@, Computational Water, Energy, and Environmental Engineering, 2020, 9, 185-215
9% scientific
‘ ‘0 Research https://www.scirp.org/journal/cweee

94% Publishing ISSN Online: 2168-1570
) ISSN Print: 2168-1562

The Growth Factors Involved in Microalgae

Cultivation for

Biofuel Production: A Review

Kamrul Hasan Chowdury, Nurun Nahar, Ujjwal Kumar Deb*

Department of Mathematics, Chittagong University of Engineering & Technology, Chittagong, Bangladesh
Email: mkchowdury@cuet.ac.bd, nahar@cuet.ac.bd, *ukdebmath@cuet.ac.bd

How to cite this paper: Chowdury, K.H.,
Nahar, N. and Deb, UK. (2020) The
Growth Factors Involved in Microalgae
Cultivation for Biofuel Production: A Re-
view. Computational Water, Energy, and
Environmental Engineering, 9, 185-215.
https://doi.org/10.4236/cweee.2020.94012

Received: August 30, 2020
Accepted: October 27, 2020
Published: October 30, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

The growing demand for energy and the negative environmental impacts of
fossil fuel use are triggering global searches for a renewable and eco-friendly
alternative biofuel. Microalgae are considered as one of the most promising
feedstocks for biofuel production, due to many advantages including cultiva-
tion in non-arable land and being able to grow in wastewater or seawater.
That is why; microalgae-based biofuels are regarded as one of the best can-
didates to replace fossil fuels. There are two main types of microalgae culti-
vation systems: Open Raceway Ponds and Closed Photobioreactos (PBRs).
Due to some limitations in Open Raceways, PBRs have become the most
favorable choice for biofuel producers, even though it is costly. To make the
process viable, the growth of microalgae for biofuel production should be
cost-effective. One way to achieve this goal is to optimize the environmental
factors that influence their growth during the cultivation stage to increase the
accumulation of bio-compounds of fuel. Algal growth relies mostly on nu-
trients, CO, concentration, pH and salinity, light intensity and quality, tem-
perature and finally mixing, which directly affects all other factors. Thus, be-
fore designing PBR, a thorough study on these growth parameters is needed.
In the present study, we reviewed and evaluated these growth influencing
factors in an extensive way to optimize biofuel production.
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1. Introduction

The energy crisis is increasing day-by-day due to the heavy industrial develop-
ment and exponential growth of population. Fossil fuel sources like diesel, pe-

trol, coal natural gas are depleting due to their extensive usage in motor vehicles
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and industries. Furthermore, release of huge amount of toxic and harmful gases
into the atmosphere pollutes the environment severely because of the conti-
nuous use of fossil fuels in different sectors. Level of greenhouse gas (GHG) is
also increasing in an arming rate, releasing CO, into the atmosphere and rising
temperature which leads to the global warming. Among other gases, CO, is con-
sidered the major pollutant which damages environment the most. Although the
pollutant gases are present in the atmosphere at an endurable rate, due to the
emissions from the vehicles and industries, their concentration has increased
over the past few decades. Imposing all these negative impacts on the environ-
ment, a major climatic change has been observed over the entire globe. At this
junction, replacement of fossil fuels with other eco-friendly alternative sources is
the best solution to avoid upcoming catastrophe. Microalgae based biofuel could
be a very promising alternative in this aspect.

In 1942, Harder and von Witsch [1] first recommended that microalgae could
be viable sources of lipids which can be used as food or to produce biofuels.
Since then, enormous efforts have been given in research involving microalgae
and their bioproducts. Microalgae are considered as one of the most promising
sources for bioenergy production now-a-days [2] [3] [4].

The biofuels produced from microalgae have several advantages compared
with that from conventional oil seeds. These include the ability to use non-arable
land for microalgal cultivation, the higher productivities and possibility to use
wastewater and gas flue as source of carbon and nutrients to promote the growth
of microalgae [5] [6]. Though microalgae can produce different types of biofuels,
such as biodiesel, bioethanol, biohydrogen, syngas, biobutanol, and bioelectricity
[7] [8], yet the majority of economic analyses conclude that microalgae biofuels
cannot compete with conventional fuels because of its high price [9] [10].

To minimize the production cost, industrialization of microalgae products
needs large-scale culture systems. Two major types of microalgae cultivation
systems are 1) Open Raceway Ponds (Figure 1) and 2) Closed Photobioreactos
(PBRs) (Figure 2). Though open systems are much cheaper and easier to man-
age than closed systems, they have many operational problems as well, such as

Figure 1. Open raceway ponds.
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Figure 2. Closed Photobioreactors (PBRs).

evaporation, contamination, susceptibility to weather conditions and huge
amount of land requirements [11]. On the contrary, these limitations can be
overcome by closed systems with high capital costs. In order to reduce these li-
mitations, researchers have been invested a large amount of money in the de-
velopment of new PBR designs due to the high operational control and the high
productivity provided by the PBRs and thus make microalgae-based processes
viable [7] [12] [13].

Microalgal growth is influenced by a variety of culture parameters, such as
light intensity, pH, salinity, nutrients availability, temperature, CO, and dis-
solved oxygen concentration. Therefore, these culture parameters should be op-
timized to improve biomass productivity. To design a PBR for optimizing the
production of microalgae, a thorough study on growth parameters is important.
In the present study, we reviewed and evaluated these parameters for optimizing
PBR performance. Since the design of PBR is also responsible for the microalgal

growth, a short description of PBR is given at the beginning of the study.

2. Photobioreactor (PBR)

PBRs are artificial cultivation system which favors the growth of selected strain
under optimal conditions such as configuration, light, temperature, pH, nu-
trient, mixing, etc. For commercial microalgal biomass production, closed PBRs,
especially tubular PBRs have been used successfully in recent years. Due to good
control of culture conditions and high solar radiation availability and thus high
biomass productivity, unlike open raceways, tubular PBRs have become a poten-
tial system for biofuel production and compounds of high commercial value [14]
[15].

