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Abstract 
The initial boundary value problems for a class of high order Kirchhoff type 
equations with nonlinear strongly damped terms are considered. We establish 
the existence and uniqueness of the global solution of the problem by using 
prior estimates and Galerkin’s method under proper assumptions for the ri-
gid term. Then the compact method is used to prove the existence of a com-
pact family of global attractors in the solution semigroup generated by the 
problem. Finally, the Frechet differentiability of the operator semigroup and 
the decay of the volume element of linearization problem are proved, and the 
Hausdorff dimension and Fractal dimension of the family of global attractors 
are obtained. 
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1. Introduction 

The study of dynamical system is closely related to some important problems in 
natural science (such as turbulence in fluid mechanics, three-body problem in 
celestial mechanics, etc.), which attract a large number of natural scientists to 
study for a long time. However, the content of general research is limited to the 
case of finite dimension. With the development of science and technology, espe-
cially the rapid development of computer technology, it is already possible to 
learn more about the evolution and final state of infinite dimensional dynamical 
systems through computers. Since the 1980s, the infinite dimensional dynamical 
system has been studied in detail, such as the Russian mathematician O. A. La-
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dyzhenskoya ([1] [2] [3]), French mathematician R. Temam ([4] [5]), American 
mathematician G. Sell [6] and Guo Boling [7] who is an academician of the 
Chinese. They have made a deep research on a kind of infinite dimensional dy-
namical system generated by a class of nonlinear development equations with 
dissipative effects. Under certain conditions, it is proved that all these systems 
have a global attractor. Furthermore, the upper and lower bounds of the Haus-
dorff dimension and Fractal dimension of the global attractor are estimated. 
Many monographs have been published in this field, see ([8] [9] [10] [11]). Igor 
et al. [8] considered the long-time behavior of solutions to a damped wave equa-
tion with a critical source term and investigated the existence and various prop-
erties of global attractors. In [9], Yang and Wang considered the longtime beha-
vior of solution for the following Kirchhoff type equation with a strong dissipa-
tion: 

( ) ( ) ( ) ( )2 .tt t tu M u u h u g u f x− ∇ −∆ + + =
 

They proved that the related continuous semigroup ( )S t  possesses in the 
phase space with low regularity a global attractor that is connected. Kirchhoff 
type differential equations are a kind of classical problems in partial differential 
equations. In 1883, German physicist G. Kirchhoff [12] established the equation 
when he studied the vibration of strings. 

2
0 0

d ,0 , 0.
2

L
tt x xx

Ehhu p u x u f x L t
L

ρ  = + + < < ≥ 
 ∫

 

where ( ),u u x t=  is the lateral displacement under space coordinate x and time 
coordinate t, E the Young modulus, ρ  the mass density, h the cross-sectional 
area, L the length, p0 the initial axial tension, f the external force. It corrects the 
classic D’alembert wave equation. Thus, the process of string vibration is de-
scribed more precisely. This model has been widely used in non-newtonian fluid 
mechanics, astrophysics, image processing, plasma problems and elastic theory. 
Early research on the Kirchhoff type equations could be found in the literature 
([13]-[20]). 

Wu and Tsai [21] studied the initial boundary value problem of the following 
Kirchhoff-type beam equation 

( ) ( ) ( )22 ,tt tu a u M Du u g u f u+ ∆ − ∆ + =
 

( ) ( ) ( ) ( )0 1,0 , ,0 ,tu x u x u x u x= =  

( ), 0, 0, , 0.uu x t x t
υ
∂

= = ∈∂Ω >
∂  

They prove that the existence and uniqueness of the global solution and the 
decay estimation. 

In the process of vibration and deformation of the vibration system, the cha-
racteristic that the amplitude of the vibration gradually decreases due to the in-
herent reasons of the system or the interaction with the outside world is called 
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damping, and mathematically called dissipation. 
Igor Chueshov [22] studied long-time dynamics of a class of quasilinear wave 

equations with a strong damping term 

( ) ( ) ( ) ( )2 2 ,tt tu Du u Du u f u h xσ φ− ∆ − ∆ + =
 

( ), 0, ,u x t x= ∈∂Ω  
( ) ( ) ( ) ( )0 1,0 , ,0 .tu x u x u x u x= =  

They proved the existence and uniqueness of the weak solutions and studied 
their properties for a wide class of nonlinearities which covers the case of possi-
ble degeneration (or even negativity) of the stiffness coefficient and the case of a 
supercritical source term. They also established the existence of a fractal expo-
nential attractor and give conditions that guarantee the existence of a finite 
number of determining functionals. 

Recently, Guoguang Lin, Zhuoxi Li [23] studied the initial boundary value 
problem for a class of high order Kirchhoff type equations with nonlinear 
non-local source term and strongly damped term 

( )( ) ( ) ( ) ( )
2

, ,m mm
tt tu M D u u u g x u f xβ+ −∆ + −∆ + =

 

( ), 0, 0, 1, 2, , 1, , 0,
i

i

uu x t i m x t
υ
∂

= = = − ∈∂Ω >
∂



 
( ) ( ) ( ) ( )0 1,0 , ,0 , .n

tu x u x u x u x x R= = ∈Ω ⊂  
where 1m >  is a positive integer, ( )f x  is an external force term, ( ),g x u  is 
a nonlinear non-local source term. 

They proved that the existence of the family of global attractors and estimated 
their Hausdorff dimensions and Fractal dimensions. 

