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Abstract 
We study the quantization of a charged particle motion without spin inside a 
flat box under a static electromagnetic field. Contrary to Landau’s solution 
with constant magnetic field transverse to the box and using Fourier trans-
formation, we found a full solution for the wave function which is different 
from that one given by Landau, and this fact remains when static electric field 
is added. However, the Landau’s levels appear in all cases. 
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1. Introduction 

The work of Klitzing, Dora and Pepper [1] presented a breakthrough in experimen-
tal physics due to the success in measuring the Hall voltage of a two-dimensional 
electron gas realized in a MOSFET. The important fact discovered in this experi-
ment was that the Hall resistance is quantized, and Landau’ eigenvalues solution 
[2] (Landau’s levels) of a charged particle in a flat surface with magnetic field has 
become of great importance in trying to understand integer hall effect [1] [3] [4] 
[5] [6], fractional Hall effect [6] [7] [8] [9], and topological insulators [10]-[16]. 
These elements promise to become essential for future nanotechnology devices 
[17] [18] [19]. Due to this considerable application of the Landau’s levels, it is 
worth to re-study this problem and its variations with an static electric field. In 
this paper, we solve the problem of a charged particle inside a flat box with 
lengths xL , yL , and zL  such that ,z x yL L L  by using the Fourier trans-
formation, for three different cases: for a transverse constant magnetic field, for 
a constant magnetic field orthogonal to a constant electric field, and for a con-
stant magnetic field parallel to a constant electric field. We show that there exists 
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a different solution for this type of eigenvalue quantum problems than that one 
given by Landau, but having the same Landau’s levels. We consider that this re-
sult could be relevant because Landau’s solution is kept using in different works 
like Prange’s [20], Laughling’s [21], solid state and quantum transport books as 
well [3] [7] [22] [23].  

2. Analytical Approach for the Case ( )B B0,0,=  

Let us consider a charged particle “q” with mass “m” in the box with a constant 
magnetic field orthogonal to the flat surface, ( )0,0, B=B , as shown in Figure 1.  

For a nonrelativistic charged particle, the Hamiltonian of the system (units 
CGS) is  

( )2

,
2
q c

H
m

−
=

p A
                        (1) 

where p  is the generalized linear momentum, A  is the magnetic potential 
such that = ∇×B A , and “c” is the speed of light. We can choose the Landau’s 
gauge to have the vector potential of the form ( ),0,0By= −A . Therefore, the 
Hamiltonian has the following form  

( )2 2 2

.
2 2 2

yx zpp qBy c pH
m m m

+
= + +                    (2) 

To quantize the system, we need to solve the Schrödinger’s equation [24]  

( )2 2 2ˆˆ ˆ
.

2 2 2
yx zpp qBy c pi

t m m m

 +∂Ψ  = + + Ψ 
∂   

                (3) 

where ( ), tΨ = Ψ x  is the wave function,   is the Plank’s constant divided by 
2π , ˆ ip  is the momentum operators such that ˆ,i j ijx p i δ  =   . Now, the argu-
ment used by Landau is that due to commutation relation ˆˆ , 0xp H  =  , between 
the operators ˆ xp  and the Hamiltonian Ĥ  (implying that ˆ xp  is a constant of 
motion), it is possible to replace this component of the momentum by xk ,  
 

 
Figure 1. Electric charged in a flat box with magnetic field. 
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having a solution for the eigenvalue problem of separable variable type, 
( ) ( ) ( )2 3 4f x f y f z  for the resulting eigenvalue problem, once the time variable 

is separated. However, this problem can be fully addressed using the Fourier 
transformation. First, since the Hamiltonian Ĥ  does not depend explicitly on 
time, the proposition  

( ) ( ), e iEtt −Ψ = Φx x                        (4) 

reduces the equation to an eigenvalue problem 
ˆ .H EΦ = Φ                            (5) 

Then, this equation is written as  
2 22 2

2 2
2

ˆ ˆ1 2ˆ ˆ .
2 2 2

y z
x x

p pqB q Bp yp y E
m c m mc

   + + + + Φ = Φ  
   

           (6) 