A tubular PBR mainly consists of an array of straight transparent tubes, hav-
ing a diameter of 0.1 m or less and are usually made of plastic or glass [16]. In
order to maximize the sunlight capture, these transparent tubes can be arranged
in different patterns (e.g., straight, bent, or spiral) and orientations (e.g., hori-
zontal, inclined, vertical, or helical) and thus having different names, such as

tubular, helical, horizontal PBR, etc. [17]. However, to scale-up the production,
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the tubes are usually arrayed in a horizontal fence-like, which in one hand im-
proves the land utilization, and on the other hand has a better angle for incident
light [18].

Since the transparency of the materials and the surface/volume ratio are re-
sponsible for the light capture, Glass, plexiglass, polyvinyl chloride (PVC),
acrylic-PVC, and polyethylene are the most common materials that are used
for PBR construction. All these materials have appropriate transparency for
the microalgae cultivations. However, since they all have their merits and de-
merits, so before using a type, it must need to be evaluated according to the
type of process and desired product. Though glass is strong and transparent
and very good material for the construction of laboratory-scale PBRs, yet it re-
quires many connection parts for the construction of large-scale PBRs, which
could be costly. For this reason, the plastic type, mainly of polyethylene is most
suitable for large-scale tubular PBR [19].

PBR can be illuminated by either artificial or natural light. Though the
artificial illumination is technically possible, it is expensive compared with out-
door cultivations, which is just viable for commercial production of high added

value products [20].

3. Major Factors Affecting the PBR Performance

The salient components for algal growth are a growth medium with a source of
light energy for photosynthesis, proper nutrients and CO, or air flow. Algal
growth is also affected by several environmental parameters such as tempera-
ture, pH, salinity, oxygen concentration and processing parameters such as
mixing and light intensity. As the culture condition varies from species to spe-
cies, all of these growth factors must be specified for successful microalgae culti-

vation for a specific purpose [21].

3.1. Light Intensity and Quality

Availability of the light is the most important factor in the growth and produc-
tivity of photosynthetic microorganisms. As light is the main energy input for
photosynthetic microorganisms, it must be maximized for better output. How-
ever, excess of light particularly coupled with sub-optimal temperature or high
oxygen level can damage the photosynthetic apparatus [22]. Therefore, by
adequate design of its geometry and orientation, light supply to the cultivation
system must be optimized [23] [24]. The amount of light received by the cul-
tured cells is directly related to the carbon influencing the growth rate of the
cultures [25]. The growth of microalgae is determined by the photosynthesis
rate, which is a direct function of the irradiance to which the cells are exposed
inside the culture. Figure 3 shows the variation of photosynthetic rate with the
luminous intensity. As light intensity increases, photosynthesis in microalgae
also increases until it reaches a maximum rate at the saturation point (Figure 4)

[26] [27] [28]. Above the saturation point, the excess light leads to a phenome
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Figure 3. Variation of the photosynthetic rate with the light intensity.
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Figure 4. Effect of the light intensity on the specific growth rate of microalgae.

non called photoinhibition. The culture is then said to be photoinhibited. This
irradiance is called the inhibition irradiance. For most microalgae, photosynthe-
sis is saturated at 100 to 500 pE-m2s™!, although the maximal productivity is
obtained at the Average Irradiance (AI) values close to constant irradiance in the
range of 50 - 100 pE-m™2s™* [29] [30]. The photoinhibition appears at the irra-
diances level over 1000 pE-m™s™' in most strains, although some sensitive
strains are photoinhibited at lower irradiances down to 300 uE-m~2-s™! [31].

The irradiance is defined as the amount of radiation reaching a point from all
directions in space, at every wavelength. However, only Photosynthetically Ac-
tive Radiation (PAR), range from 400 to 700 nm, is used by microalgae to per-
form photosynthesis, whatever the light source is (sun, lamps, LEDs) [32]. Due
to mutual shading the irradiance inside microalgae cultures is not homogeneous
but a function of light intensity, culture depth, and biomass concentration. Thus
cells in the outer part of the culture can be exposed to high irradiances, whereas
in the inner part of the culture, cells can be in complete dark. The concept of Al
was proposed to solve this problem [33] [34]. According to this concept, the Al

at which the cells are exposed to inside a culture is calculated as the volumetric
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integral of the corresponding local irradiance in all the points inside the culture.
This local irradiance can be calculated by applying Lambert’s law for the radia-
tion arriving to the reactor surface. The value of Al is really important because
this concept allows normalizing the light conditions in whatever microalgae
culture system, allowing calculating an intensive variable representing the “con-
centration of light” inside the culture. Thus the AI can be used to analyze or
model the growth of whatever microalgae as usually performed with bacteria or
other heterotrophic microorganisms when considering substrate concentration.
In microalgae cultures the growth-irradiance response curves have a hyperbolic
shape (Figure 5) [35] [36]. In this curve the saturation irradiance (I;) is the irra-
diance above which the growth is saturated, whereas constant irradiance (Ix) is
the irradiance at which the growth is equal to half of the maximal specific
growth rate. Therefore, the influence of light on the growth of any particular
strain must be studied in each particular location as it varies from place to place.
Gongalves et al [37] evaluated the effect of light on the growth of microalgae (C.
vulgaris, P. subcapitata, Microcystis aeruginosa and Synechocystis salina) and
nutrients uptake. In the case of C. vulgaris, these authors found that the opti-
mum daily irradiance was 208 uE-m2-s™".