In the present paper, we deal with the following the higher-order nonlinear 
Kirchhoff type problem involving a strong damping term 

( )( ) ( ) ( )2 ,
p m mm m

tt tp
u M D u u u u g xβ+ −∆ + ∆ + −∆ =          (1) 

( ), 0, 0, 1, 2, , 2 1, , 0,
i

i

uu x t i m x t
υ
∂

= = = − ∈∂Ω >
∂


          (2) 

( ) ( ) ( ) ( )0 1,0 , ,0 , .n
tu x u x u x u x x R= = ∈Ω ⊂             (3) 

where 1m >  is a positive integer, Ω  is a bounded domain with smooth ho-
mogeneous Dirichlet boundary ∂Ω  in ( )1nR n ≥ , ν  represents the unit nor-
mal vector directed towards the exterior of Ω . D represents gradient operator,  

which means 
1 2

, , ,
n

u u uDu u
x x x

 ∂ ∂ ∂
= ∇ =  ∂ ∂ ∂ 


, ( )g x  is the external force.  

( )m
tuβ −∆  is a strong damping term, here β  is a positive constant. M is a 

non-negative function that satisfies some conditions. 
When 2p = , 

2 2

2
dm mD u D u x

Ω
= ∫ . System (1)-(3) has been investigated by 

many authors, and many results concerning asymptotic behavior have been es-
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tablished. Therefore, Our contribution in this paper is to investigate the long time 
behavior of system (1)-(3) when 2p ≥ . At this point, d

p pm m
p

D u D u x
Ω

= ∫ . 
Before stating our results, let us introduce some notations. 
D = ∇ , ( )2H L= Ω , ( ) ( ) ( )1

0 0
m mH H HΩ = Ω Ω

,  

( ) ( ) ( )2 2 1
0 0

m mH H HΩ = Ω Ω
, ( ) ( )2

0 0 , 0,1, 2, , 2m k k
kE H H k m+= × Ω = 

, when 

0k = , ( )2
0 0

mE H H= Ω × , 0, 1,2,iC i> =  . 

We denote the norm and scalar product in H by ⋅  and ( ),⋅ ⋅ , that is, 

( ) ( ) ( ) ( ) 2, d ,u v u x v x x u u u
Ω

= =∫  
And kA  stands for a family of weakly global attractors from 0E  to kE , 

0k kB E⊂  is a bounded absorbtion set. 
In order to obtain our results, we consider system (1)-(3) under some as-

sumptions on ( )M s , ε  and p. Preclsely, we state the general assumptions: 
(H1) ( ) [ )( )2 0, ;M s C R∈ +∞  and satisfies 

( )

2

0

0 1
2

1

d, 0;
d1 ,
d, 0.
d

m k

m k

D u
tM s

D u
t

σ
ε σ σ σ

σ

+

+

 ≥+ ≤ ≤ ≤ = 
 <
  

(H2) 0 0
1

1

2
0 min 1 2, , .m

m

σ σ
ε βλ

βλ β
−

−

 
< = + − 

+ 
 

(H3) 
2 , 2 ;2

2
2 , 2 .

n n mn q n m
n m n m

≤ >≤ −
+ < ∞ ≤

 

The remainder of this article is organized as follows: In Sect. 2, we prove the 
existness and uniqueness of the family of global attractors and in Sect. 3, the es-
timate of the upper bound of Hausdorff dimension and Fractal dimension for 
the family of global attractors have been obtained. 

2. The Existence and Uniqueness of the Family  
of Global Attractors 

Lemma 2.1. Assume that (H1)-(H3) are satisfied and ( )g x H∈ . Then for any 
initial data ( )0 0 0,u v E∈ , there exists a smooth and global solution (u, v) of 
(1)-(3) satisfies 

( )

( ) ( )
0

1 1

22 22

2 22 2 1
0 0 0

1

,

e 1 e .

m
E

t tm m

u v D u v

Cv D u D uα ασ
α

− −

= +

≤ + + + −
 

where tv u uε= + , 2
1 1min , , 2

aaα ε
σ

 =  
 

, 2
1 1 2ma βλ ε ε= − − ,  

2
2

2 0
1

2 ma εεσ βε
λ

= − − . Thus, there exists a positive constant 0R  and  

( )1 1 0t t= Ω > , such that 

( ) ( )
0

22 22 2
0 1, , .m

E
u v D u v R t t= + ≤ >
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Proof. Taking the scalar product in H of Equation (1) with tv u uε= + . 
We have 

( )( ) ( )( ) ( )( )2 , , .
p m mm m

tt tp
u M D u u u u v g x vβ+ −∆ + ∆ + −∆ =       (4) 

By using Holder’s inequality, Young’s inequality and Poincare’s inequality to 
process the items in Equation (4) one by one, we get 

( )
22 22 2 11 d 2, ,

2 d 2 2

m
m

ttu v v v D u
t

ε λε ε −+
≥ − −            (5) 

where 1λ  is the first eigenvalue of −∆  in Ω  with homogeneous Dirichlet 
boundary condition, and all of the following are this definition. 

