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Abstract 
Numerous authors studied polarities in incidence structures or algebrization 
of projective geometry [1] [2]. The purpose of the present work is to establish 
an algebraic system based on elementary concepts of spherical geometry, ex-
tended to hyperbolic and plane geometry. The guiding principle is: “The 
point and the straight line are one and the same”. Points and straight lines are 
not treated as dual elements in two separate sets, but identical elements with-
in a single set endowed with a binary operation and appropriate axioms. It 
consists of three sections. In Section 1 I build an algebraic system based on 
spherical constructions with two axioms: ab ba=  and ( )( )ab ac a= , pro-
viding finite and infinite models and proving classical theorems that are 
adapted to the new system. In Section Two I arrange hyperbolic points and 
straight lines into a model of a projective sphere, show the connection be-
tween the spherical Napier pentagram and the hyperbolic Napier pentagon, 
and describe new synthetic and trigonometric findings between spherical and 
hyperbolic geometry. In Section Three I create another model of a projective 
sphere in the Cartesian coordinate system of the plane, and give methods and 
techniques for using the model in the theory of functions. 
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1. Introduction 

Since the beginning of my research in 1969 I have always tried to combine ab-
stract theory with direct experimentation on real spheres in order to construct 
geometric figures and configurations. When studying the theoretical background, 
I was surprised at the stark contrast between the simple and elegant handling of 
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plane geometry versus the much more complex way of discussing spherical 
geometry and trigonometry.  

Eventually I came to the thought that the reason might be the Euclidean point 
of view in the non-Euclidean world of geometry. My conclusion was that from 
the very first steps spherical and hyperbolic geometry should be viewed from 
their own perspective, not through the Euclidean glasses.  

This initiative has led me ever since. During the years, I have found a long list 
of predecessors in the topic from the ancient Greek scholar Menelaus of Alex-
andria to Leibniz [3] and other leading mathematicians of the last 400 years. The 
researchers from whom I received the strongest inspiration were Gerhard Hes-
senberg, Reinhold Baer, Vladimir Devidé and Ferenc Kárteszi in the 20th 
century (See references in the text).  

My problem was to construct a set of points and straight lines with a binary 
operation with few but efficient axioms. The purpose of this article is to generate 
interest in the central ideas of the theory and to briefly summarize the main re-
sults. More details can be found in [4]. 

2. The Algebra of Projective Spheres 
2.1. The Basic Idea 

Any point on the sphere determines the opposite point and the equator of the 
two points. In Riemannian geometry, any pair of opposite points constitute “a 
point”. Any two “points” determine one great circle through them, and any two 
great circles determine “a point” of intersection.  

This construction does not lead to a binary operation, since we have two dif-
ferent sets of elements. Any two elements in one set determine an element in the 
other set, and conversely.  

Consider the combination of a point, the opposite point and the equatorial 
line as the “basic element” of our geometry on the sphere. In other words, the 
basic element of our model is the natural polarity represented by a pair of pole 
points and the equatorial line on the sphere. 

What is the advantage of the basic element so chosen? Let ( ), ,X X x′x  de-
note a basic element with opposite points X, X', and equator x. Two basic ele-
ments ( ), ,B B b′b  and ( ), ,C C c′c  uniquely determine a third basic element 
( ), ,  A A a′a .  
In this way, an algebraic structure with a binary operation is established in the 

set of spherical basic elements. The resulting element can geometrically be con-
structed from the factor elements in several ways. It is up to us to choose what-
ever representation is most convenient for us.  

Figure 1 shows a basic element ( ), ,  A A a′a  with pole points and equator; 
Figure 2, one great circle a passes through points B, C or B', C or B', C or B', C'; 
Figure 3, two great circles b and c intersect in two opposite points A, A'; Figure 
4, two great circles b and c have one common perpendicular a; Figure 5, one 
perpendicular a can be dropped from point B or B′  to line c. 
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Figure 1. Polarity between pole points A, A' and great circle a. 

 

 
Figure 2. Great circle a passes through pole points B, B' and C, C'. 

 

 
Figure 3. Great circles b, c intersect in pole points A, A'. 

 

 
Figure 4. Great circles b, c, and common perpendicular a. 
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Figure 5. One perpendicular a from points B, B' to line c. 

2.2. Basic Algebraic Properties of the Operation 

Notation: Given elements x and y, denote the operation by writing the two fac-
tors without any operation sign between them: =xy z . 

At this stage the algebraic properties are proved by referring to the geometry 
of the sphere. Later on an axiomatic system is created to build the proofs on the 
axioms whenever possible. 

Figure 6 shows that = =xy yx z , commutative property is valid; Figure 7, 
( )( ) =ab ac a , a simple geometric property in algebraic form; Figure 8, if line xi 
coincides with line a, then axi has infinitely many perpendiculars, so aa cannot 
be uniquely determined; Figure 9, =ab ac , but ≠b c , and a, b, c are different, 
so cancellation does not work in this case. 

Figure 10 shows that from =ab ac  follows = =ab ac bc , the roles of the 
three elements are symmetric in this case; Figure 11, =ab cd  gives  

= = = = =ab cd ad bc ac bd ; Figure 12, general unit element does not exist in 
the set (a straight line cannot be perpendicular to itself); Figure 13, from =ab c  
does not follow =bc a  (in contrast with Steiner triplets), but =ab c  and =bc a  
give =ca b .  

Figure 14 shows that a, ab, (ab)a make a triangle with three right angles, and 
the same is valid for b, ab, (ab)b; Figure 15, ( ) ( )= =      ab c a ab c b ab , we 
can bring out ab from the parentheses if mediator c exists, but (ab)a or (ab)b 
cannot be simplified in the general case; Figure 16, a and b are in incidence re-
lation if poles of a on equator of b, or poles of b on equator of a or equators of a 
and b are perpendicular, or pole of a at 90˚ distance from pole of b; Figure 17, 
inverse operation: Given a and e in =ax e , what is x? If a and e are incident, 
there are infinitely many solutions for x, but if a and e are not incident, no solu-
tion exists for x. 

Figure 18 shows the symmetry of the incidence relation: If equation =ax b  
has at least one solution for x, equation =by a  has at least one solution for y, 
for example, =ax b , choose =y ab , then ( ) ( )( )= =b ab ax ab a ; Figure 19, 
the associative element (ab)c is an altitude of the triangle with sides a, b, c, since 
it is perpendicular to side c through vertex ab, while the other two altitudes are 
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(bc)a and (ca)b; Figure 20, the altitudes of a triangle do not coincide in the 
general case, so the associative property ( ) ( ) ( )= =ab c a bc b ca  does not hold 
in the set; Figure 21, the product of any two of the three altitudes in a non-de- 
generate spherical triangle is the same:  
( ) ( ) ( ) ( ) ( ) ( )= =                      ab c bc a bc a ca b ca b ab c , the orthocentre of the 

spherical triangle. 
 

 
Figure 6. = =xy yx z . 

 

 
Figure 7. ( )( ) =ab ac a . 

 

 
Figure 8. aa undefined. 

https://doi.org/10.4236/jamp.2020.810171


I. Lénárt 
 

 

DOI: 10.4236/jamp.2020.810171 2291 Journal of Applied Mathematics and Physics 
 

 
Figure 9. = =ab ac b c . 

 

 
Figure 10. = ⇒ = =ab ac ab ac bc . 

 

 
Figure 11. = ⇒ = = = = =ab cd ab cd ad bc ac bd . 

 

 
Figure 12. ≠ux x . 
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Figure 13. ,= = ⇒ =ab c bc a ca b . 

 

 
Figure 14. a, ab, (ab)a. 

 

 

Figure 15. ( ) ( )  =   =   ab c a ab c b ab . 

 

 
Figure 16. Incidence. 
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Figure 17. Inverse. 

 

 
Figure 18. = ⇒ =ax b by a . 

 

 
Figure 19. (ab)c altitude of a, b, c. 

 

 
Figure 20. ( ) ( )≠ab c bc a . 
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Figure 21. Orthocentre. 

2.3. Choose Axioms from the above Properties  

Consider a set of elements with a binary operation between different elements of 
the set: 

( )= ≠xy z x y  

Choose two axioms (Figure 6 and Figure 7): 
1) ( )commutative=ab ba ; 
2) ( )( ) ( )main axiom=ab ac a . 
Call a set that satisfies these axioms a projective sphere. 
Note that the product xx is not disposed of in the axioms. The axioms only 

claim that ab ba=  if a b≠ ; and ( )( )ab ac a=  if a b≠ , a c≠ , ab ac≠ . 
The xx case will be examined below.  

2.4. Binary Operation vs. Binary Relation 

The above definition of projective spheres is built on a binary operation.  
Another option is to start with a binary relation based on the notion of inci-

dence between points and lines [5] [6] [7]. 
Consider a set of elements with a binary relation R defined between any two 

elements of the set, including the x R x case, for which the following two axioms 
hold:  

1) =x R y y R x  (symmetric relation); 
2) ! |∃ ≠ ⇒z x y x R z R y . 
(any two different elements ≠x y  determine one element z for which z R x 

and z R y) 
The operation can be deduced from the relation or conversely. The present 

paper focuses on the operation. That is why the main axiom ( )( ) =ab ac a  
plays a key role, similar to the associative axiom ( ) ( )=a bc ab c  in the theory of 
groups and fields. Nevertheless, the relation is also frequently used when it is 
more viable, mainly in Section Two and Section Three. 

2.5. Theorems Deduced from the Axioms 

Note that the theorems and proofs are based only on the algebra of projective 
spheres, without reference to geometric properties. 

https://doi.org/10.4236/jamp.2020.810171


I. Lénárt 
 

 

DOI: 10.4236/jamp.2020.810171 2295 Journal of Applied Mathematics and Physics 
 

Theorem 1 (Figure 8): aa cannot be defined for all elements of the set with at 
least two different elements.  