It has been reported that the optimal condition for the growth of microalgae
will depend not only on the light intensity but also on the wavelength and the
photoperiod to which the cells are exposed [38]. As microalgae need light for
their metabolic activity, its growth is strongly influenced by this culture parame-
ter, both in terms of quality (wavelength, the light source used, among others)
and quantity (light intensity and light period). The light source can be either ar-
tificial or natural (solar). Though the latter being the most economically viable
due to its availability, in high value-added cultures, artificial light can also be
employed because it allows the precise control of photosynthesis and photope-
riod [39].
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Figure 5. Growth-irradiance response curve of Scenedesmus almeriensis indicating the
value of characteristics variables for this strain.
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Different artificial light sources can be used for microalgal cultivation, such as
Light-Emitting Diodes (LEDs), halogen lamps, fluorescent lamps and incandes-
cent bulbs. These light sources vary from each other in energy consumption,
spectrum, wavelength distribution and cost. Considering all these characteristics,
fluorescent lamps and LEDs are the most commonly used light sources for mi-
croalgal production. Comparing with the fluorescent lamps, the use of LEDs has
better control of light and the use of different wavelengths, which can be favora-
ble for biomass production [40]. The depth that the light can reach in the culture
is independent of the light intensity. Thus, for complementing the natural light,
or even for cultures under the artificial light, it is recommended to place LEDs
inside the medium to improve the delivery and distribution of photons [41].

Due to the stirring system in microalgae culture tanks, there are the light/dark
(L/D) cycles found in the medium. These cycles are responsible for the increase
in the photosynthetic conversion and biomass productivity in microalgae, re-
ported by Takache et al [42]. The same authors reported that the efficiency of
photosynthesis in Chlamydomonas reinhardtii was enhanced when L/D cycles of
less than 20 s were applied, with an increase in the growth rate of up to 40%, de-
pending on the conditions of the L/D cycle.

The variation of light wavelength has significant impact in the microalgal
growth. The red light can promote higher growth rates with smaller cells and
low nutrient uptake. On the other hand, the blue light affects gene expression
and some metabolic pathways of microalgae, triggering a high nutrient uptake,
but inducing lower growth rates with the larger cells. Due to the lack of phycobi-
lins, green microalgae cannot use yellow and green light effectively [43]. Sat-
thong et al [44] studied the light effect on the growth of C. vuigaris TISTR8580.
Their obtained results are shown in Figure 6. It illustrates the number of C.
vulgaris cells at different times and conditions. They have carefully studied the
growth of C. vulgaris from algae cells cultured under the different light sources,
including the white LED light, the red LED light, and the fluorescence light.
From the experiments, it was observed that the microalgae are in a state of lag
phase during day 0 and day 1. In this period, the algae population remains con-
stant as they are adapting to the new environment. However, the cell density in-
creases dramatically during day 2 to day 3, as compared to day 1. This reflects
the typical nature of the exponential growth phase, namely the fast-growing
phase. After day 4 to the last day of the experiment, the algae are in a stationary
state phase in which the algae population is consistently at maximum. They ex-
perimentally found that the white LED light source gives the highest population
density on day 14 at 66.63 x 10° cell/ml. Algae under a fluorescent light source
with the white light had the highest density on day 14 at 79.33 x 10° cell/ml. The
algae under the red LED light source give the highest density on day 3 at 76.83 x
10° cell/ml. Although the cell density of the algae under the red LED light is
more than that under white LED light, during the stationary state phase on day
3, the cell density under red LED light is decreased more than that in the case of
the white LED light on day 4.
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Figure 6. The graph between the density of C. vulgaris cell and time using different light
sources, 4000 lux, 12 hr: 12 hr L/D cycle, 0.4 vvm air flow rate, with temperature 28°C *
2°C.

Figure 7 shows the variation in growth rate of different algae species with
their irradiance levels, where the growth rate of only N. incerta was studied in
presence of the white and blue light. The maximum growth rate of P. globasa
was obtained at an irradiance level (white light) of 150 mmol-m*s™' among the
algae species as reported by Sing et al [45] in their review article. The minimum
growth rate of V. incerta was reported at an irradiance level (blue light) of 150
mmol-m s~

Very recently, Esteve et al. [46] conducted an experiment with LEDs with dif-
ferent wavelengths: 380 + 750 nm (white), 620 £ 750 nm (red) and 450 + 495 nm
(blue). They reported that the maximum specific growth rate was obtained by V.
oleoabundans with white LEDs (0.264 + 0.005 d™!), whereas the maximum bio-
mass productivity (14 + 4 mgg, L™-d™") and CO, fixation rate (11.4 mgco,
L7'.d") were obtained by C. vulgaris (also with white LEDs). Sometimes,
combination of different wavelengths yields maximum growth. This is justified
by Fu et al [47], who demonstrated that Dunaliella salina obtained the highest
production of biomass and carotenoids (f-carotene and lutein) with the com-
bined use of 75% of red light (wavelength around 700 nm) and 25% of blue light
(wavelength around 400 nm), compared to just the red light.

Metsoviti et al. [48] conducted an experiment on the effect of solar irradiance
on C. vulgaris cultivated in open bioreactors under greenhouse and they found
that the increase in solar irradiance led to faster growth rates of C. vulgaris un-
der both environmental conditions studied in the greenhouse (in June up to 0.33
d™ and in September up to 0.29 d™') and higher lipid content in microalgal bio-
mass (in June up to 25.6% and in September up to 24.7%). They have also ex-
amined the ratio of light intensity in the 420 - 520 nm range to light in the 580 -

680 nm range (Iso-s20/Iss0-6s0) and of artificial irradiation provided by red and
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Figure 7. The Growth rate of algae species at different irradiance.

white LED lamps in a closed flat plate laboratory bioreactor on the growth rate
and composition. In the experiments conducted in the closed bioreactor, the in-
crease of Lyos20/Iss0-6s0 ratio results an increase in the specific growth rate and the
biomass, protein and lipid productivities as well. Additionally, the increase in
light intensity with red and white LED lamps resulted in faster growth rates (up
to 0.36 d™') and higher lipid content (up to 22.2%), while the protein, fiber, ash
and moisture content remained relatively constant. Overall, the trend in bio-
mass, lipid, and protein productivities as a function of the light intensity was
similar in the two systems (greenhouse and bioreactor).