Dealing with the second term in Equation (4), we get 

( )( )( ) ( ) ( )2 2d, ,
2 d

pm
p ppmm m m m
p p

M D u
M D u u v D u M D u D u

t
ε−∆ = +

 
There are two cases to estimate the above equation 

Case 1: when 
2d 0

d
mD u

t
≥ , from (H1), we get 

( ) ( )2 2 2 20
0

d d ,
2 d 2 d

pm
pp m m m m m
p

M D u
D u M D u D u D u D u

t t
σ

ε εσ+ ≥ +
 

let 0σ σ= , we obtain 

( )( )( ) 2 2

0
d, .

2 d
p mm m m
p

M D u u v D u D u
t

σ εσ−∆ ≥ +
 

Case 2: when 
2d 0

d
mD u

t
< , from (H1), we get 

( ) ( )2 2 2 21
0

d d ,
2 d 2 d

pm
pp m m m m m
p

M D u
D u M D u D u D u D u

t t
σ

ε εσ+ ≥ +
 

let 1σ σ= , we obtain 

( )( )( ) 2 2

0
d, .

2 d
p mm m m
p

M D u u v D u D u
t

σ εσ−∆ ≥ +
 

Intergrating the above inequality to get 

( )( )( ) 2 2

0
d, .

2 d
p mm m m
p

M D u u v D u D u
t

σ εσ−∆ ≥ +          (6) 

Dealing with the third term in Equation (4), we get 

( ) 2 22 2 21 d, .
2 d

m m mu v D u D u
t

ε∆ = +                 (7) 

By using Young’s inequality and Poincare’s inequality to deal with the strong 
damping term, we have 

( )( )
2 22 2 2 221, .

2 2 2 2

m
m m m m m

tu v D v D u D v v D uβλβε β βεβ β−∆ ≥ − − ≥ −  (8) 
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By using Young’s inequality to deal with external force term, we get 

( )( ) ( )
2

22
2

1, .
2 2

g x v v g xε
ε

≤ +                  (9) 

Combining with (4)-(9), we have 

( ) ( )
( )

2 22 22 2
1

2
2 2 22 2

0 12
1

d 2
d

2 2 : .

m m m

m m
m

v D u D u v
t

g x
D u D u C

σ βλ ε ε

εεσ βε ε
λ ε

+ + + − −

 
+ − − + ≤ = 
 

 

From (H2), we have 
2

2 2
1 1 2 0

1

2 0, 2 0,m
ma a εβλ ε ε εσ βε

λ
= − − > = − − >

 

let 2
1 1min , , 2

aaα ε
σ

 =  
 

, we have 

( ) ( )2 2 2 22 22 2
1 1

d .
d

m m m mv D u D u v D u D u C
t

σ α σ+ + + + + ≤
 

we notice that 
2 22 2 0.m mv D u D uσ+ + ≥

 
From Gronwall’s inequality, we arrive at 

( ) ( )1 1

2 22 2

2 22 2 1
0 0 0

1

e 1 e .

m m

t tm m

v D u D u
Cv D u D uα α

σ

σ
α

− −

+ +

≤ + + + −
 

Hence, 

( ) ( ) ( )1 1

0

2 2 22 222 2 1
0 0 0

1

, e 1 e .t tm m m
E

Cu v D u v v D u D uα ασ
α

− −= + ≤ + + + −
 

Then, 

( )
0

2 1

1

lim , .
Et

Cu v
α→∞

≤
 

So, there exist a positive constant 0R  and ( )1 1 0t t= Ω > , such that 

( ) ( )
0

22 22 2
0 1, , .m

E
u v D u v R t t= + ≤ >

 
The proof is complete. 
Lemma 2.2. Under the assumptions of (H1)-(H3), ( )g x H∈ . Then for any 

initial data ( ) ( )0 0, 1, 2, , 2ku v E k m∈ =  , There exists a smooth and global solu-
tion ( ),u v  of (1)-(3) satisfies 

( ) ( ) ( )2 2
2 2 2 22 2 2 2

0 0
2

, e 1 e .
k

t tm k k m k k
E

Cu v D u D v D u D v α α

α
− −+ += + ≤ + + −

 

where tv u uε= + , 2
2 1min ,

aaα
σ

 =  
 

, 2
1 1 2ma βλ ε ε= − − ,  

2
2

2 0
1

2 ma εεσ βε
λ

= − − . Thus, there exists a positive constant kR  and  
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( ) 0k kt t= Ω > , such that 

( ) ( )
2 22 2 2

2, , .
k

m k k
kE

u v D u D v R t t+= + ≤ >
 

Proof. Taking the scalar product in H of Equation (1) with  
( ) ( ) ( )k k k

tv u uε−∆ = −∆ + −∆ . 
We have 

( )( ) ( ) ( )( ) ( ) ( )( )2 , , .
p m m k km m

tt tp
u M D u u u u v g x vβ+ −∆ + ∆ + −∆ −∆ = −∆  (10) 

By using Holder’s inequality, Young’s inequality and Poincare’s inequality to 
process the items in (10) one by one, we get 

( )( )
222 2 211 d 2, .

2 d 2 2

m
k k k m k

ttu v D v D v D u
t

ε λε ε −
++

−∆ ≥ − −      (11) 

From (H1), a proof method that similar to Lemma 2.1 can be obtained, 

( )( ) ( )( ) 2 2

0
d, .

2 d
p mm k m k m k
p

M D u u v D u D u
t

σ εσ+ +−∆ −∆ ≥ +     (12) 

Dealing with the third term in Equation (10), we get 

( )( ) 2 22 2 21 d, .
2 d

km m k m ku v D u D u
t

ε+ +∆ −∆ = +            (13) 

By using Young’s inequality and Poincare’s inequality to deal with the strong 
damping term, we have 

( ) ( )( )
22 21, .