At first sight, this property seems a trifle, no more than a remark. Actually, it 
is of fundamental importance for the whole system. In his theory that relates to 
the present one in several ways, Devidé ranked this property among the axioms 
[5]. I deduce it as a theorem from the two axioms. 

Proof: I prove the following: If there is at least two different elements a b≠  
in the set, the expression (ab)(ab) cannot be well defined for all elements of the 
set. The proof is short: ( )( ) ( )( )ab ab a ba ba b= = = , which contradicts a b≠ . 
Q.E.D. 

Consequence: This is a partial binary operation with aa undefined (Cf. divi-
sion by zero among numbers). It cannot be extended into a non-partial opera-
tion that defines the product of any two elements, including identical elements.  

Note that the proof does not preclude the option that aa is interpreted for a 
subset of the set. 

Theorem 2 (Figure 10): From ab ac=  it follows that ab ac bc= = . 
Proof: The assumption needs to be refined. If b c= , then ab ac= , but bc 

cannot be performed because of Theorem 1 that was already proved. 
From ab ac=  it follows that either b c= , or if b c≠ , then ab ac bc= =  

(We need not specify a b≠ , a c≠ , because the existence of products ab and ac 
exclude a b=  and a c= ). 

If ,ab ac b c= ≠ , suppose by indirect proof that ab bc≠ ; then ac bc≠ . We 
can multiply both sides of equation ab ac=  by bc, because the factors are dif-
ferent, and Theorem 1 cannot interfere. This gives ( )( ) ( )( )ab bc ac bc= . By the 
axioms we get ( )( ) ( )( )ab bc b ac bc c= = =  which contradicts to b c≠ . The 
only way out of the contradiction is the assumption that ab ac bc= = , because 
in this case Theorem 1 excludes the operations (ab)(bc) and (ac)(bc). Q.E.D. 

Note that Theorem 1 plays a key role in the proof. 
Theorem 3 (Figure 11): From ab cd=  follows  

ab cd ad bc ac bd= = = = = . 
(a, b, c, d are all different.) 
Proof (similar to Theorem 2): If ab cd= , suppose by indirect proof that 

ab bd≠ ; then cd bd≠ . We can multiply both sides of equation ab cd=  by bd, 
because the factors are different, and Theorem 1 cannot interfere. This gives 
( )( ) ( )( )ab bd cd bd= . By the axioms we get ( )( ) ( )( )ab bd b cd bd d= = = which 
contradicts b d≠ . The only escape from the contradiction is to assume that 
ab cd bd= = , for in this case Theorem 1 forbids to execute operations (ab)(bd) 
and (cd)(bd).  

Same for any other equality in ab cd ad bc ac bd= = = = = . Q.E.D. 
Theorem 4 (Figure 13): From ab c=  and bc a=  follows ca b= . 
Proof (almost trivial): ( )( )ca ab bc b= = . Q.E.D. 
Theorem 5 (Figure 14): a, ab, (ab)a make an octant, a triangle with three 

right angles. This means that the product of any two elements among a, ab, (ab)a 
gives the third element.  
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Proof: Denote ( ), ,a K ab L ab a M= = = . 
( )KL a ab M= =  (trivial), 
( ) ( )LM ab a ab a K= = =    (main axiom, a repeats in factors ab and a(ab)) 

( ) ( ) ( )( ) ( ) ( ) ( ){ }useMK ab a a LM ab a ab a ab a ab a ab ab L= = = = = = =                

(main axiom, ab repeats in factors (ab)a and (ab)[a(ab]) 
Similarly for b, ab, (ab)b. Q.E.D. 
Theorem 6 (Figure 15): Simplify an expression: ( ) ( )ab c a ab c b ab= =       . 

Proof: Apply Theorem 2: ( )ab c d= , ( ) ( )ab c a da ab c b db ab= = = =       . 

Q.E.D. 
The theorem remains valid for c a=  or c b=  when  
( ) ( )ab a a ab b b ab= =       . 
The expression (ab)a or (ab)b cannot be simplified in the general case. 
Theorem 7 (Figure 18): Symmetry of incidence relation: If equation ax b=  

has at least one solution for x, then equation by a=  has at least one solution 
for y. 

Proof: If ax b= , choose y ab= ; then ( ) ( )( )b ab ax ab a= = .  
Theorem 8 (Figure 20): The associative property ( ) ( ) ( )ab c a bc b ca= =  

does not hold. 
Proof: I will prove that if two associative elements are equal, the third one 

cannot exist. Suppose that ( ) ( )ab c a bc= , a c≠ , ab bc≠ . By Theorem 3 
( ) ( ) ( )( )ab c a bc ca ab bc b= = = = . This means that if ( ) ( )ab c a bc= , a c≠ , 
ab bc≠ , then b ca= , and b(ca) does not exist. Q.E.D. 

The equalities ( ) ( ) ( )ab c bc a ca b= =  can only hold if ab bc ca= = . Oth-
erwise, if two elements are equal from (ab)c, (bc)a, (ca)b, the third element does 
not exist.  

2.6. Other Properties in Subsection 2 

Figure 9: From ab ac=  does not follow b c=  in the general case.  
Figure 12: Equation ux x=  has no solution for x (no unit element u exist for 

element x). This property cannot be derived from the axioms.  
Figure 16: Spherical representation of the incidence relation by a point on a 

line, or two perpendicular lines, or two “perpendicular points” at 90˚ distance 
from each other.  

Figure 17: The inverse operation connected to the incidence relation on the 
spherical model. If equation ax b=  has at least one solution for x, then a and b 
are incident; if there is no solution for x, then a and b are not incident.  

Figure 19: One of the possible options of displaying an associative element 
(ab)c in spherical geometry.  

Figure 21: The products of two associative elements are the same, shown as 
the orthocentre of the spherical triangle:  
( ) ( ) ( ) ( ) ( ) ( )ab c bc a bc a ca b ca b ab c= =                       . This property cannot be 

derived from the axioms.  
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2.7. Models of Projective Spheres 

Model 1 consists of three elements of symmetric roles. In the operation (Cay-
ley) table the main diagonal is empty due the “aa undefined” property. The 
product of two different elements is the third element. No solution for the equa-
tion ux x= . I call this set a Klein projective sphere or K-sphere because it is 
similar to the Klein group deprived of the unit element. 

Another form of displaying the set is the incidence table. I call an element in 
the last row the title element of the column above it which contains all elements 
incident to the title element below the column. If element a is in the column of 
element b, then b is in the column of a.The product of any two elements above a 
title element is the title element. 

Model 2: “Ruin” the operation table of Model 1 by interchanging b and c 
among the products. Commutative property remains valid, and the main axiom 
also holds: ( )( )ab ac bc a= = ; ( )( )ab bc ba b= = ; ( )( )ac bc ca c= = .  

However, the roles of the three elements are not symmetric, and ux = x does 
have solutions for x in this set: ab b= ; ac c= . 

An element x is reflexive if there is at least one solution of equation ux x=  
(The names “self-conjugated” or “self-incident” are also used).  

Elements ab b=  and ac c=  are reflexive in this model, while a is non-re- 
flexive. 

Table 1 and Table 2 show a Klein sphere displayed in an operation table and 
an incidence table. Table 3 and Table 4 show a Galois sphere of three elements 
with two reflexive (self-incident) elements also in an operation table and an in-
cidence table. 

Model 3: A set of seven elements:  
Check the two axioms:  
In the operation table (Table 5) the commutative property is shown by the 

symmetry to the main diagonal. The main axiom is tedious to check:  
( )( )2 4 2 7 1 3 2= = ; etc. Apart from the empty main diagonal, each of the 
northwest-southeast diagonals in consists of all the elements numbered in re-
verse order. Elements 1, 5, 6 are reflexive, while 2, 3, 7 give a K-sphere. The set is 
the equivalent of the Fano plane in classical projective geometry, so it is a Fano 
sphere.  

In the incidence table (Table 6) the last row contains the title elements in the 
reverse order. The product of two elements can be determined in two ways: Find 
the title element of the only column that contains the two elements together; or, 
Find the common element of the two columns whose title elements are the two 
factors. 

Model 4: A set of 13 elements:  
The number of reflexive elements in a Galois sphere is the same as the number 

of elements incident to one and the same element, that is, the number of ele-
ments in the column above the title element. Table 7 shows a Galois sphere, ref-
lexive elements shown in italics, as with Table 4 and Table 6. 
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Table 1. Klein sphere in an operation table. 

 a b c 

a - c b 

b c - a 

c b a - 

 
Table 2. Klein sphere in an incidence table. 

1 2 3 

2 3 1 

3 1 2 

 
Table 3. Galois sphere in an operation table. 

 a b c 

a - b c 

b b - a 

c c a - 

 
Table 4. Galois sphere in an incidence table. 

1 2 3 

2 3 1 

1 3 2 

 
Table 5. Fano sphere in an operation table. 

 1 2 3 4 5 6 7 

1 - 1 2 1 4 4 2 

2 1 - 7 1 7 3 3 

3 2 7 - 6 7 6 2 

4 1 1 6 - 5 6 5 

5 4 7 7 5 - 4 5 

6 4 3 6 6 4 - 3 

7 2 3 2 5 5 3 - 

 
Table 6. Fano sphere in an incidence table. 

1 2 3 4 5 6 7 

2 3 4 5 6 7 1 

4 5 6 7 1 2 3 

1 7 6 5 4 3 2 

(Example: 3 and 5 occur in the same column of title element 7; the columns of title element 3 and title ele-
ment 5 share element 7, so 3 5 = 7) (See also Coxeter [8]). 
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Table 7. Galois sphere with four reflexives in an incidence table. 