Generally, if the light intensity increases, the microalgal growth also increases
up to a photoinhibitory threshold, but it varies among species [49] [50]. Like cell
growth, microalgal lipid production is also influenced by the light intensity and
it is of particular interest because lipids are the sources of biodiesel. However,
increases in light intensity promote or have no effect on lipid production of
some species [51] [52], but reduce lipid contents in others [53]. Therefore, stu-
dies on the effects of light intensity on lipid production are very important on a
species-by-species basis. Lipids, carbohydrates, and proteins are the main ingre-
dients of microalgae [54]. Therefore, if lipid contents increase in a cell, carbohy-
drates, proteins, or both automatically decrease. An increase in lipids and a de-
crease in carbohydrate content are often reported due to the nitrogen starvation
[55] [56] [57]. Apart from the variable effects on lipid production mentioned
above, little is known about how light intensity affects the biochemical composi-
tion of microalgae. Therefore, to optimize microalgal lipid production to gener-
ate biodiesel, it is important to determine how the production of all three bio-
chemical components changes with light intensity.

To optimize the light intensity for microalgal growth and lipid content various
statistical methods have been used by researchers. For instance, the effect of light
intensity on Ettlia sp. was studied by Kim et al [58] and by conducting tests us-
ing response surface methodology with Central Composite Face-centered (CCF)
design, they found the optimal light intensity of 730 puE-m™2s™ where the maxi-

mum biomass productivity was reported as 28 + 1.5 gm-d™'. However, maxi-
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mum lipid productivity was obtained at 500 pE-m*s™!, which was reported as
4.2 + 0.3 gm™2d™". Table 1 shows the optimal light intensity for different micro-
algae species [37].

An increase of lipid production has been reported by S. abundans by increas-
ing the light intensity from 55 to 110 pE-m™2s™* [59]. Similarly, several Chlorella
species reportedly produce more lipids at a high light intensity (600 pE-m*s™)
than at lower light intensities [60]. For instance, high biomass and lipid content
of 20 pE-m™%s™! was reported by the species C. vulgaris [61]. This may be possi-
ble at least partly because at high light intensities algae counter photo-oxidation
by converting excess photo assimilates into fatty acids [62]. However, some re-
cent studies have found that at high light intensity, lipid contents of various mi-
croalgae, including marine strains of Chlorella, reduced despite increasing their
biomass, which suggest that instead of being stored in the form of lipids, the
energy produced was used for cell division [53] [63]. Recently, Nzayisenga et al
[64] also found that C. vulgaris and E. pseudoalveolaris had lower lipid contents
when grown at 300 pE-m*s™! light than that at lower light intensities, despite
increases in biomass (Figure 8). Studying with two more species with the high-
est biomass yields for 15 days, they reported that during the period between 8
and 15 days, fatty acid contents of S. obliquus growing at 300 pE-m~-s™' light
doubled, from 5.8% to 11.6%, but changed little at the 50 and 150 uE-m~*-s" light
intensities (Figure 8). In contrast, fatty acid contents of Desmodesmus sp.
slightly increased during this period under all light intensities. It has been rec-

ommended that increases in lipid production under high light intensities may be

1.6 o
1.4 =
—12
—
= 1.0
%0.8 B50 pE
é 0.6 m150 },LE
204 D300 uE
al
0.0
Chlorella Desmodesmus Ettlia Scenedegmuq Desmodesmus | Scenedesmus
vulgaris sp. pseudoalveolarl obliquus sp. obliquus
8 days 15 days
Species

Figure 8. Biomass of the four microalgal strains after growth for indicated times under
indicated light intensities: mean + standard deviation (22 = 3 from three separate experi-
ments).

Table 1. Optimal light intensity for different microalgae species.

Microalgae species Optimal average light irradiance (pE-m™2s7")
C. vulgaris 208
P. subcapitata 258
M. aeruginosa 140
M. aeruginosa 178
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partly caused by starvation [65]. However, the fatty acid contents of Desmodes-
mus sp. and 8. obliquus (grown for either 8 or 15 days) increased with the in-
creases in the light intensity, their protein contents declined, and no significant
change observed in their carbohydrate contents [64]. Similarly, reductions in
protein contents and increases in lipid contents of Dunaliella tertiolecta asso-
ciated with increases in light intensity have been observed [66]. Their current
results also show that higher lipid content is linked to lower protein content,
suggesting that lipid synthesis relied mostly on protein degradation or inhibition
of protein synthesis [64]. This is also supported by He et al [67], which showed
that decrease of protein content under increasing light intensity may be attri-
buted to the consumption of nitrogen. Thus, it is possible that microalgae may
have different mechanisms to synthesize fatty acids under high light intensities
and/or nutrient starvation, which could affect either protein or carbohydrate
content.

