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Abstract

In this paper we study a periodic two-component Camassa-Holm equation
with generalized weakly dissipation. The local well-posedness of Cauchy prob-
lem is investigated by utilizing Kato’s theorem. The blow-up criteria and the
blow-up rate are established by applying monotonicity. Finally, the global ex-
istence results for solutions to the Cauchy problem of equation are proved by
structuring functions.
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1. Introduction

In this paper, we consider the Cauchy problem of periodic two-component Ca-

massa-Holm equation with a generalized weakly dissipation:

U, — Uy, +Ku, +3uu, —2u,u, —uu, +A(u—u, )+opp, =0, t>0,xeR,

P +(pu), =0, t>0,XeR,(1 3
u(0,x) =y (x); 2(0,x) = p, (x), xeR, '
u(t,x)=u(t,x+1); p(t,x) = p(t,x+1), t>0,xeR,

where A4 >0 and kis a fixed constant; o is a free parameter.

It is well known that the two-component integrable Camassa-Holm equation
is
t>0,xeR

u, —Uu,, +ku, +3uu, —2u,u, —uu,, —pp, =0,
(1.2)
t>0,xeR

pi+(pu), =0,
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which is a model for wave motion on shallow water, where u(t,x) standing for
the fluid velocity at time t >0 in the spatial x direction [1], p(t, X) is in con-
nection with the horizontal deviation of the surface from equilibrium (ie. am-
plitude). Equation (1.2) possesses a bi-Hamiltonian structure [2] and the solu-
tion interaction of peaked travelling waves and wave breaking [1] [2] [3]. It is
completely integrable [3] and becomes the Camassa-Holm equation when
p=0.

Equation (1.2) was derived physically by Constantin and Ivanov [4] in the
context of shallow water theory. As soon as this equation was put forward, it at-
tracted attention of a large number of researchers. Escher ef al. [5] established
the local well-posedness and present the blow-up scenarios and several blow-up
results of strong solutions to Equation (1.2). Constantin and Ivanov [6] investi-
gated the global existence and blow-up phenomena of strong solutions of Equa-
tion (1.2). Guan and Yin [7] obtained a new global existence result for strong
solutions to Equation (1.2) and several blow-up results, which improved the re-
sults in [6]. Gui and Liu [8] established the local well-posedness for Equation
(1.2) in a range of the Besov spaces, they also characterized a wave breaking me-
chanism for strong solutions. Hu and Yin [9] [10] studied the blow-up pheno-
mena and the global existence of Equation (1.2).

Dissipation is an inevitable phenomenon in real physical word. It is necessary
to study periodic two-Camassa-Holm equation with a generalized weakly dissi-
pation. Hu and Yin [11] study the blow-up of solutions to a weakly dissipative
periodic rod equation. Hu considered global existence and blow-up phenomena
for a weakly dissipative two-component Camassa-Holm system [12] [13]. The
purpose of this paper is to study the blow-up phenomenon of the solutions of
Equation (1.1). The results show that the behavior of solutions to the periodic
two-component Camassa-Holm equation with a generalized weakly dissipation
is similar to Equation (1.2) and the blow-up rate of Equation (1.1) is not affected
by the dissipative term when o >0.

The paper is organized as follows. Section 2 gives the local well-posedness of
the Cauchy problem associated with Equation (1.1). The blow-up criteria for so-
lutions and two conditions for wave breaking in finite time are given in Section 3.
Furthermore, we also learn the blow-up rate of solutions. In Section 4, we ad-

dress the global existence of Equation (1.1).

2. Local Well-Posedness

Let us introduce some notations, the S=R/Z is the circle of unit length, the
[X] stands for the integer part of xe R, the * stands for the convolution, the
|| "x is used to represent the norm of Banach space X.
In this section, we investigate the local well-posedness for the Cauchy problem
of Equation (1.1) by applying Kato’s theory [14] in H®(S)xH**(S), s>2.
For convenience we recall the Kato’s theorem in the suitable form for our

purpose. Consider the following abstract quasilinear evolution equation:
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(2.1)
2(0) =z,

There are two Hilbert’s spaces X and Y, Y is continuously and densely em-
bedded in Xand Q:Y — X is a topological isomorphism, the L(Y,X) stands
for the space of all bounded linear operator from Yto X.