The variable “z” is separable through the proposition  

( ) ( ), e , ,zik z
zx y kφ −Φ = ∈ℜx                     (7) 

resulting in the following equation  
22 2

2 2
2

ˆ1 2ˆ ˆ ,
2 2

y
x x

pqB q Bp yp y E
m c mc

φ φ
    ′+ + + =  

   
              (8) 

where E′  is  
2 2

.
2

xk
E E

m
′ = −



                           (9) 

That is, the resulting partial differential equation is of the form  
2 2 2 2 2

2 2
2 2 2

1 2 .
2 2

qB q Bi y y E
m c x mx c y

φ φ φφ φ
 ∂ ∂ ∂ ′− − + − = 

∂∂ ∂ 

 

          (10) 

This equation will be solved using Fourier transformation [25] on the variable “x”,  

( ) [ ] ( )1ˆ , e , d .
2

ikxk y x y xφ φ φ
ℜ

=
π

= ∫                 (11) 

Applying Fourier transformation to this equation, knowing its property 
[ ] ( ) ˆx ikφ φ∂ ∂ = − , we get the ordinary differential equation  

( )
2 2

22
02

ˆd ˆ ˆ,
2 2d c

m y y E
m y

φ ω φ φ′− + − =
                  (12) 

where cω  is the cyclotron frequency  

c
qB
mc

ω =                            (13a) 

and ( )0 0y y k=  is the displacement parameter  

0 .cy k
qB

=
                           (13b) 

This equation is just the quantum harmonic oscillator in the “y” direction dis-
placed by an amount 0y . So, its solution in the Fourier’ space is  
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( ) ( ) ( ) ( ) ( )2

0
ˆ , , , e ,c
n n n n n

m
k y y y A Hξω

φ ψ ξ ξ ψ ξ ξ−= = − =


   (14) 

being ( )nH ξ  the Hermit polynomials, and nA  is a constant of normalization, 
( )1 4 2 !n

n cA m nω π=  . and  

( )1 .2n cE nω′ = +                        (15) 

Now, the solution in the real space ( ),n x yφ  is gotten by using the inverse 
Fourier transformation [25],  

( ) ( ) ( )1 1, , e d .
2

ikx c
n n n

m
x y k y y ck qB k

ω
φ φ ψ− −

ℜ

 
= = −      

 π ∫




    (16) 

Making the change of variable ( )cm y ck qBσ ω= −  , and knowing that the 
Fourier transform of the harmonic oscillator solution is another harmonic oscil-
lator solution, we get  

( )
2 2

, e .
qBi xy

c
n n

c c

qB qBxx y
mc mc

φ ψ
ω ω

−  −  =
 
 



 

             (17) 

This last equation is indeed a nonseparable solution of (8). Therefore, the nor-
malized eigenfunctions and the eigenvalues of the eigenvalue problem (5) are 
(ignoring the sign)  

( )
( ), 22 2 2 1 4 e .

z

z

qBi xy k z
c

n k n

cy z c

qB qBx

mcL L mc
ψ

ωω

 − − 
 

 
 Φ =
 
 

x 





       (18a) 

and  
2 2

,
1 .
2 2z

z
n k c

kE n
m

ω  = + + 
 



                    (18b) 

These eigenvalues represent just the Landau’s levels, but its solution (18a) 
is completely different from that one given by Landau on the variables “x” 
and “y”. One needs to point out that there is not displacement at all in the 
harmonic oscillation solution. Now, assuming a periodicity in the z-direction, 

( ) ( ), ,, , , ,
z zn k n k zt x y z L tΦ = Φ +x , the usual condition 2 ,z zk L n n′π ′= ∈  makes 

the eigenvalues to be written as and the general solution of Schrödinger’s Equation 
(3) can be written as  

( )
2 2

2
, 21 2 2 .n n c

z

E n n
mL

ω′ ′= + +
π

                   (19) 