In most production systems, as soon as a high cell concentration is reached,
the proportion of light zones to dark zones becomes too low and the retention
time of cells in the dark area becomes too long, which increases respiration,
leading to biomass losses [68]. To avoid photo limitation and maximize the
growth, flashing (or pulsed-) light emitting diodes (LEDs) are used recently to
generate high-light flashes artificially, which penetrate deep into the culture [69]
[70]. The potential benefits of flashing light reported in previous studies differed
considerably, and they usually focused on flashing conditions of low frequencies
(£< 100 Hz) and relatively high duty cycles (DC > 0.1) that were used to mimic
light regimes in mixed cultures [28] [68]. It was uncertain if flashing light of
high frequencies and short duty cycles (e.g., £> 100 Hz, DC < 0.1) can indeed
improve microalgae growth performance. In Schulze et al [70], they reviewed
the potential of flashing light to improve microalgal growth and suggested a
minimum theoretical frequency threshold of 200 - 333 Hz which is necessary
to obtain the biological flashing light effect in microalgae. Very recently,
Schulze et al [71] performed another experiment on flashing light applied to
Chlorella stigmatophora and Tetraselmis chui and they have concluded that ar-
tificial flashing light does not improve microalgal biomass productivities in
photobioreactor, but low frequencies (£ < 50 Hz) may be still used to improve
light harvesting-associated biomolecules production. Similarly, several studies
have reported the importance of light intensity on microalgal growth substan-
tiating the increase of biomass concentration under optimal light conditions [72]
[73] [74].

3.2. Temperature

Temperature is considered as one of the most significant environmental factors
that influence algal growth rate, cell size, biochemical composition and nutrient
requirements. Microalgae cultures absorb heat by radiation from the light source

used resulting the increase of temperature in the culture. Thus, for a large scale
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outdoor culture the irradiance of sunlight and associated temperature is also
needed to consider [75]. The optimal temperature for microalgae growth ranges
from 20°C to 35°C, although some mesophilic species can endure up to 40°C.
Below the optimal temperature the yield of the strain gets reduced, but over-
heating of the cultures has been identified as critical since it can damage the cells
[76]. Therefore, seasonal variations, which lead to the temperature variations
during the day/night cycle, have significant effects on microalgal cultivation.

The optimal temperature for S. almeriensis is 35°C, but the cultures die at tem-
peratures higher than 45°C (Figure 9) [77]. In case of small-scale reactors, no tem-
perature control is required because the input of heat by radiation is compensated
by the output by convection if the air surrounding system is cold enough. However,
in outdoor large-scale reactors the solar radiation is high, and additional heat con-
trol systems must be used to avoid overheating [78] [79]. Thus, a cost-effective
cooling system set-up is necessary for better performance of the PBR.

To prevent overheating of the microalgae cultivation several methods have
been tested by researchers. Among them are as follows: 1) using shades with
dark-colored sheets [80], 2) cooling by spraying water on the surface of the pho-
tobioreactor [81], 3) submerging the entire culture or part of the photobioreac-
tor in a large amount of water [81], and 4) installing a heat exchanger for the
photobioreactor [82]. However, shading the PBR greatly reduces the illumina-
tion and consequently in the yield of biomass and thus it is inefficient. Though
water spraying is one of the most common methods and efficient for cooling, it
is only useful in locations with low air humidity and it also increases cultivation
costs. On the other hand, controlling temperature by the method of submersion
has been demonstrated to promote the average light intensity in the culture.

Several studies have been performed by researchers to show that the tempera-
ture has a positive impact on biomass and lipid yield of microalgae [83] [84]
[85]. For instance, maximum lipid productivity of 274.15 mgL™'-d™* was ob-
served under optimal temperature and pH at 28.63°C and 6.51 respectively for

1.0
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0.6
0.4

0.2 4

Biomass productivity (g-L"'-day™)

0.0 T § T T T 1
0 10 20 30 40 50 60

Temperature (°C)

Figure 9. Influence of the temperature in the biomass productivity of Scenedesmus
almeriensis in continuous cultures at laboratory conditions.
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Chlorella protothecoides, which was statistically proven by response surface
methodology using Box-Behnken design with smaller p-value (p < 0.001) in-
dicating its significance [86]. Gongalves et al [37] evaluated the effect of tem-
perature on the growth of microalgae (C. vulgaris, P. subcapitata, Synechocys-
tis salina and Microcystis aeruginosa) and nutrients uptake. In the case of C.
vulgaris, these authors found that the optimum temperature for growth was
25°C. According to study conducted by Singh et al [45] some species such as
Chlorella, Nannochloropsis, Neochloris, Scenedesmus, Spirogyra, Chlamydo-
monas, Botrycoccus, Haematococcus, Ulva species, few red algae, brown algae
and blue-green algae can grow in a temperature range of 20°C - 30°C with the
light intensity in the range of 33 - 400 pE-m™2s™* [87]. It was observed that at the
optimal temperature of 25°C and 20°C for Nannochloropsis occulata and Tetra-
selmis subcordiformis respectively, the growth rate was higher whereas the neu-
tral lipid concentration was found to be at higher level under 15°C and 20°C for
T. subcordiformis and N. occulata respectively [88]. It is also reported that, at
high temperature the cell metabolism disrupts and stop the cell production

through enzyme damage [89].

3.3. Nutrients

Conditions of nutrient limitation affect a considerable variation in the biochem-
ical composition of microalgae. An ideal culture medium for microalgae must
contain inorganic elements such as Phosphorus (P), Nitrogen (N), and Iron (Fe),
among others, which may vary according to the cultivated species. The mini-
mum nutritional requirements needed for the growth of microalgae can be de-
termined by the approximate molecular formula COg4sH;.3No.11Poor [31]. Thus,
the most important nutrients or macronutrients for autotrophic growth are the
carbon (C), nitrogen (N) and phosphorus (P) [26]. According to the molecular
formula of biomass, it is reasonable to say that about 50% of the biomass is
composed of carbon (C) [31]. Carbon is needed in high concentrations, since it
is the vital constituent of all organic substances synthesized by the cells, such as
carbohydrates, proteins, nucleic acids, vitamins and lipids [26]. Microalgae have
inorganic carbon assimilation processes: diffusion (5.0 < pH < 7.0) and active
transport (pH > 7.0) [90]. CO, and bicarbonates (HCOj; ) supply are very im-
portant in order to achieve high autotrophic production rates [26]. Organic
compounds (e.g. sugars, acids and alcohols) can also be used as carbon source
for certain species of microalgae that grow in mixotrophic conditions.