Theorem 2.1 [14] 1) A(y)eL(Y,X),for Yye X with

[(A(y) - A(2))w], <]y -2, i, (2.2)

where z,y,weY, A( y) eG (X 1 ﬂ) , Le A( y) is quasi-m-accretive, uniform-
ly on bounded sets in Y.

2) QA( y)Qfl = A(y) +B ( y) , where B(y) € L(X ) is uniformly bounded
on a bounded sets in ¥

[(B(y)-B(2)w], < w|y-2, |w, (23)

where z,yeY, we X.
3) f:Y >Y isabounded map onbounded setsin ¥

[£ ()= (2)], < uly-2l, (2.4)
It ()= f(2)], <mly-2, (2.5)

where z,yeY, w1y, 145, 11, are constants which only depending {||y||Y ||Z||Y} .
If the 1), 2), 3) hold, given u, €Y , there is a maximal T >0 depending only

on ||uO "v and a unique solution z of Equation (2.1) such that
u=u(-u,)eC([0,T);Y)nC*([0,T); X) (2.6)

Moreover, the map U —>u(-U,) is continuous from Y'to
C([0.T);Y)nCH([0,T); X).

cosh x—[x]—1

) .
Note that g(x):= i , xeR , (1—a§) f=g*f for all
ZsinhE

fel’ (S) and g*(u-u,)=u.Then Equation (1.1) can be rewritten as

X

u, +uu, =-0,9 *(u2 +%u2 +ku +%p2j—lu

p.+(pu), =0 (2.7)
(0.6) =1, () £ (0.%) = 2y (x)
u(t,x)=u(t,x+1); p(t,x) = p(t,x+1)

Theorem 2.2 Let z,=(Uy,p,—1)eH*xH*" with $>2, there exists a
maximal time T >0 which is independent on s and exists a unique solution
(u, p) of Equation (1.1) in the interval [O,T) with initial data z,, such that

the solution depends continuously on the initial data.
The remainder of this section is devoted the proof of Theorem 2.2. Let
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P A

d, 0
A(z):[uox uaj (2.8)

The [15] shows that Q is an isomorphism from H®xH® onto H*'xH®*,
It is sufficiently to verify A(z), B(z), f(z) satisfy 1), 2), 3) to prove the
theorem 2.2. For this purpose, the following lemmas are necessary.

Lemma 2.1 [15] The operator A(z) is defined in (2.8) with ze H®xH?®,

u : 0
z:( j T=H*xH®, X=H""xH"", A=(1-8})7, Q:[g j,and

s >% belongs to G(L2 x Lz,l,ﬁ).

Lemma 2.2 [15] The operator A(Z) is defined in (2.8) with ze H®*xH?®,
s >g belongs to G(H TxH 5‘1,1,ﬁ).

Lemma 2.3 [15] The operator A(Z) is defined in (2.8) with ze H®*xH?®,

S >§ belongs to L(HS xH® H % HH) , moreover,

(2.9)

W|

< wy-
HsLygpst SH|IY-2Z HSxHS HSxHS

[(A(y)-A(z))w

where y,z,we H®xH?®.

Lemma 2.4 [15] Let B(z)=QA(z)Q"-A(z) with zeH*xH?®, s>§,

then the operator B(z)e L(H TxH 5'1) and

||(B(y)—B(Z))W HS1eHst Sty ||y—z HSxHS W HS xSt (2'10)
for y,zeH*xH®*,and we H**xH"",
Lemma 2.5Let ze HxH?®, S>§,and
o (1—82)71 u2+£u2+ku+zp2j+/1u
f(z)z— X X 2 2
pu,
Then fis bounded on bounded setsin H®xH® and satisfies
1) ||f (y)-f(2) . <py-1z ess YiZEHIxXH® (2.11)

2) |f(y)-f(2)

HS L st < Hy ||y—z HS1xyst> Y,z € HS x HS (2.12)

Proof: Forany z,yeH xH?®, s>g,

"f (Y)— f (Z) HSxHS
A2 2y, Lo 2 O 2 2
_ax(l—ax) [(y1 -u )+E(ylx—ux)+k(yl—u)+5(y2—p )}

+[A(y; —u)

<

HS +||pr— Yix Yo

HS
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<

e

(yf—u2)+%(yfx—UE)+k(y1—U)

H s-1

+{Aly, ~u

HS +||(ux _ylx)p HS +||y1x (,0_ yZ)