We must observe that these quantum numbers correspond to the degree of 
freedom in the “ ( )y n ” and “ ( )z n′ ” directions. The quantization condition of 
the magnetic flux appears rather naturally since e 1iqBxy c− =  for any “x” and “y” 
such that 2qBxy c j= π , were j∈ . So, in particular one can ask this to 
happen for xx L=  and yy L= . Thus, it follows from the phase term that  

2 , ,x yqBL L
j j

c
= π ∈



                      (20) 

where x yBL L  is the magnetic flux crossing the surface with area x yL L , and 
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c q  is the so-called quantum flux [26]. Then, expression (18a) is written as  

( )
( )

2 2

2 2 1 4 22
.x y z

j ni xy z
L L L

nn j n

cy z c

qB qBxe
mcL L mc

ψ
ωω

 ′
 − − 
 

′

π π  
 Φ =
 
 

x




      (21) 

The degeneration of the eigenvalues (19) comes from the degree of freedom in 
“x” and can be obtained by making use of the following quasi-classical argument: 
given the energy of the harmonic oscillator ( )1 2o cE nω= + , we know the 
maximum displacement of the particle (classically) is given by  

2
max 2 o cx E mω= ± , and since the periodicity in the variable “y” mentioned be-

fore is valid for any “x” value, we must have that the maximum value of the 
quantum number “j” must be  

( )
max

1 22
,y y

c

qBL qBL n
j x

c c mω
+

∆
π

=
π

=


 

               (22) 

and this represents the degeneration, ( )D n , we have in the system  

( )
2

2 1 .y

c

qBL
D n n

mc ω

 
 = +
 π 



                  (23) 

where [ ]ξ  means the integer part of the number ξ . Therefore, the general so-
lution (absorbing the sign in the constants) is  

( )
( ) ,

2 2

2
,

1 4

0

2, e e

2 ,

n n
x y z

j n ED n i xy z i tL L L
nn j

n n j cx y z

n
c x y

jt C
mL L L

j x
m L L

ω

ψ
ω

′
′

− − −
 π π 


′



=

 
′

 
Ψ =  

 

  
 ×    

π



π



∑∑x 





      (24) 

where the constants nn jC ′  must satisfy that 
2

, , 1nn jn n j C ′′ =∑ . The Landau’s le-
vels ,n nE ′  are given by expression (19). 

3. The Analytical Approach for Case B E⊥  

This case is illustrated in Figure 2.  
 

 
Figure 2. Electric charged in a flat box with magnetic and electric fields. 
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Where the magnetic and electric constant fields are given by ( )0,0, B=B  
and ( )0, ,0=E  . We select Landau’s gauge for the magnetic field such that the 
vector and scalar potentials are ( ),0,0By= −A  and yφ = − . Then, our Ha-
miltonian is [21] [22] [23]  

( )

2

ˆ
ˆ ,

2

q
cH q
m

φ

 − 
 = +

p A
x                     (25) 

and the Schrödinger’s equation,  

ˆ ,i H
t

∂Ψ
= Ψ

∂
                         (26) 

is written as  
22 2ˆ ˆ1 ˆ .

2 2 2
y z

x

p pqBi p y q y
t m c m m

 ∂Ψ   = + + + Ψ − Ψ  ∂    
           (27) 

Using the definition ˆ j jp i x= − ∂ ∂  and the commutation relation 
kipx jjk δ=]ˆ,[ , the above expression is written as the following partial diffe-

rential equation  
2 2 2 2 2 2 2 2

2
2 2 2 2 .