1 2 3 4 5 6 7 8 9 10 11 12 13 

2 3 4 5 6 7 8 9 10 11 12 13 1 

4 5 6 7 8 9 10 11 12 13 1 2 3 

10 11 12 13 1 2 3 4 5 6 7 8 9 

1 13 12 11 10 9 8 7 6 5 4 3 2 

 
Model 5: Any polarity between points and lines that satisfies the condition of 

polar reciprocity: If point A fits line b, pole point B fits polar line a. It can be 
constructed by a pole and polar defined by a planar conic, or a pair of pole 
points and their polar defined by a spherical conic. Antipolarity: the original po-
lar reflected through the centre of the conic. Natural polarity of Figure 1 can be 
viewed as an antipolarity generated by a spherical circle of radius 45˚. 

Model 6: Ordered triples of elements of a field, (000) excluded, and  
( ) ( )1 2 3 1 2 3, , , , ; 0a a a la la la l= ≠ . The product ( )1 2 3, ,x x x  of elements ( )1 2 3, ,a a a  
and ( )1 2 3, ,b b b  is given by an indeterminate system of two linear equations: 

1 1 2 2 3 3 0,a x a x a x+ + =  

1 1 2 2 3 3 0.b x b x b x+ + =  

Model 7: Pencil of Euclidean straight lines through a point in 3D space [6]. 
The product of two lines is their common perpendicular in the pencil (Cf. 
vectorial product). 

Model 8: Real and ideal points and real straight lines on the hyperbolic 
surface (Section Two). 

Model 9: The Cartesian coordinate system of the plane with twofold polarity 
(Section Three).  

2.8. Theorems about Reflexive Elements  

(x is reflexive if ux x=  has at least one solution.) 
Theorem 9: Two reflexive elements cannot be incident to each other (In the 

column of a reflective element there is no other reflective element).  
Proof: If ab a= , bc b= , then ( )( )ab a ab bc b= = =  which is a contradic-

tion. Q.E.D. 
We do not need to state that a b≠ , a c≠ , b c≠ , because ab a=  gives 

a b≠ ; bc b=  gives b c≠ ; and a c=  would give ab a bc ba b= = = =  which 
contradicts to ab a= . 

This is a fundamental property with important consequences for the structure 
of a finite or infinite projective sphere that contains reflexive elements. 

Theorem 10: If two non-reflective elements are incident to a reflective ele-
ment, they cannot be incident to each other (If two non-reflectives in the inci-
dence table are in the column of a reflective element, they cannot occur in each 
other’s columns). 

Proof: If ab a= , ( )ac bc b c= =  (a is reflexive, b and c are incident to a, b 
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incident to c), then a ab ac bc= = = ; ( )c bc b ab a= = =  which is a contradic-
tion. Q.E.D. 

2.9. Connection of Projective Spheres with Projective Planes  

Many theorems and proofs in the theory of projective planes can be formulated 
and proved for projective spheres, such as: Consequences of the existence of a 
triangle or a quadrilateral in the set; Theorems on perspectivity and projectivity; 
Number of elements in finite non-trivial sets [9]; Theorem of Gleason on Fano 
planes [10]; Theorem of Bose on ovals; Theorem of Baer on polarities, n-chains, 
n-cycles, and number of reflexive elements; Theorem of Bruck and Ryser on 
subsets; etc.  

2.10. Change of Notation 

One of the greatest obstacles to the acceptance of a new theory is a new type of 
notation. Grassmann used a new symbol in his epoch-marking work that made 
his thoughts unaccessible for most of his contemporaries. Still, I take the risk, 
because I agree with Struik’s remark [11] on the development of mathematics: 
“The improvement in technique was a result of the improvement in notation”. 

The binary operation in projective spheres is not associative: ( ) ( )ab c a bc≠  
in the general case. The term abc is therefore meaningless in this form. A com-
plex expression involves a forest of parentheses and brackets which make the 
notation awkward and confusing.  

It took me decades to realize that change was necessary, and another couple of 
years to get used to my own reforms. However, once getting used to the new no-
tation, I found that the benefits outweighed the inconveniences. 

In what follows, the operations are performed strictly from the left to the right. 
Any variance from this order is indicated by vertical bars. There is no bar be-
tween the factors for the strongest priority; one bar for the less strong priority; 
two bars for the next, even less strong priority, and so on. It is often useful to 
rearrange the order of the elements to reach minimal number of bars. The ex-
pressions in the present paper contain at most three bars between two factors. 

Examples:  
The meaning of expression 1234 with traditional brackets is  

( )1234 12 3 4=    . 
The following expressions are equal by the bar notation:  

1234 2134 3 |12 | 4 3 | 21| 4 4 |123 4 | 213 4 || 3 |12 4 || 3 | 21= = = = = = = .  
Another example that will be used later: 61|25|4|45; 61| 25 | 4A = , 45 54B = = , 

61| 25 | 4 | 45 61| 25 | 4 | 54 4AB = = = . 
Counter-examples: 1234 12 | 34≠ ; 1234 1324≠ ; 1234 1243≠ . 

2.11. Some Noteworthy Configurations 

Suppose that the expressions are defined. For example, 123|231 implies that 1, 2, 
3 are all different, 12 3≠ , 23 1≠ , 123 231≠ . 

Figure 22 shows the three concurrent altitudes and the orthocentre of the 
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triangle: 123 | 231 231| 312 312 |123 H= = = . The Fano configuration is:  
12 | 34 ||13 | 24 13 | 24 ||14 | 23 14 | 23 ||12 | 34 F= = = . Example of a Fano confi-
guration in Table 8: Vertices of the quadrilateral: 2, 3, 4, 7; sides: 23 7= ; 
47 5= ; 24 1= ; 37 2= ; 27 3= ; 34 6= ; diagonal points: 23 | 47 5= ;  
24 | 37 1= ; 27 | 34 6= ; diagonal points are collinear: 51 16 65 4= = = . 

Figure 23 shows the Pappos configuration in a premissa-conclusion form: If 

1 2 2 3 3 1a a a a a a= = ; 1 2 2 3 3 1b b b b b b= = ; then:  

1 2 2 1 2 3 3 2 2 3 3 2 1 3 3 1 1 3 3 1 1 2 2 1| || | | || | | || |a b a b a b a b a b a b a b a b a b a b a b a Pb= = = . 
Figure 24 shows that this configuration can be built on five independent ele-

ments: 
13 | 24 ||14 | 23 |||13 | 25 ||15 | 23 13 | 25 ||15 | 23 |||14 | 25 ||15 | 24

4 | 25 ||15 | 24 |||13 | 24 ||15 | 24 P
=

= =
.  

Figure 25 denotes the vertices of two perspective triangles of the Desargues 
configuration: If 1 1 2 2 2 2 3 3 3 3 1 1| | |a b a b a b a b a b a b= = , then:  

1 2 1 2 1 3 1 3 1 3 1 3 2 3 2 3 2 3 2 3 1 2 1 2| || | | || | | || |a a b b a a b b a a b b a a b b a a b b a a b Db= = = .  
Figure 26 displays one triangle denoted by vertices, the other by sides: 

1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 21 1| | |a b c b c a b c a c b c a b a b ca= =  gives  

2 2 1 2 2 1 2 2 2 2 1 2 2 1 2 2 11| | |a b c b c a b c c a b c a b a ba Dc= = = . 
Figure 27 demonstrates that the Desargues configuration needs six elements. 

Five elements are independent, the sixth element is only for generating element 
16 (The structure remains the same if element 6 is moving anywhere along the 
product 16). With this notation, we have:  
61| 23 | 4 | 51| 2 | 34 16 | 54 | 3 | 21| 5 | 43 61| 23 | 4 | 51| 2 ||16 | 54 | 3 | 21| 5 D= = = . 

The Little-Desargues configuration (Figure 28) is derived from the third defi-
nition of the Desargues configuration (Figure 27) replacing “16” or “61” by 1, 
and “1” by 341. For example:  

61 | 23 | 4 | 5 1 | 2 | 34 1| 23 | 4 || 5 | 341| 2 | 34 2314 | 3415 | 2 | 34= =“ ” “ ” . Element 1 is 
shown as a line, elements 2, 3, 4, 5 are points in Figure 28. 

 
Table 8. Fano configuration. 

1 2 3 4 5 6 7 

2 3 4 5 6 7 1 

4 5 6 7 1 2 3 

1 7 6 5 4 3 2 

 

 
Figure 22. Hesse-Chasles configuration. 

https://doi.org/10.4236/jamp.2020.810171


I. Lénárt 
 

 

DOI: 10.4236/jamp.2020.810171 2302 Journal of Applied Mathematics and Physics 
 

 
Figure 23. Pappos configuration (Definition 1). 

 

 
Figure 24. Pappos configuration (Definition 2). 

 

 
Figure 25. Desargues configuration (Definition 1). 

 

 
Figure 26. Desargues configuration (Definition 2). 

 

 
Figure 27. Desargues configuration (Definition 3). 
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Figure 28. Little-Desargues configuration. 

2.12. Proving Theorems 

Following are some examples of applying the algebra of projective spheres on the 
equivalents of classical theorems in projective planes. The proof shows the 
three steps that many other proofs follow in projective spheres and projective 
planes (cf. Hilbert’s proofs about Desarguesian planes in [9]). First step: Lemma. 
Second step: Dual of the lemma. Third step: Final proof, based on the two dual 
lemmas. 