HS

+lklly, ~u

£"(yl_u)(yl—i_u) Hs-t Hst

Hst +%||(y1>< _ux)(ylx +ux)

Wl -ule .-

gt Y, + P st

+||yl_u hs 1Pk +"y1 we 1P = Yallys

£||(y1—u)(yl+u)

s K1Y = Ul

gt +%"(y1>< _ux)(ylx +ux)

llv-ul .-

Hsfl y2 +p Hs—l
+||yl_u hs 1Pk +"y1 we 1P = Yallys
5+ 3+
tet s =0y + 3%l e+, then

[F(¥)-1(2)

Making y =0 in the above inequality, it shows that f is bounded on bounded

S S
e SH|Y=2]s s ViZEH XH

setsin H®xH?®, the proof of 1) is complete.

Similarly, the inequality (2.12) also can be proved.

Proof of Theorem 2.2: The 1) is true for A(z) from the inequality (2.9), the
2) is true for B(Z) from the inequality (2.10), the 3) is true for f (Z) from the
inequalities (2.11) (2.12). According to the Theorem 2.1, the proof of the Theo-

rem 2.2 is complete.

3. Blow-Up

This section will establish a blow-up criterion for solution of Equation (1.1) when

o>0.
Theorem 3.1 [8] [16] Let =0 and (u,p) be the solution of (1.1) with ini-

tial data (Uy,pp—1)e H*xH*?, s >g, T is the maximal time of existence of

the solution, then

T <o [ u, (). dz=o0 (3.1)
Consider the following equation of trajectory:
dat,x) _
T_u(t,q(t,x)), te[0,T) (32)
q(0,x) =x, xe$S

The (3.2) shows q(t,-) :S —> S is the differential homeomorphism for every
te [O,T )

0, (t,x) =00 0yt x) e [0,T)xS (3.3)

Hence
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(3.4)

(e =[v(ta(t)

Lemma 3.1 [17] Let T>0 and VeCl([O,T); Hl(R)) , then for every
te [O,T) , there exists at least one point ff(t) e R with

m(t):=inf[v, (t,x)]=v, (t.£(1))

xeR

L®

The function m(t) is absolutely continuousin (0,T) with

dm(t
d'f )=V[X (t.£(t)) aein (O,T).
Lemma 3.2 Let 7, =(Uy, p, —1) e H*(S)xH**(S) with s> 2, there exist a

maximal time T >0 and a unique solution (u, p) of Equation (1.1) with initial

data z,, then we have
Jull + o=tz <fuolis + llon -4z (3.5)
Proof: Multiply the first equation of Equation (1.1) by zand integrate

% S(u2 +uf)dx+ 2&_[5(u2 +uf)dx+ 20_[5 ppudx =0 (3.6)

The second equation of Equation (1.1) can be rewritten as
(p-1),+pu+pu, =0

Multiply the above equation by (p—1) and integrate

d
dt-s

(p-1)" dx+2[ upp,dx-2[ up,dx+2[ u,p°dx—2[ u,pdx=0 (3.7)
According to (3.6) and (3.7)

% (U Uz o (p=1) + 225w +u2)dr Jdx =0
Then

J'S(u2 +u? +o(p-1)° +21j;(u2 +uf)dr)dx

= [ (u8 0, +0 (oo =) k= unff + oo -l
Notice that 24 (u” +uZ)dx >0, then

Julfs + oo =1 = [((u? +05 +o (o -1)" o
<Juolie + oo -1

Lemma 3.3 [18] [19] 1) For every f € H'(S), we have

e+l

2 2
max £(x) < m" s (3.8)
where the constant e+l is the best constant.
2(e-1)
2) Forevery f eH?® (S), we have
max f?(x)<c|f ||i1 (3.9)

XE[O,l]
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e+l
2(e-1)"

3) Forevery f e H*(S), we have

where the best constant cis

max f? (x)s%"f"f42 (3.10)

xe[0.q] X

Lemma 3.4 Suppose o >0, and (U,p) be the solution of Equation (1.1)
with initial data (U,,p, —1) € HS(S)XHH(S), s>2, and 7 be the maximal

time of existence, then

supu, (1)< [ +2* - ouff + 7
€

3o+2)(e+1 1 k*+1
were = [ (041 T o).

Proof: The theorem 2.2 and a density argument imply that it is sufficient to
prove the desired estimates for s=3.