2 2

m
m k k m k

tu v D v D uβλ βεβ +−∆ −∆ ≥ −         (14) 

By using Young’s inequality to deal with the external force term, we get 

( ) ( )( ) ( )
2 2 2

2

1, .
2 2

k k kg x v D v D g xε
ε

−∆ ≤ +            (15) 

Substituting (11)-(15) into (10), we receive 

( ) ( )
( )

2 2 2 22 2
1

2
2 2 22 2

0 12
1

d 2 2
d

2 2 : .

k m k m k m k

k
m k m k

m

D v D u D u D v
t

D g x
D u D u C

σ βλ ε ε

εεσ βε ε
λ ε

+ +

+ +

+ + + − −

 
+ − − + ≤ = 
   

From (H2), we have 
2

2 2
1 1 2 0

1

2 0, 2 0.m
ma a εβλ ε ε εσ βε

λ
= − − > = − − >

 

Taking 2
2 1min , , 2

aaα ε
σ

 =  
 

, we get 

2 2 22

2 2 22
2 2

d
d

.

k m k m k

k m k m k

D v D u D u
t

D v D u D u C

σ

α σ

+ +

+ +

 + +  
 + + + ≤    
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From Gronwall’s inequality, we arrive at 

( ) ( )2 2

2 2 22

2 2 22 2
0 0 0

2

e 1 e .

k m k m k

t tk m k m k

D v D u D u

CD v D u D uα α

σ

σ
α

+ +

− −+ +

+ +

≤ + + + −
 

So, 

( )

( ) ( )2 2

2 22 2

2 2 22 2
0 0 0

2

,

e 1 e .

k

m k k
E

t tk m k m k

u v D u D v

CD v D u D uα ασ
α

+

− −+ +

= +

≤ + + + −
 

Then 

( ) 2 2

2

lim , .
kEt

Cu v
α→∞

≤
 

So, there exists a positive constant kR  and ( ) 0k kt t= Ω > , such that 

( ) ( )
2 22 2 2

2, , .
k

m k k
kE

u v D u D v R t t+= + ≤ >
 

The proof is complete. 
Theorem 2.1. Assume that (H1)-(H3) hold and under the condition of Lemma 

2.1, Lemma 2.2, ( )g x H∈ , ( )0 1, ku u E∈ , so problems (1)-(3) exist a unique 
smooth solution ( ),u v  and ( ) ( ), 0, ; ku v L E∞∈ +∞ . 

Proof. By using the method of Galerkin and Lemma 2.1-Lemma 2.2, we can 
obtain the existence of solution. 

The First step: Construction of approximate solution 
We assume that ( )2 2m k m k

j j jω λ ω+ +−∆ = , 1,2, , 2k m=  , where jλ  is the 
eigenvalue of −∆  in Ω  with homogeneous Dirichlet boundary condition, jω  
is the eigenfuntion corresponding to eigenvalue jλ . According to the eigenva-
lue theory, 1 2, , , mω ω ω  is the standard orthogonal basis of H. We assume that 
the appoximate solutions of problems (1)-(3) are as follows: 

( ) ( )
1

,
l

l l il i
i

u u t g t ω
=

= = ∑
 

where ( )ilg t  is determined by the nonlinear ordinary differential equations as 
follows: 

( )( ) ( )( ) ( )( )2 , , ,1 .
p m mm m

ltt l l l lt j jp
u M D u u u u g x j mβ ω ω+ −∆ + ∆ + −∆ = ≤ ≤  (16) 

The general conclusions about the system of nonlinear ordinary differential 
equations ensure that the solution of problems (1)-(3) exist on the interval 
[ ]0, lt . 

The Second step: the Prior Estimates 
In order to prove the existence of the weak solution in the ( )0,1, , 2kE k m=  , 

the two ends of Equation (16) are simultaneously multiplied by ( ) ( )( )k
j il ilg t g tλ ε+ , 

and sum over j. Taking 

( ) ( ) ( ).l lt lv t u t u tε= +  
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When 0k = , the priori estimate of the solution in 0E  is obtained 

( ) ( )
0

22 22 2
0 1, , .m

l l E
u v D u v R t t= + ≤ >              (17) 

When 1,2, , 2k m=  , the priori estimate of the solution in kE  is obtained 

( ) ( )
2 22 2 2

2, , .
k

m k K
l l kE

u v D u D v R t t+= + ≤ >            (18) 

It can be seen that the priori estimate of Lemma 2.1 and Lemma 2.2 by Equa-
tion (17) and Equation (18) are respectively valid. Equation (17) shows that 
( ),l lu v  is bounded in [ )( )00, ;L E∞ +∞ , Equation (18) shows that ( ),l lu v  is 
bounded in [ )( )0, ; kL E∞ +∞ . 

The Third step: Limit process 
In ( )0,1, , 2kE k m=  , subcolumns { }uµ  are selected from the sequence 

{ }lu , so that ( ) ( ), ,u v u vµ µ →  is the weak *convergence in [ )( )0, ; kL E∞ +∞ . 
According to the Rellich - Kohdrachov compact embedding theorem, we ar-

rive at  0kE E , so ( ) ( ), ,u v u vµ µ →  in 0E  is strong convergence almost 
everywhere. 