The following proofs make extended use of Theorem 2 using the short form 
12 13=  instead of 12 13 23= = , Theorem 4 using 12 34=  instead of  
12 34 13 24 14 23= = = = = , and Theorem 7 about simplyfing an expression 
(1231 1232 12= = ).  

2.13. Theorem of Hessenberg  

Theorem 11: A Pappos sphere is a Desargues sphere.  
Assumption: Given a Pappos sphere (in which the Pappos configuration is 

added as the third axiom to the two axioms in subsection 3), prove that it is also 
a Desargues sphere.  

Following is Hessenberg’s proof [12] translated to the algebra of the present 
system. 

Apply the first form of Pappos configuration (Figure 23) according to the 
following pattern: 

 

1a  2a  3a  

1b  2b  3b  

2 3 3 2|a b a b  1 3 3 1|a b a b  1 2 2 1|a b a b  

 
Premise: 1 2 2 3 3 1a a a a a a= = , 1 2 2 3 3 1b b b b b b= = ,  
Conclusion: 

1 2 2 1 2 3 3 2 2 3 3 2 1 3 3 1 1 3 3 1 1 2 2 1| || | | || | | || |a b a b a b a b a b a b a b a b a b a b a b a b= = . 
Apply Definition 3 of the the Desargues configuration (Figure 27):  

61| 23 | 4 | 51| 2 | 34 16 | 54 | 3 | 21| 5 | 43 61| 23 | 4 | 51| 2 ||16 | 54 | 3 | 21| 5 D= = = .  
Another form, by multiplying all sides of the chain of equations by 3 or 4: 
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3 4 34 61| 23 | 4 | 51| 2 ||16 | 54 | 3 | 21| 5 || 3
61| 23 | 4 | 51| 2 ||16 | 54 | 3 | 21| 5 || 4

D D= = =
=

.  

Denote 16 | 54 | 3 | 21, 61| 23 | 4 | 51;K L= =   
3 16 | 54 | 3 16 | 54 | ; 4 61| 23 | 4 61| 23 |K K L L= = = =  
Proof: 
First Pappos configuration:  

 
61|23 2 23|45 

5 1 L 

23|45|1|2L 4 61|25 

 
Conclusion: 23 | 45 |1 | 2 || 61 | 25 61| 25 | 4L =  (a complex expression converted 
to a simpler form). 

Second Pappos configuration:  
 

16|54 5 23|45 

2 1 K 

23|45|1|5K 3 16|25 

 
Conclusion: 23 | 45 |1 | 5 ||16 | 25 16 | 25 | 3K =  (a complex expression converted 

to a simpler form). 
Third Pappos configuration: 
 

23|45|1|5K 23|45 23|45|1|2L 

2 16|25 5 

23|45|1|2L||16|25||45 5K|2L 23|45|1|5K||16|25||23 

 
Conclusion: 
23 | 45 |1 | 5 ||16 | 25 || 23 || 5 | 2 23 | 45 |1 | 2 ||16 | 25 || 45 || 5 | 2K K L L K L=   
(Apply the results of the first and second Pappos configurations to simplify the 
result of the third Pappos configuration into a shorter form that proves the 
theorem.) 

( )
16 | 25 | 3 | 23 || 5 | 2 5 | 2 | 3 5 | 2 || 61 | 25 | 4 | 45 5 | 2 | 4
34 replacing 16 | 54 | 3 | 21, 61| 23 | 4 | 51
61| 23 | 4 | 51| 2 ||16 | 54 | 3 | 21| 5 || 3 61| 23 | 4 | 51| 2 ||16 | 54 | 3 | 21| 5 || 4

K L K L K L K L
K L

= = = =

= = = =

= =

 

Multiply both sides by 5K or 2L:  
2 | 5 2 | 34 5 | 34 61| 23 | 4 | 51| 2 ||16 | 54 | 3 | 21| 5

61| 23 | 4 | 51| 2 | 34 16 | 54 | 3 | 21| 5 | 43
L K L K= = =
= =

 

Q.E.D. 
Remark: The proof shows that the Hessenberg theorem applies to all finite or 

infinite Pappos spheres, i.e. a projective sphere with the two basic axioms and 
the Pappos property as the third axiom.  
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2.14. The Hesse-Chasles Configuration 

If expressions 123|231; 231|312; 312|123 are defined, they are concurrent:  
123 | 231 231| 312 312 |123 H= = = . Geometrically it corresponds to the three 

altitudes and the orthocentre of a triangle (Figure 21). 
A system which is built on two dual sets of “points” and “lines” does not deal 

with the product of a “point” and a “line”, two elements taken from two different 
sets. The projective spheres are built on one set of elements. Therefore the 
product of a “point” and a “line” is also defined, for example, as a perpendicular 
dropped from the point to the line. 

The Hesse-Chasles or Hesse configuration only requires three elements, in 
contrast with the four independent elements of the Fano configuration, or five 
elements of Pappos, or six elements of the Desargues configuration.  

Many classical algebraic systems use axioms involving three elements, such as 
semigroups, Clifford algebras, Lie-Killing or Jordan algebras, Gatial algebra, etc. 
[13]. In like manner, we can study projective spheres with the Hesse configura-
tion as the third axiom to the two basic axioms. An algebraic system with only 
three elements used in the axioms may prove to be easier to handle than another 
system of axioms with five or six defining elements. 

Following are two simple theorems about well-known geometric facts in a 
Hesse sphere, that is, in a projective sphere endowed with the Hesse configura-
tion as the third axiom in the set. 

2.15. Theorem about Quadrilaterals in a Hesse Sphere 

Theorem 12: For any four elements, the products 12|34, 1234, 1243 are con-
current: 

12 | 34 |1234 1234 |1243 12 | 34 |1243= =  

The proof is simple:  

12, 3, 4; 1234, 34 |12 12 | 34, 4 |12 | 3 1243A B C ABC BCA CAB= = = = = = = =  

Likewise, 34|12, 3412, 3421 are also concurrent:  
34 |12 | 3412 3412 | 3421 34 |12 | 3421= = .  

But 34 |12 43 | 21 12 | 34= = , so we have  

12 | 34 |1234 1234 |1243 1243 ||12 | 34= =  

43 | 21| 4321 4321| 4312 4312 || 43 | 21= =  

This gives that element 12 | 34 43 | 21=  is concurrent with elements 1234, 1243, 
and also with elements 4312, 4321. 

2.16. Theorem about Closure in a Hesse Sphere 

Theorem 13: If elements 1, 2, 3 determine their Hesse element:  
123 | 231 231| 312 312 |123 H= = = , then  
12 | 2 1 2 1| 12 12 |12 3H H H H H H= = =  (Any three elements of the set 1, 2, 3, H 
determine the fourth element. It is the generalization of a theorem in absolute 
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geometry about the vertices and the orthocentre of a triangle).  
Proof: (The clue is that from equalities 123 | 231 231| 312 12 |123 H= = =  

always choose the one that best fits the simplification of the given expression). 

12 12 ||123 | 312 312 |123 |12 123H = = =  

1 2 1||123 | 231|| 2 123 | 231|1 | 2 231| 2 23H = = = =  

2 1 2 ||123 | 231||1 231| 312 | 2 |1 312 |1 13H = = = =  

Now 12 | 2 1 2 1| 12 12 |12 123 | 23 23 |13 123 | 23 3H H H H H H= = = = = = .  
Q.E.D. 

2.17. Two Non-Isomorphic Projective Spheres with 21 Elements  

The theory of finite projective planes admits only one projective plane with 21 
points and 21 lines. In contrast, there are two non-isomorphic projective spheres 
with 21 elements shown in Table 9 and Table 10. Their incidence tables are 
isomorphic, but the title elements in the last row are arranged differently [6] [7]. 
The Fano property applies both sets, but the Hesse property only in the first. 

Triangle with an orthocentre (Table 9), and another triangle without an or-
thocentre (Table 10): 

Table 9: Elements (“triangle”): 1, 3, 18; associative elements (“altitudes”): 
( )1 3 18 9= ; ( )3 18 1 2= ; ( )18 1 3 13=  are concurrent:  

( ) ( ) ( )9 2 2 13 13 9 14= = =  (“orthocentre”). 
Table 10: Elements (“triangle”): 1, 3, (18); associative elements (“altitudes”): 
( )1 3 18 8= ; ( )3 18 1 2= ; ( ) ( )18 1 3 19=  are not concurrent:  
( ) ( )2 2 19 19 8 8 2≠ ≠ ≠  (“orthocentre” does not exist). 

 
Table 9. Galois sphere with five reflexives. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 

15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 

 
Table 10. Non-Galois sphere with nine reflexives. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 

15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 4 3 18 11 15 21 17 16 19 6 13 12 20 10 9 8 5 14 7 2 

https://doi.org/10.4236/jamp.2020.810171


I. Lénárt 
 

 

DOI: 10.4236/jamp.2020.810171 2307 Journal of Applied Mathematics and Physics 
 

2.18. Projective Spheres with 91 Elements 

Devidé [14] proved formulas for the possible number of reflexive elements. Ap-
plying his results, a projective sphere with 91 elements may have 10, 16, 22, or 28 
reflexive elements. I constructed all four of them.  

The sphere with 10 reflectives admits the Hesse, Pappos and consequently the 
Desargues properties but not the Fano property. The sphere with 28 reflectives 
admits the Pappos, consequently the Desargues properties but not the Hesse or 
Fano properties. The spheres with 16 and 22 reflectives built on Dickson quasi-
field admit none of these properties [15] [16].  

I found other possible distribution of reflective elements in spheres with 16 
and 22 reflectives, but I was unable to construct these spheres or refute their ex-
istence. 