Differentiate the first equation of Equation (2.7) with respect to x
1 1
U, = U’ —Euf —Au, +%p2 —kd*g=xu—-g =x<(u2 +Euf +%p2)—uuxx (3.11)

Define
m(t)=u, (t,7(t))=sup(u, (t,x)),m(t) =inf (u, (t,x)) (3.12)

xeS xeS

From the Fermat’s lemma, we know
u, (t7(t)) =0, ae.te[0,T)
there exists x,(t)€S such that
q(t.x (t))=n(t),te[0,T) (3.13)
Set

Z(M)=p(ta(tx)), te[o,T) (3.14)

From (3.11) and the second equation of Equation (1.1), we obtain

()=~ (1) = Am(t) +2 Z7 (1) + f (ta(t x))
~r = — (3.15)
¢'(t)==¢ (t)m(t)

where f =u’-kd’g*u—g {u2 +%uf +%p2).

Notice that 6°g*u=0,g*0 U, then
) 2 2 1, o 2
f=u —kaxg*u—g*(u +Eux —Eg*(p)
=u2—kaig*u—g*(uz+%U§j—%g*1—69*(/3—1)—%9*(/3—1)2

<u?+k|o,g *6Xu|+%|g *]4+o—|g *(p—1)|
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From (3.8) (3.9) and (3.10), we have

5 e+l
<2(e 1 " "H1
e+l 1
g0l <klol bl < 5o+ Il
1 e+l e+l
o[+ 3% | s gyl + g
o(e+l
ZJo+1= Gl 5oy
a(e+1
olo(o-tlsolole ot <53+ o1
%l (p-1)] < Zg],. (- “(e” lo-1f,
2 S22t 4(e-1) .

Therefore we get the upper bound of f
< (3G+2)(e+1) N e+1

4(e-1)

< (30+2)(e+1) . e+1

2(e-1) 4

k? 1
il +3eto-1

4(e-1) 2(e-1)
S (3o +2)(e+1) .\ e+1

k? +1
. J(||u||H1+a||p i)

(3.16)

4(e-1) 2(e-1)

1
= ch

k? +1
Al s ol

Similarly, we turn to the lower bound of £

—f <u®+k|o,g*0,u|+

+(7|g*(p—l)|+

(30‘+2)(e+1) e+1
A1) e 1! e +

(e dfelo-

1
*| U +=u?
’ ( 2 )

Eg*(p_

+2 1o+
1)?
3(e+1) k2 )
S

(3.17)

. (30-+2)(e+1)+[ e+1
4

k? +1
Al oot

(e+1)
4(e-1) (e-1)
y (3o-+2)(e+1)+[7(e+1)
-~ 4(e-1) 4(e-1)

According to (3.16) and (3.17)

4

k? +1
K j(||uo||;+aupo—1||;)

(3.18)

| |S(30-+2)(e+1)+(7(e+1)
4(e-1) 4(e-1)

k?+1
A o)
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From Sobolev’s embedding theorem, we have u e C; (S), due to the periodic
of Equation (1.1), then

'XEE u,(t,x)<0,supu, (t,x)=0,t[0,T) (3.19)

xe$S
hence

m(t)>0,te[0,T) (3.20)
From the second Equation of (3.15), we have

Z(t)=Z(0)e

rﬁ(r)dr

then
lp(ta(tx)) =2 (O] <|Z () <[]

For any given X €S, define

RL(0) = M(1)~[un. - —4* +opuff +C! (321)
then B (t) is C'-functionin [0,T) and satisfies

R(0) = (0)~Jup | — 4% + ool +C2
< (0)_||U0x||w° <0

m
Next, we will show P, (t) <0Ote [O,T ) .
By contradictory arguement, there exists t, €[0,T) such that P,(t;)>0.
Making t, =max{t<t,: P (t)=0}, we have

P(t)=0R(t)>0

then

M(t) =l 42 +olullc +C7

From (3.21), we know

m'(t,)=PR(t)=0 (3.22)
On the other hand, from the first Equation of (3.15), we have
_, 1_ _ —
(1) =5 ()= 2m(t)+ 527 (1) + 1 (LAt 1)

1 1 1
< ‘g(m(tl)”)z oA +%||Po||iw 56

1 2 2 2 e 2 1.,
<=l 7+l 462 + 2 + Sl +5C
<0

It yields a contradiction, then the proof of the Lemma 3.4 is complete.

