) nx x=g  for all [ ]0,1x∈ . Consider the following conditions: 

1) h(x0) = x0 for some [ ]0 0,1x ∈ ; 
2) x0 is an idempotent element of O. 
Then (1) ⇔  (2). 
Proof. 1) ⇒  (2): If x0 is a fixed point of h, then we can obtain 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( )

0 0 0 0 0 0

0 0 0

0

0

, , ,

n

x x x x x x

x x x

x
x

=

=

=

=

 



g h h h

h h h

h

O  

Hence, it follows that x0 is an idempotent element of O. 
2) ⇒  (1): If x0 is an idempotent element of O, then one can have 

( )
( ) ( ) ( )( )
( ) ( ) ( )

( )

0 0 0 0

0 0 0

0 0 0

0

, , ,

n

x x x x

x x x

x x x

x

=

=

=

=







g h h h

h h h

h

O  

Hence, it follows that x0 is a fixed point of h. 
Corollary 4.1. Suppose that [ ] [ ]: 0,1 0,1n →O  is an n-dimensional overlap 

function multiplicatively generated by the pair (g, h), where [ ] [ ]: 0,1 0,1→h  is 
given by ( ) nx x=h  for all [ ]0,1x∈ . Consider the following conditions: 

1) g(x0) = x0 for some [ ]0 0,1x ∈ ; 
2) x0 is an idempotent element of O. 
Then (1) ⇔  (2). 
Proof. It can be proven in a similar way as Proposition 4.3. 
Proposition 4.4. Suppose that [ ] [ ]2: 0,1 0,1→O  is an n-dimensional over-

lap function and [ ] [ ]: 0,1 0,1F →  is a pseudo-automorphism with F(x0) = x0 for 
some [ ]0 0,1x ∈ . Consider the following conditions: 

1) x0 is an idempotent element of O; 
2) x0 is an idempotent element of OF; 
Then (1) ⇒  (2), and if F is an automorphism, then (1) ⇔  (2). 
Proof. (1) ⇒  (2): If x0 is an idempotent element of O, then we can obtain 

( ) ( )( )
( )

0 0 0 0 0 0

0

0

, , , , , ,F x x x F x x x

F x
x

=

=

=

 O O  

Hence, it holds that x0 is an idempotent element of OF. 
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Moreover, if F is an automorphism and x0 is an idempotent element of OF, 
then we prove item (1) as follows. 

( )
( )
( )( )

0 0

0 0 0

0 0 0

, , ,

, , ,
F

F x x

x x x

F x x x

=

=

=





O

O

 

Hence, we get that ( )0 0 0 0, , ,x x x x= O , sine F is strictly increasing. Moreo-
ver, we conclude that x0 is an idempotent element of O. 

5. Conclusion 

In this paper, we mainly extend the notions of multiplicative generator pairs of 
overlap functions to n-dimensional case. We propose some basic properties on 
multiplicatively generated n-dimensional overlap functions, such as the homo-
geneity and idempotency property. In a similar way, one can also study the mul-
tiplicative generator pairs of n-dimensional grouping functions by the duality of 
n-dimensional overlap and grouping functions. 
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