3. The Hyperbolic Surface as a Model of Projective Spheres  
(Hyperbolic Napier Pentagon vs. Spherical Napier  
Pentagram) 

3.1. What Type of Line in Planar, Spherical, or Hyperbolic  
Geometry Corresponds to the Transversal of Two Skew  
Straight Lines in Euclidean 3D Space? 

Gábor Gévay and Lajos Szilassi [17] drew my attention to the classic theorem of 
Petersen and Morley [18] about skew straight lines in Euclidean 3D space. Given 
three skew straight lines, their three common perpendiculars fit one and only 
one common perpendicular. The resulting structure is perfectly symmetrical for 
each of the ten straight lines, reminiscent of the ten points or lines in the 2D 
Desargues configuration (Figure 29).  

My question was if a similar theorem about skew lines could be accomplished 
on a 2D surface. The Euclidean plane, the Menelaosian sphere (on which two 
opposite points are different) or the Riemannian sphere (on which two opposite 
points are indistinguishable) are out of question, because they do not admit skew 
straight lines. However, skew straight lines do exist in 2D hyperbolic geometry. 
Two hyperbolic skew lines (non-intersecting and non-parallel straight lines) de-
termine one and only one common perpendicular. This line can be defined as 
the equivalent of the transversal of two skew lines in Euclidean space. It can also 
be called a transversal; but I keep to the more suggestive term “common perpen-
dicular”.  

In this chapter, hyperbolic figures are mostly shown on the open hemisphere 
of the Poincaré model. Hyperbolic straight lines are open spherical semicircles 
perpendicular to the equatorial plane.  

3.2. Hyperbolic Rectangular Hexagon on 2D Surface as the  
Equivalent of Skew Euclidean Rectangular Hexagon in 3D  
Space 

Three Euclidean skew lines with three common perpendiculars form a skew 
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hexagon in the Euclidean 3D space. Any two adjacent sides are perpendicular to 
each other. Three hyperbolic skew lines with three common perpendiculars form 
a hyperbolic convex hexagon on the hyperbolic 2D surface with six interior an-
gles 90˚ each (Figure 30).  

3.3. Hyperbolic Rectangular Hexagon vs. a Pair of Spherical Polar  
Triangles 

The hyperbolic rectangular hexagon can be interpreted as the hyperbolic coun-
terpart of a pair of spherical polar triangles which determine a spherical rectan-
gular hexagram with intersecting sides.  

Figure 31 shows a spherical rectangular hexagram, Figure 32, a hyperbolic 
rectangular hexagon. The sequence of sides can be traced along the path a-ab-b- 
bc-c-ca-a in both cases. 

Figure 33 shows the vertices 1 2 3 4 5 6,P ,P ,P P ,P ,P  and sides 12 1 2t P P= , 23 2 3t P P= , 

34 3 4t P P= , 45 4 5t P P= , 56 5 6t P P= , 61 6 1t P P=  of the spherical hexagram.  
Figure 34 shows the vertices 1 2 3 4 5 6,P ,P ,P P ,P ,P  and sides 12 1 2s P P= , 23 2 3s P P= , 

23 2 3s P P= , 45 4 5s P P= , 45 4 5s P P= , 61 6 1s P P=  of the hyperbolic hexagon. The 
points of intersection of non-adjacent sides are missing, because hyperbolic skew 
lines have no common points. 

 

 
Figure 29. GeoGebra illustration of Szilassi to the Petersen-Morley theorem. 

 

 
Figure 30. Hyperbolic convex hexagon with six interior right angles. 
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Figure 31. Spherical rectangular hexagram. 

 

 
Figure 32. Hyperbolic rectangular hexagon. 

 

 
Figure 33. Vertices and sides of a spherical rectangualar hexagram. 

 

 
Figure 34. Vertices and sides of a hyperbolic rectangular hexagon. 
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As seen in Figure 33 and Figure 34, the vertices of the spherical hexagram do 
not coincide with the vertices of the spherical polar triangles. The sides of the 
rectangular spherical hexagon correspond to the equatorial arcs of the angles of 
the polar triangles. For example, the angle at vertex P6P1|P2P3 corresponds to the 
equatorial arc P1P2. Consequently, the sides of the hyperbolic rectangular hex-
agon correspond to the angles of spherical polar triangles. 

3.4. Hyperbolic Napier Pentagon with Five Right Angles 

The hyperbolic rectangular hexagon has six right angles. Are there hyperbolic 
rectangular polygons with fewer than six right angles?  

A biangle with two right angles or a triangle with three right angles or a qua-
drilateral with four right angles cannot be constructed on the hyperbolic surface, 
but a hyperbolic convex pentagon with five right angles does exist, and corres-
ponds to the spherical Napier pentagram. 

Figure 35 shows a spherical rectangular Napier pentagram with right angles 
at each vertex 1 2 3 4 5,P ,P ,P P ,P . The points of intersection  

1 2 3 4 2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3| | |P P P P ,P P P P ,P P P P ,P P P P , P |P P P|  are the vertices of a spher-
ical convex pentagon. 

Figure 36 shows a hyperbolic rectangular Napier pentagon with right angles 
at each vertex 1 2 3 4 5,P ,P ,P P ,P . The points of intersection of non-adjacent sides 
are missing, because skew lines have no common points. 

 

 
Figure 35. Spherical Napier pentagram. 

 

 
Figure 36. Hyperbolic Napier pentagon. 
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3.5. Cycles of Incidence on the Sphere 

The incidence relation was discussed in Section One (Figure 16).  
An m-cycle of incidence is a series of elements in which any two adjacent 

elements are incident, including the last and the first (Cf. [1] [18]). In this sense, 
a point on a straight line or two perpendicular straight lines represent 2-cycles. 
Likewise, two perpendiculars and their point of intersection constitute a 3-cycle 
in any geometry. A spherical octant with three right angles or a spherical seg-
ment of length 90˚ are both 3-cycles.  

What are the spherical 5-cycles? A spherical Napier pentagram in Figure 37 is 
a 5-cycle of elements 1, 2, 3, 4, 5. Each element on the figure consists of a pole 
point and a polar equator. A spherical Lambert quadrilateral in Figure 38 is a 
5-cycle of elements 1, 2, 3, 4 as lines, and element 5 as the point of intersection of 
lines 1 and 4. Point 5 cannot be omitted from the cycle (jumping directly from 
line 4 to line 1), because lines 4 and 1 are not perpendiculars. The spherical tri-
angle with one right angle is a 5-cycle of elements 1, 2, 4 as lines, elements 3, 5 as 
points (Figure 39). The vertex at the intersection of lines 1 and 2 is omitted from 
the cycle (jumping directly from line 1 to line 2), because lines 1 and 2 are per-
pendiculars. 

 

 
Figure 37. A 5-cycle as a spherical Napier pentagram. 

 

 
Figure 38. A 5-cycle as a spherical Lambert quadrilateral. 
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Figure 39. A 5-cycle as a right-angled spherical triangle. 

3.6. The Hyperbolic Surface as a Projective Sphere 

The infinite hyperbolic surface does not admit natural polarity in the form as it 
exists on the sphere (Figure 1). However, if we prove that the points and straight 
lines of the hyperbolic surface can be arranged into a model of the projective 
sphere, the concept of the cycles of incidence can be extended to the hyperbolic 
surface.  

Consider the real and ideal points and the real straight lines of the hyperbolic 
surface (The ideal line is omitted from the construction). Prove that any two 
different elements in this set uniquely determines a resulting element in the 
same set.  

1) Two real points, or two ideal points, or a real point and an ideal point de-
termine a real straight line through the points. 

2) Two intersecting real straight lines determine the point of intersection. 
3) Two parallel real straight lines determine the common ideal point. 
4) Two skew real straight lines determine the common perpendicular which is 

also a real straight line. 
5) Whether or not the real point is on the real straight line, the point and the 

line determine the perpendicular dropped from the point to the line. 
6) A real straight line and an ideal point not on the line determine the per-

pendicular dropped from the ideal point to the line. 
7) In order to determine the result of an ideal point and a line through the 

ideal point, consider line l and one of its ideal points P (Figure 40). Moving 
from a real point on real straight line l to ideal point P, the figure suggests that 
the limiting case will be P itself. This is not a proof, just a way to visualize the 
process. Still, the only reasonable choice for the result of line l and one of its 
ideal points P is P itself. The ideal point P is a reflexive element that can be 
viewed as either a point at infinity or a line degenerated into a point. 

3.7. Cycles of Incidence on the Hyperbolic Surface 

The arrangement of the hyperbolic surface into a projective sphere allows to ap-
ply cycles of incidence in the same manner as on the sphere. The incidence con-
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dition for a hyperbolic point and a straight line is that the point is on the line; for 
two straight lines is that they are perpendiculars; the only difference is that I was 
unable to extend the incidence relation to the case of two hyperbolic points. 

A hyperbolic Napier pentagon in Figure 41 is a 5-cycle of elements 1, 2, 3, 4, 5 
displayed as lines. A hyperbolic Lambert quadrilateral in Figure 42 is a 5-cycle 
of elements 1, 2, 3, 4 as lines, and element 5 the point of intersection of lines 1 
and 4. The hyperbolic triangle with one right angle is a 5-cycle of elements 1, 2, 4 
as lines, elements 3, 5 as points (Figure 43).  

 

 
Figure 40. An ideal point as a reflective element. 

 

 
Figure 41. Hyperbolic Napier pentagon. 

 

 
Figure 42. Hyperbolic Lambert quadrilateral. 
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Figure 43. Hyperbolic right triangle. 

3.8. Hyperbolic 5-Cycles Are the Simplexes of Hyperbolic  
Geometry 

The 5-hyperbolic cycles, including the Napier pentagon and the Lambert qua-
drilateral, play a much more important role than just transferring certain poly-
gons from the sphere to the hyperbolic surface. It is not the general triangle 
(which proves to be a 6-cycle), but the 5-cycle that can be viewed as the simplex 
of 2D hyperbolic geometry.  