In Equation (16), we make l µ=  and take limit. For fixed j and jµ ≥ , we 
have 

( )( ) ( ) ( )( )
( )( )

2 ,

, ,1 .

p m m mm
tt t jp

j

u M D u u u u

g x j m

µ µ µ µ µβ ω

ω

+ −∆ + ∆ + −∆

= ≤ ≤
 

Due to ( )( ) ( )( )d, ,
d

k k
tt j t ju u

tµ µω ω−∆ = −∆ , so ( )( ) ( ), ,k k
tt j tt j ju uµ ω λ ω−∆ →  

in [ )0,D′ +∞ . 
Due to  

( )( ) ( )( ) ( )( ) 22, ,
m km kp pm km m

j j jp p
M D u u M D u uµ µ µ µω λ ω

++ 
−∆ −∆ = −∆  

 
, so  

( )( ) ( )( ) ( )( ) 22, ,
m km kp pm km m

j j jp p
M D u u M D u uµ µ µω λ ω

++ 
−∆ −∆ → −∆  

 
 is the 

weak * convergence in [ )0,L∞ +∞ . 

Similarly, ( )( ) ( )
22

2 22, ,
m km kkm

j j ju uµ ω λ ω
++ 

∆ −∆ → −∆  
 

 is the weak * conver-

gence in [ )0,L∞ +∞ . 

( ) ( )( )
( ) ( ) ( ) ( )2 2 2 2

,

, , ,

m k
t j

m k m k m k m k

j j

u

v u

µ

µ µ

β ω

β ω βε ω
+ + + +

−∆ −∆

   = −∆ −∆ − −∆ −∆   
     

So, 
( ) ( )( )

( ) ( ) ( ) ( )2 2 2 2

,

, ,

m k
t j

m k m k m k m k

j j

u

v u

µβ ω

β ω βε ω
+ + + +

−∆ −∆

   → −∆ −∆ − −∆ −∆   
   

 is the weak * 

convergence in [ )0,L∞ +∞ . 
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0 0u uµ →  is the weak convergence in kE , 1 1u uµ →  is the weak conver-
gence in kE . 

For all j and µ → +∞ , we get 

( )( ) ( )( ) ( )( )2 , , ,1 .
p m mm m

ltt l l l lt j jp
u M D u u u u g x j mβ ω ω+ −∆ + ∆ + −∆ = ≤ ≤

 
The existence of the weak solution to problems (1)-(3) can be obtained. 
The proof is complete. 
Theorem 2.2. Under the conditions of the Theorem 2.1, problems (1)-(3) ex-

ist a unique smooth solution. 
Proof. Assume * *,u v  are two solutions of problem (1)-(3), let * * *w u v= − , 

then ( ) ( )* *
0,0 0tw x w x= = , ( ) ( )* *

1,0 0tw x w x= = . 
We obtain 

( ) ( )( )

( )( )

* * 2 * * *

* * 0.

pm mm m
tt t p

p mm
p

w w w M D u u

M D v v

β+ −∆ + ∆ + −∆

− −∆ =
         (19) 

By multiplying (19) by * *
tw wϑ ε= + , we get 

( ) ( )( )(
( )( ) )

* * 2 * * *

* * , 0.

pm mm m
tt t p

p mm
p

w w w M D u u

M D v v

β

ϑ

+ −∆ + ∆ + −∆

− −∆ =
         (20) 

( )
22 22 2* *11 d 2, .

2 d 2 2

m
m

ttw D w
t

ε λε εϑ ϑ ϑ
−+

≥ − −          (21) 

( )( )
2 22* *1, .

2 2

m
m m

tw D wβλ βεβ ϑ ϑ−∆ ≥ −             (22) 

( ) 2 22 * 2 * 2 *1 d, .
2 d

m m mw D w D w
t

ϑ ε∆ = +              (23) 

( )( ) ( )( )( )
( )( ) ( )( ) ( )

*

* * * *

* * * * * *

22 2 2 2* * *3
0

,

,

d 1 .
2 d 2 2

m

p pm mm m
p p

p p pm mm m m m
p p p

D u

m m m

M D u u M D v v

M D u w M D u D u v D w

C
D w D w D w

t

ζ

ϑ

ϑ

σ εσ ϑ

′

=

−∆ − −∆

   ′= −∆ + −∆    

≥ + − −

 

(24) 

where ζ  is between *mD u  and *mD v . 
Substituting (21)-(24) into (20), we receive 

( )
( ) ( )

222 * 2 *

2 222 2 2 2 * 2 *
1 1 3 0

d
d

2 1 2 2 .

m m

m m m m

D w D w
t

C D w D w

ϑ σ

ε ε βλ ϑ ε λ βε εσ ε−

+ +

≤ + + − + + + − −
 

Taking 
2 2 2

2 1 3 0
3 1

2
max 2 1 , 2 ,

m
m Cε λ βε εσ

α ε ε βλ ε
σ

− + + − = + + − − 
  

. 
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From Gronwall’s inequality, we deduce that 

( ) ( ) ( )( ) 3

2 22 * 2 *

2 22 * 2 *0 0 0 e 0.