Lemma 3.5 Suppose o >0, and (u, p) be the solution of Equation (1.1)
with initial data (Uy, p,—1)e H*(S)xH**(S), s>2, and 7 is the maximal
time of the solution. If there exists M >0 such that

>_M (3.23)

X =

inf u
(t,x)€[0,T)xS
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then

o) <Nl s, €™ (3.24)
Proof: For any given x e S, define
U (t)=u (t.a(t.x,))7(t)=p(t.a(t.x))
the second equation of Equation (1.1) becomes
y'(t)=—

then

() (o) B

From (3.23), we know U ( ) [ ) Hence

p(ta(t ) - 0]=]( |-f° P < (0" <o,

which together with (3.4), then the proof of lemma 3.5 is complete.

Theorem 3.2 Suppose o >0, and (u,p) be the solution of Equation (1.1)
with initial data (Uy, p,—1)e H*(S)xH**(S), s>2, and 7 is the maximal
time of existence of the solution, then the solution of Equation (1.1) blows up in

finite time if and only if

liminfu, (t,x)=—0 (3.25)

t>T~ xe$
Proof: Suppose that T <o and (3.25) is invalid, then there exists M >0 sa-
tisfies
U (t,x)=-M, V(t,x)€[0,T)xS
The Lemma 3.4 shows that u, (t, x) is bounded on [O,T) , Le |uX (t, X)| <C,
where C =C(k,M,o-,/1,||(u0,p0 —1) stHH)' Then from the Theorem 3.1, we

have T =o0, which contradicts the assumption T <.

On the other hand, Sobolev embedding theorem H°® > L* with s> 1 im-
plies that if (3.25) holds, then the corresponding solution blows up in finite time,
the proof of Theorem 3.2 is complete.

Next we give two blow-up conditions in finite time.

Theorem 3.3 Suppose o >0, and (U,p) be the solution of Equation (1.1)
with initial data (Uy, p,—1)e H*(S)xH**(S), s>2, and 7 is the maximal
time of existence of the solution. If there exists X, € S satisfies

Po (%) =0,Up, (%) = inf ug, (x) (3.26)
and
Juols + o llow =4z

_[(Bo-D(e+) 1, 4(e+1) (3.27)
_{ Be-1) 2 j3(e+1)+18(k2+1)(e—1)

then the corresponding solution u of Equation (1.1) blows up in finite time when
0<T <T", where
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T" = 2(1-+|uo (%))
(Salg(le)fel;l)+ 3(e+1)+21?£:;1)(e—1 (ol + ooy 1))
2
12

Proof: Without loss of generality, assume s =3, and choose X, (t) such that
q(t, X, (t)) = §(t) , te [O,t) , along the trajectory q(t, X, ) , we rewrite the trans-
port Equation of p in (2.7) as

PO ez (tet0) e

From (3.26), we have
)=u,(0,£(0 ) inf ug, (X) = U, (%)

Let X, =£(0),then p,(&£(0))=p, , from (3.28)
p(t&(t ) =0, Vte[O T) (3.29)

From (3.11), (3.29) and U, (t,&£(t))=0, we obtain
m’()=——m (t)=Am(t)+u* (t,£ (1)) - kd,g*o,u
—g*(u2+%uf+%p2J(t,§(t))
——2m? ()= Am(t)+ (1 (t.x,))

——2(m(t)+2) +32 4 £ (ta(tx,))

(3.30)

where
=u?(t,£(t))-ko,g*0,u—g *[uz +%uf +%p2](t, (1)) (3.31)

Modify the estimates:
e+l 9
0.g+00| <Ko |ullnle =g+ 5K

e+l
olo (-] =alol ot = ot ol

The similar process to (3.16) leads to

(1-80)(e+1) 3(e+1)+18(1+k*)(e-1)

. 2\
b= 36(e—1) 4(e_1) (||u0||H1+O-||p_1"|_2)_ C,

From the above inequality and (3.27), we have liz -C, <0, then
2

m'(t) < —%(m(t)+i)2 +%/12 -C, < %/12 -C,<0,te[0,T) (3.32)
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So m(t) is strictly decreasingin [0,T).
If there exist global solutions, we will show that this leads to a contradiction.
Let

2(1+ |uOX (X )|>

ETE

integrating (3.32) over [0,t,] yields
m(t,) = m(0)+ﬁl m’(t)dt < |u0x (x0)| +e,12 _(:th1 =-1 (3.33)

Hence weknow m(t)<m(t,)<-1te[t,T).
From (3.32), we have

m’(t)s-%(m(t)+ﬂ,)2 (3.34)

Integrating (3.34) over [t,,T) and knowing m(t,)<-1, we get
1 1 1 1 1

- <- <-Z(t-t)teft,T
n Ao mea Arm) s 2 wtelkT)
then
m(t)S;—ﬂ—)—oo,as t—>t1+i
T+t 1-4
2 A-1
Thus T <t + is a contradiction with T =c0.