Hyperbolic geometry reveals the true meaning and significance of the Napier 
construction that was originally discovered 400 years ago in spherical geometry. 

3.9. The Fundamental Formula for the Hyperbolic Napier  
Pentagon 

Theorem 14: In a hyperbolic Napier pentagon any two adjacent sides k, l de-
termine the opposite side n of the pentagon by the fundamental formula:  

cosh sinh sinh=n k l                        (1) 

Figure 44 shows a right-angled triangle in the Napier pentagon with two ad-
jacent sides denoted by leg1 and leg2 and their hypotenuse. In contrast, the 
Napier hypotenuse is the side of the pentagon opposite the hypotenuse defined 
by leg1 and leg2.  

Figure 45 shows the fundamental formulas belonging to the hypotenuse and 
the Napier hypotenuse of the Napier pentagon: Denote 1leg = k , 2leg = l , 
hypotenuse = m ,  Napier hypotenuse = n , then: cosh cosh cosh=m k l , and 
cosh sinh sinh=n k l . 

Draft of the proof (Figure 46): Prove the corresponding theorem for the 
spherical Napier pentagram, then apply Osborn’s rule to convert the formula to 
the hyperbolic Napier pentagon. 

Proof:  
Several authors, including Gauss [19], studied the trigonometry of the spheri-

cal pentagon ABCDE (Figure 46). However, the present proof relates to the 
spherical Napier pentagram 1 2 3 4 5P P P P P , because the spherical pentagram is the 
counterpart of the hyperbolic Napier pentagon.  
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Figure 44. Napier pentagon and hypotenuses. 

 

 
Figure 45. Fundamental formulas for the hypotenuses. 

 

 
Figure 46. Draft of the proof of Theorem 25. 

 
Given the right-angled triangle 1PAB  with legs 1PA = l , 1PB = k , and hy-

potenuse AB = m , we have cos cos cos=m k l . It is of advantage to use this 
formula in the quadratic form 2 2 2cos cos cos=m k l  because both cos m  and 

cos− m  are correct solutions of the equation. Gauss also used the quadratic  

form 2 2
2

1 tan tan
cos

= CD DE
k

 for the pentagon ABCDE (See also Coxeter’s 

Frieze patterns [20]). 
Geometrically, segment AB and segment P3P4 both satisfy the equation, be-

cause ( ) ( )cos cos 180− = −m m . Here ( )– cos cos 180= −m m  is relevant be-
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cause it refers to the segment between vertices P3 and P4, instead of the segment 
between A and B of the spherical pentagon ABCDE (This property corresponds 
to the connection between the sides and the angles of a pair of spherical polar 
triangles). 

Now consider the right-angled spherical triangle P5 P1 P2 with legs  

5 1P P 90= + k , 2 1P P 90= + l , and hypotenuse 2 5P P = n . Here  
( ) ( )2 2 2 2 2cos cos 90 cos 90 sin sin= + + =n k l k l , so ( )cos sin sin= −n k l . 

Note that n refers to the segment connecting two vertices of right angles of the 
spherical pentagram. The side of the hyperbolic Napier pentagon also connects 
two vertices of right angles, so Osborn’s rule can be applied for the construction:  

cosh sinh sinh=n k l . Q.E.D. 

3.10. Napier Pentagon Decomposed into Two Lambert  
Quadrilaterals 

Drop a perpendicular from a vertex of the Napier pentagon to the opposite side 
that divides the pentagon into two Lambert quadrilaterals. Conversely, any 
Lambert quadrilateral with angle α < 90˚ can be supplemented by another Lam-
bert quadrilateral with angle (90˚ - α) to form a Napier pentagon (Figure 47). 
This construction reminds of the decomposition of a spherical biangle into two 
supplementary triangles. 

By notation of Figure 47 we have: 
2 2 2

1tanh tanh cosa =c m a  

( )2 2 2 2 2
1 1 1tanh tanh cos 90 sin 1 cosa = − = = −d m a a a  

2 2
2

1tanh tanh
tanh a

+ =c d
m

 

3.11. Hyperbolic Rectangular Hexagon Decomposed into Two  
Napier Pentagons 

The properties of the rectangular hexagon can be deduced from formula (1) of 
the Napier pentagon.  

Figure 48 shows a hyperbolic rectangular hexagon with sides  

1 2 6 61 61 1 6 1P F F P P Pa a a= + ==+ , 1 2P Pb = , 2 3P Pc = ,  

1 2 3 34 34 4 3 4P F F P P Pd d d= + ==+ , 4 5P Pe = , 5 6P Pf = .  
The common perpendicular 25m  of sides a, d decomposes the hexagon into 

two Napier pentagons with sides 25 2 61 1 1 3 34, F P , , , P Fm a b c d= =  and  

25 2 34 4 1 6 61, F P , , , P Fm d e f a= =  respectively.  
Applying formula (1) for both pentagons, we get 

cosh sinh sinh sinh sinhm b c e f= =                  (2) 

Formula (2) corresponds to the law of sines in spherical geometry:  
sin sin sin sinb aβ α=  for sides and angles of spherical triangles. On this basis, 
other formulas of trigonometry can be established for the hyperbolic rectangular 
hexagons, such as the law of cosines, Ceva’s theorem, Menelaus’s theorem, etc.  
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Figure 47. Napier pentagon decomposed into two Lambert quadrilaterals. 

 

 
Figure 48. Hyperbolic rectangular hexagon decomposed into two Napier pentagons. 

3.12. Two Triads of Non-Adjacent Sides of the Hyperbolic  
Rectangular Hexagon as the Counterpart of a Pair of  
Spherical Polar Triangles  

The sides of the hyperbolic hexagon can be divided into two triads of 
non-adjacent elements 6 1 2 3 4 5P P , P P , P Pa c e= = =  and  

1 2 3 4 5 6P P , P P , P Pb d f= = =  (Figure 48).  
The two triads (“odd sides” and “even sides”) can be viewed the counterpart 

of a pair of spherical polar triangles (Figure 31), or the rectangular spherical 
hexagram (Figure 33). From another perspective, they also correspond to the 
angles and sides of a spherical triangle. The role of spherical angles can be attri-
buted to either of the hyperbolic triads, while the other hyperbolic triad corres-
ponds to the sides of the spherical triangle. Alternatively, the two triads can be 
taken for the sides of a pair of polar triangles, or for the angles of the same pair 
of triangles. 

3.13. Noteworthy Lines in the Hyperbolic Rectangular Hexagon  

Following are some examples about the concurrence of some noteworthy lines in 
the hyperbolic rectangular hexagon, mainly the counterparts of similar theorems 
on spherical polar triangles. The concurrence can be proved in several ways, for 
example, by Menelaus or Ceva theorems, or by projecting the hyperbolic figure 
onto the plane or onto the sphere, prove the assumption in plane or spherical 
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geometry, then projecting the result back onto the hyperbolic surface (detailed 
proofs in [4]).  

A pair of polar triangles (Figure 31 and Figure 33) can also be viewed as a 
rectangular spherical hexagram. It follows that the three common altitudes of 
the polar triangles are transformed into the common perpendiculars of the op-
posite sides of the spherical hexagram.  

This interpretation can be extended to the hyperbolic rectangular hexagon in 
Figure 50. On the sphere and on the hyperbolic hemisphere, the three altitudes 
or common perpendiculars meet in the orthocentre denoted by H in Figure 49 
and Figure 50. 

Figure 51 shows the inscribed circle in one triad of sides of the rectangular 
hyperbolic hexagon. It is tangential to the “odd sides”, but not to the “even 
sides”. Figure 52 shows the inscribed circle in the other triad of sides, tangential 
to the “even sides”, but not to the “odd sides”. This property corresponds to a 
similar property of spherical circles inscribed in a pair of polar triangles. 

Figure 53 and Figure 54 show the Theorem of Fagnano applied to the 
hyperbolic rectangular hexagon: The feet of altitudes in a triad of non-adjacent 
sides are the vertices of an inscribed triangle in which the original altitudes are 
angle bisectors. The two figures display the inscribed triangles in the “odd triad” 
and the “even triad, respectively. Again, this property corresponds to the similar 
statement in a pair of polar triangles on the sphere. 

 

 
Figure 49. Altitudes of spherical polar triangles (H orthocentre). 

 

 
Figure 50. Common perpendiculars of hyperbolic rectangular hexagon (H orthocentre). 
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Figure 51. Inscribed circle in the “odd” triad of the hexagon. 

 

 
Figure 52. Inscribed circle in the “even” triad of the hexagon. 

 

 
Figure 53. Theorem of Fagnano in one triad of non-adjacent sides. 

 

 
Figure 54. Theorem of Fagnano in the other triad of non-adjacent sides. 
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3.14. The Desargues Configuration on the Hyperbolic Surface 

The Desargues configuration can be displayed in novel forms by the present al-
gebraic approach.  

Figure 55 displays the two 6-cycles (“triangles”) of the Desargues configura-
tion in the form where all the elements of the 6-cycles are lines, while the “centre” 
S and “axis” T appear as points.  

Figure 56 shows two perspective rectangular hyperbolic hexagons in the form 
of regular triangles. “Perspective” means in this case that the three products of 
the corresponding three pairs of sides are concurrent. The “centre” S of perspec-
tivity coincides with the “axis” T of perspectivity, because  

1 2 1 2 3 3 2 3 2 3 1 1 3 1 3 1 2 2, || , |a a b b a b a a b b a b a a b b b a== = . 