Nitrogen is a vital element of structural and operating proteins, the most im-
portant element after carbon [81]. It is the second most abundant element in
microalgal biomass containing 1% to 14% concentration in dry mass. It is re-
sponsible for the formation of proteins, nucleic acids, vitamins and photosyn-
thetic pigments [26]. The assimilation mechanism of nitrate and ammonium
(NH} ) by microalgae is active transport [90]. Nitrogen is mainly provided as N,

and in some cases, in the inorganic forms NO;, NO,, NO, NHj, or in the
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organic form, through urea or amino acids [91]. Silva et al [92] evaluated the
preferred source of nitrogen (NO; and NH;) for two species of microalgae
(Chlorella vulgaris and Pseudokirchneriella subcapitata) and they concluded that
the ammonium (NH, ) was preferred source of nitrogen for microalgae C.
vulgaris, since its assimilation by the microalgae involves lower energy con-
sumption [93]. Microalgal growth rate is nearly identical depending on the ni-
trogen sources used (urea, nitrite, and nitrate). Deficit of nitrogen concentration
in the cultivation allows lipids and carbohydrates to be synthesized preferentially
[94]. When the microalgae suffer nitrogen shortage, a discoloration of the cells
usually occurs (reduction of chlorophylls and carotenoids increase) and a
build-up of organic compounds such as polysaccharides and some oils [81].
Goiris et al. [95] studied the impact of nutrient limitation in the production of
antioxidants in three species of microalgae (Phaeodactylum tricornutum, Tetra-
selmis suecica and C. vulgaris) and they observed the content of chlorophyll a in
biomass was significantly lower when the microalgae were limited by nitrogen.
Phosphorus is another essential nutrient for growth and for many cellular
metabolic activities, such as energy transfer, synthesis of nucleic acids, deoxyri-
bonucleic acid (DNA), among others [26]. The concentration of phosphorus can
range from 0.05% to 3.3% in dry mass [96]. In wastewater, as well as in natural
environments, phosphorus is present in various forms, such as polyphosphate,
pyrophosphate, orthophosphate, and metaphosphate [97]. Like nitrogen, phos-
phorus is also assimilated by the microalgae through active transport [90]. Ab-
sorption of this chemical element is energy dependent and it is preferentially
added in the form of orthophosphate ( POif ) [26]. The composition of biomass
production is also influenced by the supply of phosphorus [98]. Internal and ex-
ternal phosphorus supply affects lipids and carbohydrates contents. Moreover,
the N: P ratio in the culture medium is also important, as it influences not only
the productivity, but also the dominant species in culture [26]. The N: P ratio of
16:1 was first estimated by Alfred C. Redfield in 1934 through the elemental
composition of microalgal cells. This ratio is known as Redfield ratio after his
name. However, several studies have tested different ratios [99] [100] [101]
[102]. Silva et al. [92] evaluated the effect of N:P ratio on the growth of microal-
gae C. vulgaris and P. subcapitata and the N: P ratios of 8:1, 16:1 and 24:1 were
evaluated. For C. vulgaris, the N: P ratio of 8:1 was the one that more favored the
growth. Reduction of phosphorus may cause pigment accumulation in some
microalgae, but the impact is lower than the nitrogen deficiency [81]. Its absent
or present at low concentrations can be limiting or affecting the biomass prod-
uctivity of several microalgae species [103]. Microalgae can amass intracellular
reserves of phosphorus, which can be used when phosphate is exhausted in the
medium, a behavior known as luxury uptake or accumulation [104]. When the
objective is to remove phosphorus from wastewater, it can be used; however, in
cultures where synthetic fertilizers are used, luxury uptake should be avoided to

maximize the biomass production per mass of nutrients added [97].
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Besides the macronutrients already mentioned (nitrogen, phosphorus and
potassium), for the adequate growth of microalgae, the medium should contain
other nutrients (micronutrients) too. The essential micronutrients are Mg, S, Na,
Cl, Ca, Fe, Mo, Mn, Zn, Cu, B and Co, with prominence on magnesium, sulfur
and iron (Mg, S and Fe, respectively). Iron is an essential trace element for mi-
croalgae growth because of its involvement in the transport of electrons in the
process of photosynthesis [105]. Most of these micronutrients can be found in
both wastewater and seawater [106]. Fertilizers and salts can also be used as
sources of these micronutrients [97].

Table 2 depicts how addition of nutrients increases biomass production and
shortens the time of cultivation. The cultivation of Chlamydomonas sp. in a
Tubular PBR, in Run-1, the time was required for microalgae cultivation (10
days) was longer than Run-4 which only takes 7 days, so that, the growth rate in
Run-4 was greater than Run-1. Microalgae obtain foods from the addition of

nutrients to support their growth, thus shortening the time of cultivation [107].

3.4. Carbon Dioxide (CO3z)

Carbon dioxide (CO,) is another important factor that involved in the growth of
microalgae production. To produce 1 kg of biomass, microalgae require from 1.8
to 2.0 kg of CO, [31]. Considering this ratio, the amount of CO, present in the
air (0.03%) is not enough to provide the necessary gas pressure in the culture to
promote high productivity. Thus, for increasing photosynthetic efficiency in
their growth, it is necessary to supply carbon, either in the form of salts, such as
bicarbonate, or by injection of CO,-rich air in the culture [108] [109]. Duran et
al [110] demonstrated that using air injection (600 mL-min™") in a photobio-
reactor, microalgae showed optimal growth with up to 20% (volume per vo-
lume) of CO, present in the injected air, not differing much from the optimal
value for microalgae growth. This creates the possibility of using CO, from in-
dustrial burning; a process that generates on average 5.0% (volume per volume)
of CO,, and depending on the technology and type of fuel used, this concentra-
tion may reach up to 20% [111]. This use combines a low-cost source of carbon
for microalgae with the reduction of CO, emissions to the atmosphere. The
supply of CO, to microalgae cultures allows increasing biomass productivity, but
the reduction of pH, which can inhibit the growth of some species of these mi-

croorganisms [112].