m m

tm m

D w D w

D w D w α

ϑ σ

ϑ σ

+ +

≤ + + =
 

Hence, 
2 22 * 2 * 0.m mD w D wϑ = = =

 
Thus, we get 

* * *0, .w u v= =  
The proof is complete. 
Theorem 2.3. Let E be a Banach space, and ( ){ }( )0S t t ≥  are a family of 

semigroup operators on E. ( ) :S t E E→ , ( ) ( ) ( )( ), 0S t s S t S s t s+ = ∀ ≥ ,  
( )0S I= , here I is a unit operator, set ( )S t  satisfies the following conditions: 
(1) ( )S t  is uniformly bounded, namely 0, ER u R∀ > ≤ , there exists a 

constant ( )C R , such that  

( ) ( ) [ )( ), 0, ;
E

S t u C R t≤ ∈ +∞
 

(2) There exists a bounded absorbing set 0B E⊂ , namely B E∀ ⊂ , there ex-
ists a constant 0t , so that 

( ) ( )0 0, ;S t B B t t⊂ >  
(3) When 0t > , ( )S t  is a completely continuous operator. 
Therefore, the semigroup operator ( )S t  exists a compact global attractor 

0A . 
The Banach space E in theorem 2.3 is changed to Hilbert space kE , and the 

existence theorem of the following family of global attractors is obtained. 
Theorem 2.4. Under the assume of Lemma 2.1, Lemma 2.2, Theorem 2.1 and 

Theorem 2.2, problems (1)-(3) exist a family of global attractors 

( ) ( )0 0
0

,k k k
t

A w B S t B
τ τ≥ ≥

= =


 

where 

( ) ( ){ }2 22 2 2
0 , : , ,

k

m k k
k k E

B u v E u v D u D v R+= ∈ = + ≤        (25) 

0kB  is the bounded absorbing set in kE  and satisfies 

( ) , 0k kS t A A t= > ; 

( )( )lim , 0k kt
dist S t B A

→∞
= , k kB E∀ ⊂  and 

( )( ) ( )lim , sup inf
kkk

k k Et y Ax B
dist S t B A S t x y

→∞ ∈∈
= − . 

where ( )S t  is the solution semigroup that generated by problem (1)-(3). 
Proof. Under the conditions of Theorem 2.1 and Theorem 2.2, there exists the 

solution semigroup ( )S t , ( ) : k kS t E E→ . 
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(1) From Lemma 2.1 and Lemma 2.2, k kB E∀ ⊂  is a bounded set that con-
tained in the ball ( ){ },

k
kE

u v R≤ , we can arrive at 

( )( ) 2 2
0 0 0 0

2 2 22 2 2
0 0 0 0 4, ,m k k m k k

k
kH H H HE

S t u v u v u v C R C+ += + ≤ + + ≤ +
 

where ( )0 0 00, , kt u v B≥ ∈ , this shows that ( ){ }( )0S t t ≥  is uniformly bounded 
in kE . 

(2) Furthermore, for any ( )0 0, ku v E∈ , when { }0 1max ,t t t≥ , we have 

( )( ) 2
0 0

2 2 2 2
0 0, .m k k

k
kH HE

S t u v u v R+= + ≤
 

So, 0kB  is the bounded absorbing set of ( )S t . 
(3) Because  0kE E , which means that the bounded set in kE  is the com-

pact set in 0E , so the semigroup operators ( ){ } 0t
S t

≥
 exist a compact global at-

tractors kA . 

( ) ( )0 0
0

.k k k
t

A w B S t B
τ τ≥ ≥

= =


 
The proof is complete. 

3. The Estimate of the Upper Bound of Hausdorff Dimension 
and Fractal Dimension for the family of Global Attractors 

First, the Equation (1) is linearized to prove the Frechet differentiability of the 
solution semigroup, and further prove the decay of the volume element of the 
linearization problems. Finally, the Hausdorff dimension and Fractal dimension 
of the family of global attractors are estimated. 

We linearize problems (1)-(3), and let tθ ϖ εϖ= + , then the first-order vari-
ational equation of problems (1)-(3) as follows: 

( )( ) ( )

( )( ) ( ) ( )

2

2 0,

p p mm m m
t p p

p m m mm m
p

M D u D u D u

M D u

θ εθ ε ϖ ϖ

ϖ ϖ β θ βε ϖ

′
′− + + −∆

+ −∆ + ∆ + −∆ − −∆ =
    (26) 

( ) ( )1 2,0 , ,0 ,x xϖ ξ θ ξ= =                    (27) 

( ) ( ) ( ), , 0,kx t x tϖ ϖ
∂Ω ∂Ω

= −∆ =                 (28) 

( ) ( ) ( ), , 0,kx t x tθ θ
∂Ω ∂Ω

= −∆ =                  (29) 

where ( )1 2, kEξ ξ ξ= ∈ , ( ) ( )( )0 0, ,u v S t u v=  is the solution of the problems 
(1)-(3) obtained by ( )0 0, ku v A∈ . 

Given ( )0 0, ku v A∈ , then ( )( )0 0, kS t u v A∈ , it can be proved that there is a 
unique solution for linearized initial boundary value problems (26)-(29). 