2 2 22
qB q Bi i y q y

t m mc x m mx mc y z
∂Ψ ∂ Ψ ∂Ψ ∂ Ψ ∂ Ψ

= − − + Ψ − − − Ψ
∂ ∂∂ ∂ ∂

   

   (28) 

Taking the Fourier transform, with respect the x-variable,  
( ) ( )ˆ , , , ,xk y z t tΨ = Ψ  x , the resulting expression is  

2 2 2 2 2 2 2 2
2

2 2 2

ˆ ˆ ˆˆ .
2 2 22

k qB k q Bi q y y
t m mc m mmc y z

 ∂Ψ ∂ Ψ ∂ Ψ = − + + Ψ − −  ∂ ∂ ∂  

   

     (29) 

By proposing a solution of the form  

( ) ( )ˆ , , e ,ziEt ik zk yz t k y− +Ψ = Φ                     (30) 

and after some rearrangements, the resulting equation for Φ  is  

( )
2 2

22
02

d 1 ,
2 2d cm y y E

m y
ωΦ ′− + − Φ = Φ

                  (31) 

where cω  is the cyclotron frequency (13a), and we have made the definitions  
2

0 2

c mcy k
qB qB

= +
                           (32) 

and  
22 22 2 1 .

2 2 2
zkk mcE E k

m m m B
 ′ = − − + + 
 





                (33) 

This equation is again the quantum harmonic oscillator on the variable “y” 
with a cyclotron frequency cω  and displaced by a quantity 0y . Therefore, the 
solution (14) is  

( ) ( )0, c
n

m
k y y y

ω
ψ

 
Φ = −  

 

                  (34) 
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and  

( )1 .2n cE nω′ = +                        (35) 

Thus, the solution in the Fourier space is  

( ) ( ),
0

ˆ , , , e n k zziE t ik z c
n

m
k y z t y y

ω
ψ− +  

Ψ = −  
 





           (36) 

with the energies , zn kE  given by  

( )
2 2 2 2

, 2 .
2

1 2
2z

z
n k c

k mc cE n k
m BB

ω= + + − −
 



 
            (37) 

The solution in the space-time is obtained by applying the inverse Fourier 
transformation,  

( ) ( ) ( ), , ,
1ˆ ˆ, , , , e , , , d ,
2z z z

ixk
n k n k n kt k y z t k y z t k−

ℜ
 Ψ = Ψ = Ψ  π ∫

x      (38) 

which after a proper change of variable and rearrangements, we get the norma-
lized function (ignoring the sign)  

( )
( )

( ), ,
, 1 4 22 2 2

, e ,n kz
z

i t
n k n

cy z c

qB qB c tt x
BmcL L mc

φ ψ
ωω

−
   Ψ = −    

xx





    (39) 

where the phase ( ), ,
zn k tφ x  has been defined as  

( ) ( )
2 2 2 2

, 2

2

2

,
2

.

1
2

2
z

z
n k c

z

k mc tt n
m B

qB c t mck z x y
c B qB

φ ω
 

= + + − 
 

  − + − −  
  

x 









 
            (40) 

asking for the periodicity with respect to the variable “z”,  
( ) ( ), ,, , , ,

z zn k n k zx t z y z L tΨ = Ψ + , it follows that 2z zk L n′= π  where n′  is an 
integer number, and the above phase is now written as  

( ) ( )
2 2 2 2 2

2 2

2

2

1 2 2 2,
2

.

nn c
zz

n mc t nt n z
LmL B

qB c t mcx y
c B qB

φ ω′

 ′ ′
= + + − − 
 

  + − −  
 

π

 

πx 









 
      (41) 

Note from this expression that the term ( ),e i tφ− x  contains the element e
qBi xy

c ,  
and by assuming the periodic condition ( ) ( ), , , ,yt x y L z tΨ = Ψ +x , will imply 
that ( ), tΨ x  will be periodic with respect to the variable “y”, for any “x” at any 
time “t”. In particular, this will be true for xx L= . This last assumption brings 
about the quantization of the magnetic flux of the form  

2 , ,x yqBL L
j J

c
= π ∈



                      (42) 

obtaining the same expression as (20), and this phase is now depending on the 
quantum number “j”  
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( )
2

2

2 2 2, .nn j nn
z x y x y

n j j mc ct e t z xy x ty
L L L L L BqB

φ ′ ′

 ′
= − + − + 



π π



πx 

       (43) 

where nne ′  is the energy associated with the system,  

( )
2 2 2 2

2
, 2 21 2 2 .