An interesting application of the form of the Desargues theorem in Figure 55 
is the Veblen-Young dual theorem as cited by Gévay [21]: If three triangles are 
perspective from the same point, the three axes of perspectivity of the three pairs 
of triangles are concurrent. Conversely, if three triangles are perspective from 
the same line, the three centres of perspectivity of the three pairs of triangles are 
collinear. 

These two theorems can be unified in one theorem in the following way: If the 
common perpendiculars of the odd sides of three rectangular hexagons are con-
current, the common perpendiculars of the even sides are also concurrent. 

This form is more suitable for generalization in higher dimensions than the 
point-line version. 

 

 
Figure 55. The Desargues configuration: Two perspective rectangular hexagons. 

 

 
Figure 56. The Desargues configuration: Two regular perspective hyperbolic triangles. 
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4. The Cartesian Coordinate System as a Model of Projective  
Spheres 

4.1. Pairs of Numbers—Points and Straight Lines 

As shown in Section One and Section Two, the theory of projective spheres 
treats points and straight lines as identical elements within a single set, not as 
dual elements in two separate sets.  

In the Cartesian system, a point in the plane is represented by an ordered pair 
of real numbers (a, b), and a straight line by a linear equation ax b y+ =  where 
a and b are constants.  

If no distinction is made between points and straight lines, it seems reasonable 
to say that the ordered pair of real numbers (a, b) represents both the point (a, b) 
and the straight line ax b y+ = .  

The problem lies in defining the relation of incidence between a point and a 
straight line. Assume that point [(+c), (+d)] is on straight line [(+a), (+b)], alge-
braically ( )( ) ( ) ( )a c b d+ + + + = + . Conversely, assume that point [(+a), (+b)] is 
on straight line [(+c), (+d)], that is, ( )( ) ( ) ( )c a d b+ + + + = + . From the two eq-
uations we get: ( )( ) ( )( ) ( ) ( ) ( ) ( ) 0a c c a b d d b+ + = + + = + − + = + − + = , so  
( ) ( )b d+ = + , and ( )( ) ( )( ) 0a c c a+ + = + + = . 

The symmetry of the incidence relation works if ( )( ) ( )( ) 0a c c a+ + = + + = , 
but fails in the general case. If point [(+a), (+b)] is on line [(+c), (+d)], then 
point [(+c), (+d)] is not on line [(+a), (+b)], but on line [(−a), (+b)]; that is, if 
( )( ) ( ) ( )c a d b+ + + + = + , then ( )( ) ( ) ( )a c b d− + + + = + . 

There are two ways to escape this trap.  
We can accept that the incidence relation is antisymmetric in the above sense: 

If point [(+a), (+b)] is on line [(+c), (+d)], then point [(+c), (+d)] is on line 
[(−a), (+b)]. This approach is in stark contrast to the geometric perception, 
which is why I reject it in the present paper (although it certainly has a potential 
in a different context).  

Alternatively, unify two points and two straight lines of the Cartesian system 
into one basic element whose coordinates are (±a), (+b). Our basic element [(±a), 
(+b)] contains point (+a), (+b), point (−a), (+b), straight line ( ) ( )a x b y+ + + =  
and straight line ( ) ( )a x b y− + + = . The sign of a may be either positive or nega-
tive, but the sign of b remains the same in each case.  

Figure 57 shows a concrete example, the basic element [(±2), (+5)] made of 
two points and two straight lines reflected to the y-axis. Figure 58 illustrates the 
relation of incidence. The basic elements [(±2), (+5)] [(±4), (−3)] are incident to 
each other. Geometrically, the points of one basic elements are incident to the 
lines of the other element, and conversely. 

4.2. Classification of Poles and Polars of Elements in a Cartesian  
Projective Sphere 

In order to create a projective sphere, we have to add ideal elements (ideal points 
and the ideal line) to the real points and lines of the coordinate system. Follow-
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ing is a list of possible cases with real and ideal elements. 
1) Two real points and two real straight lines that are mirror images to the 

y-axis (Figure 57). The point of intersection of the two lines is the midpoint on 
the y-axis between the two points. This is not a reflexive element, because the 
pole points are not on (not incident to) the polar lines. 

2) A real point and a real straight line (Figure 59): The line is the x-axis or 
any other line parallel with it. The pole point is the point of intersection of the 
line with the y-axis. This is a reflexive element with the pole point on the polar 
line.  

3) The ideal point of the y-axis and the ideal line: This is also a reflexive ele-
ment with the pole point on the polar line. 

4) The y-axis and the ideal point of the x-axis. This is not reflexive, because 
the pole point is not on the polar line. 

5) Two straight lines that are mirror images to, and parallel with, the y-axis, 
and the ideal points of two straight lines through the origo (Figure 60). The 
slope of the two latter straight lines is the same as the distance of the parallel 
lines from the origo. This element is not reflexive. 

 

 
Figure 57. Basic element [(±2), (+5)]. 

 

 
Figure 58. Incident elements [(±2), (+5)] [(±4), (−3)]. 
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Figure 59. Reflexive element. 

 

 
Figure 60. Polar lines parallel with the y-axis. 

4.3. Algebraic Condition of the Relation of Incidence 

Two elements ( ) ( ),x a b± +    and ( ) ( ),y c d± +    are incident if the square of 
the product of the first coordinates is the same as the square of the difference of 
the second coordinates: ( )( ) ( ) ( )2 2

a c d b± ± = + − +       . 

4.4. Algebraic Condition for Reflexive Elements 

If the two elements are the same: ( ) ( )a c± = ± , and ( ) ( )b d+ = +  where the 
signs of the second coordinates are fixed, element ( ) ( ),a b± +    is reflexive if: 
( )( ) ( ) ( )2 2

a a b b± ± + − +    =  , so ( ) ( )0,a b+ = +  is arbitrary. This corresponds 
to the geometric figure where the polar line of a reflexive element is parallel with 
the x-axis. The pole point is the intersection of the line and the y-axis (Figure 
59). 

4.5. Establishing a Binary Operation in the Cartesian Set 

As shown in Section One, a projective sphere can be defined either by two 
axioms of a binary relation and/or two axioms of a binary operation (subsection 
4, see also [5] [8]).  

The two axioms of the relation are: 
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Consider a set of elements with a binary relation R defined between any two 
elements of the set, including the x R x case, for which the following two axioms 
hold:  

=x R y y R x  (symmetric relation) 

! |∃ ≠ =z x y x R z R y   

(any two different elements ≠x y  determine one element z for which z R x 
and z R y hold) 

The two axioms of the operation are: 

=xy yx  (commutative property)  

( )( ) =xy xz x  (main axiom)  

How can we use the relation of incidence for defining the binary operation in 
a projective sphere? Given two elements ( ) ( ),x a b± +    and ( ) ( ),y c d± +   ; 
determine an element ( ) ( ),z e f± +    which is incident to both ( ) ( ),x a b± +    
and ( ) ( ),y c d± +   . 

( )( ) ( ) ( )2 2
a e f b± ± + − +    =    

( )( ) ( ) ( )2 2
c e f d± ± + − +    =   

From this we get: 

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )( )

( ) ( )
;

d b c b a d
e f

c a c a
+ − + ± + − ± +

± = + =
± − ± ± − ±

         (3) 

4.6. An Ambiguity in the Definition 

As shown in the formulas above, two elements are incident to not only one, but 
two different elements in the general case.  

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( )

1

1

;

same for the , case

d b
e

c a

c b a d
f c a

c a

+ − +
± =

+ − +

+ + − + +
+ − −=

+ − +

    (4) 

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( )

2

2

;

same for the , case

d b
e

c a

c b a d
f c a

c a

+ − +
± =

+ − −

+ + − − +
+ − +=

+ − −

    (5) 

I will take this ambiguity into consideration in all further reasoning.  
I could not find a suitable principle to exclude one of the two possible out-

comes. 

4.7. Proving the Two Axioms of the Operation 

The two axioms are: xy yx=  (commutative property), ( )( )xy xz x=  (main 
axiom). 

1) Commutative property: 
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Given two elements ( ) ( ),x a b+ +   , ( ) ( ),y c d+ +   , prove that xy yx= . 
First coordinate (may be positive or negative): 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

d b b d
c a a c

+ − + + − +
=

+ − + + − +
                   (6) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

d b d b b d
c a c a c a

+ − + + − + + − +
= = −

+ − − + + + + + +
            (7) 

Second coordinate (fixed sign): 

( )( ) ( )( )
( ) ( )

( )( ) ( )( )
( ) ( )

c b a d a b c d
c a a c

+ + − + + + + − + +
=

+ − + + − +
           (8) 

( )( ) ( )( )
( ) ( )

( )( ) ( )( )
( ) ( )

( )( ) ( )( )
( ) ( )

( )( ) ( )( )
( ) ( )

c b a d c b a d a d c b
c a c a a c

a d c b
a c

+ + − − + + + + + + + + + + +
= =

+ − − + + + + + +

− + − + +
=

− − +

  (9) 

Similar proof for the ( ) ( ) ( ) ( ), , ,x a b y c d+ + − +        case. 
2) Main axiom:  
Given three elements ( ) ( ),x a b+ +   , ( ) ( ),y c d+ +   , ( )( )z e f+ +   , prove 

that ( )( )xy xz x= . 