( ) ( ) ( )( ) ( )( ), 0, ; .kU t t t L Eϖ θ ∞= ∈ +∞
 

Lemma 3.1. If the Frechet derivative mapped ( ) : k kS t E E→  on ( )0 0 0,u vη =  
is a linear operator ( ) ( ) ( )( )1 2: , ,F t tξ ξ ϖ θ→ , take any 0, 0t R> > , the map-
ping ( ) : k kS t E E→  has the differentiability of Frechet in kE , where  

( ) ( )( ),t tϖ θ  is the solution of problems (26)-(29). 
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Proof. Assume ( )T
0 0 0, ku v Eη = ∈ , ( )T

0 0 1 0 2, ku v Eη ξ ξ= + + ∈  and 

0 kE Rη ≤ , 0
kE

Rη ≤ , let ( ) ( )0 ,S t u vη η= = , ( ) ( )0 ,S t u vη η= = , Since 
semigroups ( )( )0S t t ≥  on any bounded set of kE  have Lipchitz properties, 
that is 

( ) ( ) ( )5
2 2

0 0 1 2e , .
kk

C t
EE

S t S tη η ξ ξ− ≤
 

Taking ( ) ( ) ( ), ,U u u v vψ φ η η ϖ θ= − − = − − − − , then tφ ψ εψ= + . 
Therefore, 

( ) ( )2 2 ,m mm
t hφ ε ψ ψ β φ εφ εβ ψ+ + ∆ + −∆ = − + + −∆         (30) 

( ) ( )0 0 0.ψ φ= =  

Setting ,
p pm m
p p

l D u l D u= = , we have 

( )( ) ( )( ) ( ) ( ) ( )( ) .m m m mmh M l u M l u M l l D u M lϖ ϖ′ ′= −∆ − −∆ − −∆ − −∆
 

Taking the scalar product of both sides of Equation (30) with ( )k φ−∆  in H, 
we get 

( ) ( )( )

22 2 2 23 2

2 22

1 d d 1 d
2 d 2 d 2 d

, .

k k k m k

m k m k

m k

D D D D
t t t

D D

h

εφ ψ ε ψ ψ

ε ψ β φ

εφ εβ ψ φ

+

+ +

+ + +

+ +

= − + + −∆ −∆
 

Here 

( )( )
( )( ) ( )( ) ( ) ( )(
( )( ) ( ) )

( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2 2
6 7 8

,

,

1

,

,

m

k

k

m m mm

m k

m mm

D u

m m km m

k k m k k m k
E

h

M l u M l u M l l D u

M l

s M l l D u u u M l

M l l u u D u u M l l D u

C u u D C D D C D D

ς

φ

ϖ

ϖ φ

ψ

ψ φ

φ φ ψ φ ψ

=

+ +

− −∆

′ ′= −∆ − −∆ − −∆

− −∆ −∆

 ′′ ′= − − −∆ + −∆


′ ′ ′ ′+ −∆ − − + −∆ −∆ 


≤ − + +
 

where ς  is between in mD u  and mD u . 
From the above, we have 

( )
( )
( )

2 2 22 2

2 23
9 1

22
10 1 11

d
d

2 2 2

2 .

k k m k

m k k

m m k

D D D
t

C D D

C C D

φ ε ψ ψ

εβ ε βλ φ ε ψ

εβ λ ε ψ

+

− +

+ +

≤ + + − −

+ + + −
 

Taking 

{ }4 9 1 10 1 11max 2 2 , 2 , 2 .m mC C Cα εβ ε βλ ε εβ λ ε−= + + − − + + −
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We have 

( ) ( )2 2 2 2 2 22 2 2 2
4

d .
d

k k m k k k m kD D D D D D
t

φ ε ψ ψ α φ ε ψ ψ+ ++ + ≤ + +
 

By using Gronwall’s inequality, we obtain 

( )13 15

2 2 22 2

44 T
12 14 1 20

e d e , .
k k

k k m k

tC t C t
E E

D D D

C u u C

φ ε ψ ψ

τ ξ ξ

++ +

≤ − ≤∫
 

When 

( )
2T

1 2, 0,
kE

ξ ξ →
 

( ) ( ) ( )

( )
( )17

2

2T
16 1 22T

1 2

e , 0.
,

k

k

k

E C t

E

E

t t U t
C

η η
ξ ξ

ξ ξ

− −
≤ →

 
The proof is complete. 
Theorem 3.1. Let kA  be the family of global attractors that we obtain in sec-

tion2. In that case, kA  have finite Hausdorff dimension and Fractal dimension, 

that is ( ) ( )2 5,
3 3H k F kd A n d A n< < . 

Proof. Assume { } { }: , ,t tR u u u u uε ε→ +  is a isomorphic mapping,  
( )T,R u vεφΨ = = , ( )T, tu uφ = , tv u uε= + . According to Lemma 3.1, 

( ) : k kS t E E→  has the differentiability of Frechet. In order to estimate the 
Hausdorff dimension and Fractal dimension of the problems (1)-(3), the varia-
tional equation of Equation (26) under initial conditions is considered in this 
paper. 

0,tP Pε+ Λ =  
( ).t tP F= Ψ  

where 

( ), , , ,tP Aϖ θ θ ϖ εϖ= = + = −∆  

( ) ( )( )2 2
,m

m m m m

I

M l l A uA M l A A A I
ε

ε ε

ε εβ β ε

− 
 Λ =
 ′ ′+ + − + −   

where 2

pm

p

l A u= . 

For fixed ( )0 0, ku v E∈ , we assume 1 2, , , nγ γ γ  is n elements in kE , and 
make ( ) ( ) ( )1 2, , , nU t U t U t  is n solutions to the linear Equation (26), which 
initial value is ( ) ( ) ( )1 1 2 20 , 0 , , 0n nU U Uγ γ γ= = = . 