Table 2. The effect of adding nutrients against time of cultivation and the microalgae
growth rate (u)/day.

Without nutrient Addition of nutrient
Parameter
(Run-1) (Run-4)
Cultivation time 10 days 7 days
Growth rate (n)/day (Q = 0.071 L/min) 0.16 0.33
Biomass production (gr/dm?) 4.892 5.684
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For optimizing CO, concentration in Ett/ia sp. to produce maximum biomass
and lipid concentration an experiment has been done by Kim et al [58] using
response surface methodology with Central Composite Face-centered (CCF) de-
sign and they have found 8% CO, and 7% CO, as optimal concentration for
maximum biomass (28 + 1.5 g-m™d™") and lipid (4.2 + 0.3 g-m~2d™") productiv-
ity respectively. The optimal concentration of CO, was found to be 6.5% for
Chlorella vulgaris which was statistically determined through response surface
methodology with Central Composite Design (CCD) having R, > 0.90 [113].
However, maximum specific growth rate of 0.310 d' was reported in a study
conducted by Kasiri ef al [114] at 22% CO, concentration whereas at 35% CO,
concentration, maximum CO, uptake rate of 63.03 mg-L™'-d™! was observed for
Chlorella kessleri.

Hadiyanto et al [107] studied the growth rate of Chlamydomonas sp. com-
pared with the productivity in terms of carbon dioxide flow rate, as shown in
Figure 10. It shows that in the variation of 10% and 20% (% v) CO, concentra-
tion, both growth rate and biomass productivity increase. However, in the varia-
tion of 30% and 40% (% v) CO, concentration, either growth rate and biomass
productivity begin a constant. This shows that bicarbonate ion (HCO5 ) at 10%
and 20% (% v) concentration, still be converted into biomass by the culture with
the help of Carbonic Anhydrate (CA), while the 30% and 40% (% v) CO, con-
centration, CA began to saturate so that the efficiency of CA, in the use of bi-

carbonate ion, start to decrease.

3.5. Hydrogen Potential (pH) and Salinity

The pH has great significance in microalgal cultures, because, besides affecting
the microalgae themselves, it determines the solubility of minerals and CO, in

the medium [115]. Several factors such as composition and buffering capacity,
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Figure 10. Growth rate and productivity of microalgae.
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amount of dissolved CO,, temperature and metabolic activity of the cells may in-
fluence the pH of the culture medium [116]. Levels of tolerance to the pH of the
culture medium vary species to species, which may affect the growth rate, but
the most common pH values for microalgae culture vary from 6 to 8 [27] [117].
Most microalgae usually tolerate wide pH intervals, but beyond this interval the
yield is greatly reduced. Optimal pH values for microalgae range from neutral to
slightly alkaline (7.0 - 10.0), although some species have optimal pH at acidic
values below 3.0 [118] [119]. The optimal pH ranges from 7.5 to 8.5 and the
biomass productivity is strongly decreasing at pH above 9.0 in the case of Sce-
nedesmus almeriensis (Figure 11) [77].

The hydroxide ion (OH") accumulates in the growing medium, leading to a
gradual increase of pH during the photosynthetic CO, fixation [26]. This shifts
the chemical equilibrium of the inorganic carbon present in the medium to-
wards the formation of carbonates (CO3™ ). However, they are not the preferred
carbon source for microalgae [120]. On the other hand, a decrease of solution
pH moves the chemical equilibrium towards the formation of CO,, which is
considered one of the preferred carbon sources for microalgae. Nevertheless, this
process can lead to the release of CO; into the atmosphere, decreasing the con-
centration of this nutrient extremely important for the cultivation of microalgae.

Addition of nitrogen to the culture also influences the pH. When nitrogen is
provided in the form of ammonium, the solution pH increases by decreasing the
concentration of nitrogen available for microalgae [121] [122]. High pH values
shift the chemical equilibrium of ammonium for the production of ammonia
which can be released into the atmosphere due to the aeration of the culture,
reducing nitrogen availability for microalgae.

The concentration of phosphorus in culture medium can also be influenced by
elevated pH, as it can lead to precipitation of phosphate (in the forms of calcium
phosphate, iron phosphate and aluminium phosphate) and therefore limit the
amount of phosphorus available for microalgae [122] [123].

The pH can directly affect the microalgae, as the pH of microalgal cytoplasm

is neutral or slightly alkaline, and enzymes are pH-sensitive and may be inactive
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Figure 11. Influence of pH in the biomass productivity of Scenedesmus almeriensis in
continuous cultures at laboratory conditions.
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in acidic conditions [124]. Therefore, extreme pH conditions can cause the dis-
ruption of many cellular processes, which may lead to the collapse of culture
[93].

Tripathi et al [125] studied the effect of pH on the growth of Scenedesmus sp.
in a pH range from 7 to 10 and concluded that the optimal pH for this species
was 8. Munir ef al [126] examined the pH effect on the growth of two microal-
gae species (Spirogyra sp. and Oedogonium sp.) in a range of 6.5 - 9.0, achieving
the highest growth at pH 7.5 for both species. Wu et al [127] studied the effect
of pH on the growth of Scenedesmus sp. LX1. by varying the pH from 5 to 11
and observed that, for pH values of 7, 9 and 11, there was no significant differ-
ence of growth in the cultures. However, there was a significant limitation in the
growth of the microalgae at pH 5.

The variation of pH can be reduced by using buffers in the cultures, but for
large-scale systems, it is costly. As CO,, when dissolved, reduces the pH of the
medium, pumping atmospheric air (0.03% of CO,) or CO,-enriched air through
the aeration of the cultures can regulate pH variation in the culture [128].