2n n c
z

mce n n
mL B

ω′ ′= +
π

+ +




               (44) 

In this way, from these relations and the expression (39) we have a family of 

solutions ( ){ } , ,
,nn j n n j

x t′ ′ ∈
Ψ


 of the Schrödinger Equation (27),  

( ) ( )
4

,
2

1
2 2, e ,nn ji t

nn j n
c c x yx y z

j j c tt x
m m L L BL L L

φ ψ
ω ω

′−
′

      Ψ = −         

π π

 

xx     (45) 

Now, by the same arguments we did in the previous case, the degeneration of 
the systems would be given by (23), and the general solution would be of the 
form  

( )
( )

( )
, 0

, , .
D n

nn j nn j
n n j

t C t′ ′
′ =

Ψ = Ψ∑∑x x                   (46) 

4. The Analytical Approach for Case B E  

Figure 3 shows this case.  
The fields are of form ( )0, ,0B=B  and ( )0, ,0=E  . The scalar and vector 

potentials are chosen as ( ),0,0Bz=A  and yφ = − . The Shrödinger equation 
is for this case as  

( )2 2 2ˆˆ ˆ
,

2 2 2
yx zpp qBz c pi q y

t m m m

 −∂Ψ  = + + − Ψ 
∂   

               (47) 

which defines the following partial differential equation  
2 2 2 2

2
2 2

2 2 2 2

2 2

2 2

.
2 2

qB z q Bi i z
t m mc xx mc

q y
m my z

∂Ψ ∂ Ψ ∂Ψ
= − + + Ψ

∂ ∂∂
∂ Ψ ∂ Ψ

− − − Ψ
∂ ∂

 



 


             (48) 

 

 
Figure 3. Electric charged in a flat box with 
parallel electric and magnetic fields. 
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Proposing a solution of the form ( ) ( ), e iEtt −Ψ = Φx x , we get the following ei-
genvalue problem  

2 2 2 2
2

2 2

2 2 2 2

2 2

2 2

.
2 2

qB z q BE i z
m mc xx mc

q y
m my z

∂ Φ ∂Φ
Φ = − + + Φ

∂∂
∂ Φ ∂ Φ

− − − Φ
∂ ∂

 

 


              (49) 

Applying the Fourier transform over the x-variable, ( ) ( )ˆ , , xk y zΦ = Φ  x , 
the following equation arises after some rearrangements  

( )2 2 2 2 2

2 2

ˆ ˆˆ ˆ ˆ ,
2 2 2

k qBz c
E q y

m m mz y
φ+ ∂ ∂ Φ

Φ = Φ − − − Φ
∂ ∂



 

           (50) 

which can be written as  

( )
2 2 2 2

2
02 2

ˆ ˆ1 ˆ ˆ ,
2 2 2cm z z q y

m mz y
ω∂ Φ ∂ Φ

− + + Φ − − Φ
∂ ∂

 

           (51a) 

where ωc is the cyclotron frequency (13a), and ( )0 0z z k=  has been defined as  

0 .cz k
qB

=
                          (51b) 

This equation admits a variable separable approach since by the proposition 
( ) ( ) ( )ˆ , , ,k y z f k z g yΦ = , the following equations are bringing about  

( ) ( )
2 2

2 12
02

d 1
2 2d c

f m z z E f
m z

ω− + + =


               (52a) 

and  

( )
2 2

2
2

d ,
2 d

g g yg E g
m y

− − =


                     (52b) 

where ( ) ( )1 2E E E= + . The solutions of these equations are, of course, the 
quantum harmonic oscillator and the quantum bouncer, which are given by  

( ) ( ) ( ) ( ) ( )2 12
0 1e , , .2, c

n n n n c
m

f k z A H z z E nξ ω
ξ ξ ω−= = + = +



  (53a) 

and  

( )
( )
( )