By using the consistent Gronwall’s inequality, we have 

( ) ( ) ( )

( )( ) ( )( )
2

1 2

2
1 2 0

exp d ,

k

k

n E

t
n t nE

U t U t U t

trF Qγ γ γ τ τ τ

Λ Λ Λ

= Λ Λ Λ Ψ∫
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where Λ  is the cross product, tr  represents the trace of the operator, ( )nQ τ  
represents the orthogonal projection from kE  to ( ) ( ) ( ){ }1 2, , , nspan U t U t U t . 

For a given time τ , we set ( ) ( ) ( )( )T
, , 1, 2, ,j j j j nω τ ξ τ η τ= =  .  

( ){ } 1,2, ,j j n
ω τ

= 

 is the standard orthogonal basis of the space  

( ) ( ) ( ){ }1 2, , , nspan U t U t U t . 

Define the scalar product in kE  as follows 

( ) ( )( ) ( ) ( )2 2, , , , , .
k

m k m k k k

E
D D D Dξ η ξ η ξ ξ η η+ += +

 
From the above, we have 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )
1

1

,

, ,

k

k

n

t n t n j j Ej

n

t j j Ej

trF Q F Q

F

τ τ τ τ ω τ ω τ

τ ω τ ω τ

=

=

Ψ = Ψ

= Ψ

∑

∑
 

where 

( )( ) ( ) ( )( ) ( ), , ,
k

t j j j jE
F ετ ω τ ω τ ω ωΨ = − Λ

 

( )
( )

( )( ) ( )( )
( )( )( )

2 2 22 2

,

,

,

,

j j

m k k m k k k
j j j j j

p p mm m k m k
j jp p

pm m k m k
j jp

D D D D D

M D u D u D uD D

M D u D D

εω ω

ε ξ ε η β η ε ξ η

ξ η

εβ ξ η

+ +

+ +

− Λ

= − + − −

′
′− −∆

− −
 

( )

22 2 2 22

22 2 2 2218
2

1

22 22 2218
12 2

1 1

2 2219

2

2 4

3
4 22

,
2

m k k m k k
j j j j

k m k m k
j j jm

m k m k
j jm m

m k k
j j

D D D D

C
D D D

C
D D

C
D D

εε ξ ε η β η ξ

ε βη η ξ
βλ

ε β εε ξ λ ε η
λ βλ

ξ η

+ +

+ +

+

+

≤ − + − +

+ + +

   
≤ − − − − − −   

  

≤ − +
 

where 
22 2

18
19 2 2

1 1

3min ,
4 22 m m

C
C ε β εε ε

λ βλ
  = − − − − 
  

. 

There exists a positive constant r, such that 

( )( ) ( ) ( )( )

( ) ( )2 2 2219

,

, .
2

k
t j j E

m k k k
j j j j j

F

C
D D r Dε

τ ω τ ω τ

ω ω ξ η η+

Ψ

= − Λ ≤ − + +
 

Due to ( ){ } 1,2, ,j j n
ω τ

= 

 is the standard orthogonal basis of the space 
( ) ( ) ( ){ }1 2, , , nspan U t U t U t . 

2 22 1,m k k
j jD Dξ η+ + =
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( )( ) ( ) ( )( ) 220

1 1
, .

2k

n n
k

t j j jEj j

nC
F r Dτ ω τ ω τ η

= =

Ψ ≤ − +∑ ∑
 

Almost to all t, we arrive at 
2 1

1 1
.

n n
k s

j j
j j

D η λ −

= =

≤∑ ∑
 

where ks
m

=  and [ ]0,1s∈ , jλ  is the eigenvalue of 2mA  and 

1 2 nλ λ λ< < < . 

So, 

( )( ) ( ) 120

1
.

2

n
s

t n j
j

nC
trF Q rτ τ λ −

=

Ψ ≤ − + ∑
 

Setting 

( ) ( )( ) ( )
0 0

00, 1

1sup sup d .
k k

t
n t n

B E
q t trF S Q

tγ γ
τ τ τ

Ψ ∈ ∈ ≤

 = Ψ 
 ∫

 
( )limsup .n nt

q q t
→∞

=
 

Therefore, 

121

1
.

2

n
s

n j
j

nCq r λ −

=

≤ − + ∑
 

Thus, the Lyapunov exponent of 0kB  is uniformly bounded. 

121
1 2

1
.

2

n
s

n j
j

nC rκ κ κ λ −

=

+ + + ≤ − + ∑

 
From what has been discussed above, we get 

( ) 121 21

1
.

2 5

n
s

j j
j

nC nCq r λ −

+
=

≤ − + ≤∑
 

121 21

121

321 ,
2 10

n
s

n j
j

nC nCrq
nC

λ −

=

 
≤ − − ≤ − 

 
∑

 
( )

1

2max .
3

j

j n
n

q

q
+

≤ ≤
≤

 
Thus, 

( ) ( )2 5, .
3 3H k F kd A n d A n< <

 
 

4. Conclusion 

In this paper, a class of high order Kirchhoff type equation has been investigated. 
In recent years, much work concerning the low order Kirchhoff type equation 
has been published. However, to the best of my knowledge, there were few 
long-time behaviors for the high order Kirchhoff type equation with strong 
damping. We have proved the existence and uniqueness of the global solution of 
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the problem by using prior estimates and the Galerkin’s method under proper 
assumptions for the rigid term. Furthermore, we have been obtained the Haus-
dorff dimension and Fractal dimension of the family of global attractors. 
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