Figure 12 shows the growth curves of Chlorella sorokiniana DOE1412 and
CO, addition during PBR cultivation at different pH values. Data are the average
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Figure 12. Growth curves for Chlorella sorokiniana DOE1412 and CO:; addition for cul-

tures at different pH in a 90 L PBR. Data are the average of duplicates. +S.D. lines at t =
15 day are shown.
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of duplicates. DOE1412 exhibited a longer linear growth phase with lower
growth rates in these larger reactors, which were light limited. The linear growth
rates calculated using the first ten days of data were 0.091 g/L-day for pH 6.5,
0.074 g/L-day for pH 7, 0.068 g/L-day for pH 7.5, 0.061 g/L-day for pH 8, and
0.023 g/L-day for pH 8.5. Biomass growth rates decreased with increasing pH
from 6.5 to 8.5, with a significant drop in rate at a pH of 8.5 (about a quarter of
the rate at pH 6.5) [115]. However, the lipid content was not a function of pH in
the PBRs as no significant differences were found (See Figure 13 oneway
ANOVA: p > 0.05). Overall, the lipid content was slightly lower at the larger
scale (25.7% by mass), which is often observed. These values were similar to the
observations of Moheimani [129].

Salinity is another factor that requires attention, during microalgae cultivation
because in open culture it tends to increase due to the intense evaporation, in-
creasing their concentration in the medium. Some species of microalgae, espe-
cially those found in freshwater environments, are very restricted in terms of sa-
linity. In general, based on their tolerance to salinity microalgae can be divided
into three categories: oligohaline, when they can develop only in water with low
salinity (maximum salinity between 0.5 and 5 g-kg™); mesohaline, when they
develop in environments of moderately saline water, with salinity between 5 and
18 g-kg™!, and polyhaline, when they can develop in highly saline water, with sa-
linity between 18 and 30 g-kg™ [130].

3.6. Mixing

The mixing plays a key role in the balance of gases and pH of the system. Suffi-
cient turbulence of microalgae cultures minimizes the existence of gradients that
can limit the performance of the cells. Thus mixing reduces the gradient of nu-
trients in the culture broth, avoids cell sedimentation in the system, and forces
the cells to move between dark to light zones, enhancing photosynthesis [131]. It
helps to facilitate heat transfer and avoid thermal stratification by ensuring all

cells of the population to have uniform average exposure to light and nutrient.
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Figure 13. Lipid content for Chlorella sorokiniana DOE1412 grown at different pH in a
90 L PBR. Data are shown as means = S.D., n = 4.
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The mixing is usually provided by aeration with CO,-enriched gas bubbles or
pumping, mechanical agitation, or a combination of these means in the tubu-
lar PBR. Since, some of the species do not tolerate vigorous agitations, so care
must be taken in choosing the appropriate system [19] [132]. The energy sup-
plied imposes a cost, whatever the mixing method is, which must be optimized.
Furthermore, excessive mixing can damage cells and consequently reduce the
growth of the culture. Thus aeration and/or agitation by pneumatic and me-
chanical devices may produce cell damage if microalgae are susceptible to hy-
drodynamic and mechanical shear forces, thus impacting culture performance
[133] [134]. Main factors determining shear sensitivity are the type of microal-
gae (the presence of fragile flagellate), composition and thickness of the cell wall,
intensity and nature of the shear stress, and adequacy of culture conditions to
which the cells are exposed (pH, temperature, irradiance, etc.) [131]. The shear
rates for a single phase flow and multi-phase flow have been thoroughly studied
by Deb et al [135] [136].

In a study conducted by Sanchez et al [137], it was noticed that in raceway
culture systems stirred by paddles, the daily growth of Isochrysis galbana micro-
algae culture was double when compared to the system without stirring (8.8 x
10° and 4.0 x 10° cells mL™'.d™"). This shows the importance of stirring the cul-
ture medium in the industrial processes of microalgae production.

Sobczuk et al [138] investigated the mixing effect on biomass concentration
for P. tricornutum. Their results are shown in Figure 14. Initially, the biomass
concentration remained constant and steady at an agitation speed of 150 rpm
(i.e impeller tip speed of 0.68 m-s™). After that the agitation rate was increased
stepwise from 150 to 550 rpm. The biomass concentration changed and attained
new steady states for each step change in the agitation rate. The increase in the
agitation rate increased the biomass concentration up to a maximum impeller
speed of 350 rpm (impeller tip speed of 1.56 m-s™) even though the dilution rate
was held constant at 0.0139 h™' throughout the experiment. Further increase in
the agitation speed declined the biomass concentration, but stable steady states

were achieved up to the highest impeller speed investigated.
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Figure 14. P. tricornutum biomass concentration versus time in the continuous culture at
various impeller agitation speeds. Horizontal lines indicate steady states.
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4. Conclusions

There is no doubt that microalgae have tremendous potential as a source of bio-
fuel, food, feed and high value bio-compounds. Since they are rich in lipids,
proteins, and carbohydrates, which are the sources of many beneficial products
for mankind, in the near future, microalgae will generate clean energy and third
generation biofuels, thus contributing to sustainable development both envi-
ronmentally and economically. However, there are still limitations in the prod-
uctivity of microalgae. Therefore, more researches needed to further improve the
existing technology. For instance, more advanced culturing techniques incorpo-
rating with novel biotechnology should be developed to increase the productivity
of microalgae. As the algal biofuels will play a vital role in future, attention
should be given on the following:
» Optimization of the culture growth parameters is necessary for high yields of
biomass and lipid content.
» Development of modern technology for large-scale industrial production of
biofuels along with wastewater treatment.
* Improvement of the CFD simulations and mathematical modeling-based

process, before industrial trial and scale-up.
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