1-2
The proof of the Theorem 3.3 is complete.
Theorem 3.4 Let >0, and (u,p) be the solution of Equation (1.1) with
initial data (Uy, p,—1)e H*(S)xH**(S), s>2, and 7'is the maximal time of

existence of the solution. If there exists X, €S satisfies

o (%) =0,up, (%)= inf Uy (X) (3.35)

and

Ugy (X ) < —yJA* +C7 =2 (3.36)

then the corresponding solution u of Equation (1.1) blows up in finite time when
0<T <T"™,where

—— 2(A+Uq, (%))
(A+Uo, (%)) (22 +C2)

Proof: From (3.16), we have

m(6)<—2(m(e)+2)" + (27 +C2) t<[0T)

From (3.36), we have m’(0)<0, m(t) is strictly decreasing on [0,T) and
set
1 1

st (1ptg)ol]
2 (A+uy (%)) \2 2 2
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Because m(t)<m(0)=u, (X))<—A4,then
2

m'(t) < —%(m(t)+ﬂ,)2 +%(/12 +C7)<-5(m(t)+2)

Similar discussion of the Theorem 3.3

2
m(t) < o (%) At b
1+6t(A+Ug, (%)) A8 + Uy, (%)

Hence

2(l+u0X(x0)) '
(A+U, (xo))2 —(12 +C12)

The proof of the theorem 3.4 is complete.

0<T<-

Next we will show the blow-up rate of solutions and the result shows: the

blow-up rate is not affected by the weakly dissipation.

Theorem 3.5 (blow-up rate) Let o >0, and (u, p) be the solution of Equa-
tion (1.1) with initial data (Uy, p,—1)€ H*(S)xH**(S), s>2, and Tis the
maximal time of existence of the solution. If T <o, then

Iim(

t>T~

infu, (t,x)(T —t)) =-2

xe$

Proof: Without loss of generality, assume s=3.
Set

e ket ) o

From (3.30), we have
1 2 1, , 1 2 1,
—E(m(t)+/l) —SA M gm(t)S—E(m(t)+/l) HSATHM o (3.38)

Because of lim (m (t)+ /I) = 0 , there exists t; € (O,T) satisfies
t>T™

m(t,)+A <0 and (m(t0)+/1)2>1(/12+M),8E[0,%j. Since m is locally
£

Lipschitz, m is absolutely continuous. We deduce that m is decreasing in [t;,T)

and

(m(t)+/1)2 >%(12+M) (3.39)

According to (3.38) and (3.39)

1 d 1 1
<— <—+eg,te(t,, T
2 ¢ dt[m(t)+l] g tetele)

Integrating (3.39) over (t,T) withrespectto te[t,,T), notice that
lim (m(t)+ 1) =—o0, then

- (%‘8]0 _t)s_(m(Smj S@”)(T “O.te(t.T)
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Since & is arbitrary, so

|irTq{m(t)(T —t)+ A(T -t)} =-2

t—
That is lim m(t)(T —t)=-2, the blow-up rate of solutions of Equation (1.1)
t>T~
is not effected by the weakly dissipation.

4. Global Existence

In this section, we provide a sufficient condition for the global solution of Equa-
tion (1.1) in the case 0<o < 2.

Theorem 4.1 Let 0<o <2, (Uy,p—1)eH*(S)xH**(S) with s>§,

there exist a maximal time T >0 and a unique solution (u,p) of Equation

(1.1) with initial data. Assume that inf p, (x) >0, then
xeS

1) when 0<o <1,

2) when 1<o<2,

where

C, =1+

(Bo+2)(e+1) (7(e+1) 1+k? ) L
e (AT
Co =Lt sl +looll

Proof: It is sufficient to prove the desired results for s=3.