( )2, , ,n
n n n

n

Ai
g y y l E q l

Ai

ξ ξ
ξ ξ

ξ

′
′ ′

′

−
= = = −

′ −

 

 



           (53b) 

where ( )1 4 2 !n
n cA m nω= π , ( )( )2 1 3

2l mq= −  , ( ) 0nAi ξ ′− = , and 
( )Ai ξ′  is the differentiation of the Airy function. In this way, we have  

( ) ( ) ( )( )

( )

1
, 0

,

ˆ , , ,

1 2 ,

c
n n n n n

n n c n

m
k y z a z z Ai l y y

E n q y

ω
ψ

ω

−
′ ′ ′

′ ′

 
Φ = + −  

 
= + −



 

        (54) 

where we have defined na ′  as ( )11n na Ai l y−
′ ′′= − . Now, the inverse Fourier 

transformation will affect only the quantum harmonic oscillator function nψ  
through the k-dependence on the parameter 0z , and the resulting expression is  
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( )
( )

( )( )1
, 22 1 4 e .

qBi xzn c
n n n n

cc

a qB qBxx Ai l y y
mcmc

ψ
ωω

′ −
′ ′

 
 Φ = −
 
 







     (55) 

Now, asking for the periodicity condition of the above solution with respect 
the z-variable, ( ) ( ), , , ,n n n n zx y z L′ ′Φ = Φ +x , the periodicity must satisfy for any 
x-values, and in particular for xx L= . Thus it follows the quantization expres-
sion for the magnetic flux  

2 , .x zqBL L
j j

c
= π ∈



                      (56) 

Using the same arguments shown above for the degeneration of the system, 
we have the same expression (23) for the degeneration of the system and the 
function (55) is given by (normalized)  

( )

( )( )

2

4 2

1

1
2 2e

.

x z

ji xz
L L

nn j n n
c c x yx y z

n

j ja x
m m L LL L L

Ai l y y

ψ
ω ω′ ′

−
′

π  π π
 
 

  
Φ =        

×



−


x  

      (57) 

Then, we have obtained a family of solution of the Schrödinger Equation (48),  

( ) ( ),
, , e ,n niE t

n n nn jt ′−
′ ′Ψ = Φx x                  (58) 

where the energies ,n nE ′  are given by the expression (54). The general solution 
of (48) can be written as  

( )
( )

( ),

2
*
, ,

, 0
, e e , ,n n x z

jD n i xziE t L L
n n n n

n n j
t C u x y′−

′ ′
′ =

π

Ψ = ∑∑x 

            (59) 

with the condition 
2*

,, 1n nn n C ′′ =∑ , and where it has been defined the functions 

,n nu ′  as  

( )

( )( )1

4

, 2

1
2 2,

.

n n n n
c c x yx y z

n

j ju x y a x
m m L LL L L

Ai l y y

ψ
ω ω′ ′

−
′

   
 =          

× −

π π 



       (60) 

5. Conclusion and Comment 

We have studied the quantization of a charged particle in a flat box and under 
constant magnetic and electric fields for several electromagnetic static cases us-
ing Fourier transformation to solve the linear differential equations resulting 
from the Shrödinger’s equation, and we have shown that the full solution ob-
tained is different from Landau’s solution for the wave function, but as expected, 
Landau’s levels appear as the solution of the eigenvalues. In all cases, a characte-
ristic phase appears which helps us to find the quantization of the magnetic flux 
in a very natural way. We consider that the approach given here could be very 
useful to understand quantum Hall effect and related phenomena mainly be-
cause with Landau’ solution a Hall’s voltage appears (which is not possible with 
Landau’ solution due to free particle solution on this direction). In addition, the 

https://doi.org/10.4236/jmp.2020.1110106


G. V. López, J. A. Lizarraga 
 

 

DOI: 10.4236/jmp.2020.1110106 1741 Journal of Modern Physics 
 

resulting degeneration in our calculations is different, and this one is used in the 
Fermi-Dirac distribution function to calculate the axial and transversal conduc-
tivities on the Hall’s experiments. 
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