First coordinate (may be positive or negative): 

( )( ) ( )( )
( )( ) ( )( )

( )

eb af cb ad
eb af c a cb ad e ae a c a

f b d b f b c a d b e a
e a c a

eb cf af de ab cd a
a

be cf af de ad bc

− −
− − − − − −− − =

− − − − − − −−
− −

− − + + − +
= = −

+ + − − + −

       (10) 

Second coordinate (fixed sign): 

( ) ( ) ( ) ( )

( )( )( )( ) ( )( )( )( )
( )( ) ( )( )

( )

f b cb ad eb af d b
e a c a e a c a

f b d b
e a c a

f b c a cb ad e a d b c a eb af e a
f b c a d b e a

fc cb de eb ad af b
b

fc bc ed eb ad af

− − − −
−

− − − −
− −

−
− −

− − − − − − − − −
=

− − − − −

+ − − + − −
= = +

+ − − + − −

   (11) 

Similar proofs for other combinations of (±a), (±c), (±e). Q.E.D. 

4.8. Klein Spheres (K-Spheres)  

As shown in Section One, the Klein sphere or K-sphere is a closed set in the 
theory of projective spheres (subsection 7, Model 1). It consists of three different 
elements, each of which is incident to the other two. It follows from the defini-
tion that reflexive elements cannot occur in a K-sphere.  

The condition of incidence in the K-sphere in the Cartesian system: 
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Given three elements ( ) ( ) ( ) ( ) ( )( ), , , ,x a b y c d z e f± + ± + ± +             

( )( ) ( ) ( )2 2
a c d b± ± = + − +        

( )( ) ( ) ( )2 2
c e f d± ± = + − +         

( )( ) ( ) ( )2 2
e a b f± ± = + − +         

Example (Figure 61):  
Elements ( ) ( ) ( ) ( ) ( )( )2 , 4 , 6 , 8 , 3 10x y z± + ± − ± +            make a K-sphere: 

( ) ( ) ( ) ( )2 , 4 , 6 , 8x y± + ± −        are incident, because ( )( ) ( ) ( )2 6 4 8+ + = + − − . 
( ) ( ) ( )( )6 , 8 , 3 10y z± − ± +        are incident, because  

( )( ) ( ) ( )6 3 10 8+ + = + − − . 
( ) ( ) ( ) ( )3 , 10 , 2 , 4z x± + ± +        are incident, because  

( )( ) ( ) ( )3 2 10 4+ + = + − + . 
In the K-sphere, the product of any two different elements is the third element. 

The product of any two adjacent elements in Table 11 is the next element below 
(If point ( ) ( ),s a b+ +    is incident to line ( ) ( ),t c d+ +   , then line  

( ) ( ),s a b+ +    is incident to line ( ) ( ),t c d− +   ). 
The order is important because of the ambiguity of the operation. If xy z=  

is given in the form ( ) ( ) ( ) ( ) ( ) ( )3 , 10 2 , 4 6 , 8x y z+ + + + = + −           , the product 
of row 1 and row 2 gives row 3, then zx y=  is given by  

( ) ( ) ( ) ( ) ( ) ( )6 , 8 3 , 10 2 , 4z x y+ − − + = − +           , the product of row 3 and row 4 
gives row 5.  

4.9. Hesse Theorem in the Cartesian Projective Sphere 

Theorem 15:  
The following equations hold for elements ( ) ( ) ( ), , , , ,a b c d e fx y z : 

| | |= =xyz yzx yzx zxy zxy xyz . 

Proof:  
The three associative elements can be developed in the following form: 

,bc ad cf af df bf bce ade
d b ce ae d b ce ae

=
+ − − + + − − +
+ − − + + − − +

xyz           (12) 

,de cf be bc bf bd ade acf
f d ea ac f d ea ac

+ − − + + − − +
=

+ − − + + − − +
yzx           (13) 

,af be ad ed bd df acf bce
b f ac ec b f ac ec

=
+ − − + + − − +
+ − − + + − − +

zxy          (14) 

If we perform the operations | | |= =xyz yzx yzx zxy zxy xyz  with these ex-
pressions, we get 16 addends in each expression which prove the theorem. The 
roles of the coordinates in the above formulas are symmetrical. The detailed 
calculation is simple, but lengthy and tedious, so I skip it.  

This result supports the hypothesis that in some cases it is worthwhile to study 
projective spheres with the Hesse configuration as a third axiom, in addition to 
the two basic axioms ab ba=  and |ab ac a= . 
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Figure 61. Klein sphere in the Cartesian system. 

 
Table 11. Construction of a K-sphere. 

1. x[(+3), (+10)] 

2. y[(+2), (+4)] 

3. z[(+6), (−8)] 

4. x[(−3), (+10)] 

5. y[(−2), (+4)] 

6. z[(−6), (−8)] 

1. x[(+3), (+10)] 

2. y[(+2), (+4)] 

3. x[(+3), (+10)] 

4. y[(+2), (+4)] 

5. z[(+6), (−8)] 

6. x[(−3), (+10)] 

… … 

4.10. The aa Product 

As described in Theorem 1, the product aa cannot be adequately defined for all 
elements of the set. How is this property manifested in the Cartesian sphere?   

The operation in the form ( ) ( ) ( ) ( ), ,x a b x a b+ + + +        cannot be uniquely 

determined, because it gives ( ) ( ) ( ) ( ) 0 0, , ,
0 0

x a b x a b xx  + + + + =         
. In con-

trast, the other form ( ) ( ) ( ) ( ), ,x a b x a b+ + − +        gives the reasonable product 

[ ]0 2, 0,
2 2

abxx b
a a

  =  
. However, the xx operation with any reflexive element 

( ) ( ) ( ) ( ) 0 00 , 0 , ,
0 0

x b x b xx  + + =         
 cannot be interpreted by this definition. 

Therefore, the original assumption remains valid in the Cartesian projective 
sphere:  
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The expression xx cannot be uniquely determined for all elements in the set 
with at least two different elements. 

4.11. Differentiable Functions 

When a point in the plane approaches another point, the two points define a 
unique straight line through them. If the two points coincide, an infinite number 
of straight lines can be drawn through the point. So there is no unique result of 
the xx operation. 

However, a differentiable function has a precisely defined tangent line in each 
of its points. The tangent is the limit of an infinite series of secants each of which 
passes through the given point and another point of the function. By the opera-
tion as defined in the projective sphere, this means that if x is an element of the 
differentiable function, operation xx is uniquely defined by the tangent at the 
given point of the function. The classical calculus determines the slope of the 
tangent as the limit of division with an arbitrarily small number Δx. The algebra 
of projective spheres defines the tangent as the product of an element of a diffe-
rentiable function multiplied by itself.  

How can we determine the coordinates of the tangent? By definition, the tan-
gent is incident to the point. There is no difference between points and lines in a 
projective sphere, so the condition of incidence can be applied to determine the 
coordinates of the tangent. 

Before giving the general formula, we begin with concrete examples: 
1) Given a point of the function y = x2: first coordinate x, second coordinate x2. 

We want to determine the second coordinate of the tangent in this point. 
Figure 62 shows the polar lines of the tangent elements. Figure 63 shows the 

pole points of the same tangent elements. 
 

 
Figure 62. Tangents as lines of the y = x2 function. 
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Figure 63. Tangents as points of the y = x2 function. 

 
The first coordinate of the point is x, the second coordinate is x2. If we know 

that the first coordinate of the tangent is 2y x′ = , what is the second coordi-
nate?  

The tangent is incident to the point, so we can apply the condition of inci-
dence: The product of the first coordinates is equal to the difference of the 
second coordinates. The product of the first coordinates in this case is 2x2. The 
second coordinate of the tangent is either −x2 or 3x2, but the geometric image of 
the function shows that the only possible solution is −x2. 

Furthermore, we can construct the normal to the parabola which is the prod-
uct of the point and the tangent in the projective sphere. The three elements 
form a K-sphere at almost every point of the differentiable function. Table 12 
shows the coordinates of these elements displayed as points. 

Exceptions are the points in which the tangents are parallel with the x-axis. 
hese points are reflective elements of the perspective sphere representing local 
extrema (maximum or minimum points), or certain inflection points of the 
function (Figure 64).  

Figure 65 shows two K-spheres assigned to two elements of the original y = x2 
parabola, as concrete numerical examples: [(±1) (+1)], [(±2) (−1)] [(±2) (+3)], 
and [(±2) (+4)] [(±4) (−4)] [(±4) (+12)]. Table 13 shows the respective coordi-
nates. 

1) Another example is the unit circle in Figure 66. The red curves show the 
pole points of the tangent function. 

2) The hyperbola in Figure 67 is another example. The third row of Table 14 
shows the coordinates of the normal, that is, the product of the point and the 
tangent, thus establishing K-spheres to every point. Figure 67 only displays the 
hyperbola and the tangent function. 
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Figure 64. Tangents of a function parallel with the x-axis. 

 

 
Figure 65. The parabola function, its tangents and normals, all displayed as points. 

 

 
Figure 66. The unit circle. 
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Figure 67. The hyperbola. 

 
Table 12. Coordinates of the parabola, its tangents and normals. 

±x x2 points of the parabola 

±2x −x2 tangents 

±2x 3x2 normals (products of points and tangents) 

 
Table 13. Coordinates of the unit circle and its tangents. 
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x
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−
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−

                 (15) 

 
Table 14. Coordinates of the hyperbola, its tangents and normals.  
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x x
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5. Closing Remarks 

I am far from assigning any kind of exclusivity or superiority to the present al-
gebraic-axiomatic system compared to other systems. I am just saying that this is 
a meaningful construction among many other possible options. It is up to the 
user to decide which system is more suitable for solving a mathematical or edu-
cational problem. 

Certainly, this work poses many unresolved issues and incomplete analogies. 
After five decades of research, however, it is high time that I summarized the 
results so far in the hope that future researchers will be able to use and improve 
what I have done.  

I have been immersed in the theory of projective spheres for many years be-
cause they have given me joy and satisfaction. I ask future teachers of this topic 
to share this joy, satisfaction and self-confidence with their students. 
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