1) We will estimate the

ixrg; u, (t,x)|-

From (3.22), we have
m(t)<0,te[0,T) (4.1)
Let {(t)= p(t,cf(t)) , thus we have
m () == (6)-Am(t) + ¢ (0)+ F (La(t x,))
¢'(t)=-¢(t)m(t)

where fis defined as (3.15). The second Equation of (3.15) shows that ¢ (t) and

(4.2)
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{(0) have the same sign. Hence 4’(0) = p(O,é)(O) >0
Suppose 0 < o <1, define the function

w, (t)= g(o)g(t)+@(1+ m? (t)) (4.3)

which is positive on te[0,T).
Differentiate W (t)

(0 =€) O+ S ()¢ )+ Dm0
—-£ (O Om+ S ()<Y
25((8) (O 20 (1)~ am() + 2% 1)+ fj
o ) 2(0) L 2%(0)
(0@ @m()+ iy 2E Bl D
<(o- ;(O)m +2§(O)m
(-0 )+ <m0 Z Bl
_24(0) 1 o-1,
0 m(t)(§+f+ch (t)j »
C:((O))(1+m (t) )(l+|f|)
<Cyw (1)
(Bo+2)(e+1) (7(e+1) 1+k?
e ()
Then
w, (1) <w(0)e =(£%(0)+1+m? (0))e™ ws)
< (ol + ol ) =Coe®™ |
where C, :1+||UOX||2Lac +||p0||2Lx .
From (4.3), we have
£O)£() =W ()2 O m(t) < 1) w
then
w, (t) 1 ct
‘lnfu tx‘ Im(t)| < (0 |£ix2];po(x)c4e tel0T)
Suppose 1< o < 2, define the function
W, (t)=¢7 (0 )M (4.7)

<o (1)

Differentiate W, (t)

DOI: 10.4236/jamp.2020.810167 2237 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2020.810167

Y. Lietal

W (1) = 25:8) m(t)[(o_l)gZ(t)+“T‘1m2 (t)-am(t)+ f +%}
£ +m’ +Z
_C"(t)(1 (t))(“' 2) (4.8)
£ +m’ +
S )1
<Cyw, (1)

then

W, (t) S W, (O)ecal = (42 (0)+1+ m? (0))ec3t

< (2 ool +leolf- e (4.9)
=C,e™
- : a® b 2 2
Here we apply Young’s inequality ab < ?-’-F ,for p=—, = PR
c -o
2 22 Yoo
w, (t) _(40(22”)]0 N (1+m ) 2
(0 - o(2-0)
7 (0) =
2
2 2 2-0 \2-o
> 4”0(2276) ’,2-0 (l+m ) ’
- 2 2 o(2-0)
s 2

Hence

Cat

2-0 1
ingux(t,x)‘s[?(t)d < L CZee?7,te[0,T)

o

inf p2- (x)

xeS

2) Next we control (supu, (t, X)

xeS

Similarly,

¢'(t)=-¢(t)m(t)
Suppose 0< o <1, define the function
- oy & (1) 1+ M7 (1)
W (t)=¢°(0)——————+=~
(=57 O
From (3.20) and (4.8), we obtain W, (t) < C,W, (t), then W, (t)<C,e".

Similarly, we get

(4.10)
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then

1
2o 1o
U < L Croe*,te[0,T)

(0)| inf pg% (x)

xeS

i

Suppose 1< o <2, define the function

supu, (t,x)

xe$

Y|
Q[

W, (1)=& (0)¢ (t)+==-(1+m* (1)) (4.11)
From (3.20) and (4.4), we have Wj (t)<C,W, (t), then W, (t)<C,e™.

Hence

=|m(t) < () ! e[o,T)
[0 inf oy (x)

Theorem 4.2 Let 0<o <2, (Uyp,—1)eH*(S)xH**(S) with s>2,
there exist a maximal time T >0 and a unique solution (u,p) of Equation
(1.1) with initial data. If ixrg; Po(X)>0,then T =0 and the the solution (u, p)
is global.

supu, (t,x)

xe$S

Proof: By contradictory arguement, assume T <o and the solution blows up.

The Theorem 3.1 shows
T
s

The assumptions and the Theorem 4.1 show

Uy (t,x)] . dt = oo (4.12)

|uX (t, x)| <o

For all (t, X) IS [O,T)x S, that is a contradiction to (4.12).
The proof of Theorem 4.2 is complete.
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