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Abstract 
This paper utilizes a change-point estimator based on the φ -divergence. Since 
we seek a near perfect translation to reality, then locations of parameter 
change within a finite set of data have to be accounted for since the assump-
tion of stationary model is too restrictive especially for long time series. The 
estimator is shown to be consistent through asymptotic theory and finally 
proven through simulations. The estimator is applied to the generalized Pa-
reto distribution to estimate changes in the scale and shape parameters. 
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1. Introduction 

Let 1, , nx x  be a time series of size n. Methods in literature consider stationary 
models in explaining the underlying data generating process. However, statio-
narity is arguably a very strong assumption in many real-world applications as 
process characteristics evolve over time. Reviewed literature reveals that the use 
of one model may not be appropriate to model a non-stationary series and as 
such various change-point estimation methods have been proposed. However, 
they are limited in different ways and their suitability depends on the underlying 
assumptions. Statistical research works have shown that with time, the underly-
ing data generating processes undergo occasional sudden changes [1]. A change 
point is said to occur when there exists a time { }1, , 1nτ ∈ −  such that the sta-
tistical properties of 1, ,x xτ  and 1, , nx xτ +   are different. In its simplest 
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form, change-point detection is the name given to the problem of estimating the 
point at which the statistical properties of a sequence of observations change [2]. 
The overall behavior of observations can change over time due to internal sys-
temic changes in distribution dynamics or due to external factors. Time series data 
entail changes in the dependence structure and therefore modelling non-stationary 
processes using stationary methods to capture their time-evolving dependence 
aspects will most likely result in a crude approximation as abrupt changes fail to 
be accounted for [3]. Each change point is an integer between 1 and n − 1 inclu-
sive. The process X is assumed to be piece-wise stationary implying that some 
characteristics of the process change abruptly at unknown points in time. The 
corresponding segments are then said to be homogeneous within but each of the 
subsequent segments is heterogeneous in characteristics. For a parametric model 
the parameters associated with the ith segment denoted iθ , are assumed to con-
tain changes. Parametric tests for change point are mainly based on the likelih-
ood ratio statistics and estimation based on the maximum likelihood method 
whose general results can be found in [4].  

Detection of change points is critical to statistical inference as a near perfect 
translation to reality is sought through model selection and parameter estima-
tion. Parametric methods assume models for a given set of empirical data. 
Within a parametric setting change, points can be attributed to change in the 
parameters of the underlying data distribution. Generally, change point methods 
can be compared based on general characteristics and properties such as test size, 
power of the test or the rate of convergence to estimate the correct number of 
change point and the change-point locations. Change point problems can be 
classified as off-line which deals with only a fixed sample or on-line which con-
siders new information as it observed. Off-line change point problems deal with 
fixed sample sizes which are first observed and then detection and estimation of 
change points are done. [5] introduced the change point problem within the 
off-line setting. Since this pioneering work, methodologies used for change point 
detection have been widely researched on with methods extending to techniques 
for higher order moments within time series data. Ideally, it is desired to test 
how many change points are present within a given set of data and to estimate 
the parameters associated with each segment. If τ is known then the two samples 
only need to be compared. However, if τ is unknown then it has to be analyzed 
through change point analysis that entails both detection and estimation of the 
change point/change time. The null hypothesis of no change against the alterna-
tive that there exists a time when the distribution characteristics of the series 
changed is then tested. Stationarity in the strict sense, implies time-invariance of 
the distribution underlying the process. 

The hypotheses would be stated as: 
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The null hypothesis postulates that the distribution remains unchanged 
throughout within the sample of size n whereas the alternative postulates no 
change as in the null up to time τ when change occurs. Then the change point 
problem is to test the hypotheses about the population parameter(s) 

0 1 2 1 1 1: versus :n nH H τ τθ θ θ θ θ θ θ+= = = = = ≠ = =         (2) 

where τ is unknown and needs to be estimated. If nτ <  then the process dis-
tribution has changed and τ is referred to as the change point. We assume that 
there exists [ ]0,1λ ∈  such that τ satisfies 

nτ λ=                               (3) 

where n is the number of observations in a given data set. Then hypothesis 2 can 
be restated as 

( )
( )

0

1

: , 1

: , 0 1

H n

H n

τ λ

τ λ

= =

< < <
                       (4) 

At a given level of significance, if the null hypothesis is rejected, then the 
process X is said to be locally piecewise-stationary and can be approximated by a 
sequence of stationary processes that may share certain features such as the gen-
eral functional form of the distribution F. Many authors such as [6]-[11] have 
considered both parametric and non-parametric methods of change point detec-
tion in time series data. Ideally, change points cannot be assumed to be known 
in advance hence the need for various methods of detection and estimation. 

This paper is organized as follows: Section 2 gives an overview of the change 
point estimator based on a pseudo-distance measure. Section 3 provides key re-
sults for consistency of the estimator. Section 4 provides an application of the 
change point estimator to the shape and scale parameters of the generalized Pa-
reto distribution. Section 5 gives an application of the estimator and consistency 
is shown through simulations. Finally 6 provides concluding remarks. 

2. Change Point Estimator 

The change point problem is addressed by using a “distance” function between 
distributions to describe the change. Given a distance function, a test statistic is 
constructed to guarantee a distance ( )0> ≥   between any two distributions 
based on a sample size n. Consider a given parametric model :fθ θ ∈Θ  where 
Θ is the parameter space defined on a data set of size n. Let 1, , nX X  be ran-
dom variables and have probability densities ( ) ( )1; , , ; nf x f xθ θ  with respect 
to σ-finite measure µ with ( );F x θ  generating distinct measures if θ ∈Θ  

Definition 2.1 (φ -divergence). Let 
1

Fθ  and 
2

Fθ  be two probability distribu-
tions. Define the φ -divergence between the two distributions as 

( ) ( )
1 2 1 2, ,D F F Dφ θ θ φ θ θ=  

The broader family of φ -divergences that take the general form 

( ) 1
2

2

1 2
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where Φ  is the class of all convex functions ( ) , 0t tφ >  satisfying 
( ) ( )1 0, 1 0φ φ′′= > . 
Assumption 1. The function [ ) ( ): 0, ,φ ∈Φ ∞ → −∞ +∞  is convex and con-

tinuous. The restriction on [ )0,∞  is finite, twice continuously differentiable 
with ( ) ( ) ( )1 1 0, 1 1φ φ φ′ ′′= = = .  

At any point t = 0, to avoid indeterminate expressions [12] gives the following 
assumptions in relation to the functions φ  involved in the general definition of 
φ -divergence statistics, 

( )

00 0
0

0 lim
0 u

up
u

φ

φ
φ

→∞

  = 
 

  = 
 

                       (6) 

These assumptions ensure the existence of the integrals. Different choices of φ 
result in many divergences that play important roles in statistics including the 
Kullback-Leibler ( ) ( )lnt tφ = − , total variation ( ) 1t tφ = −  among others. 

( ) ( )1 2 2 1, ,D Dφ φθ θ θ θ≠  hence divergence measures are not distance measures 
but give some difference between two probability measures hence the term 
“pseudo-distance”. More generally a divergence measure is a function of two 
probability density (or distribution) functions, which has non-negative values 
and takes the value zero only when the two arguments (distributions) are the 
same. A divergence measure grows larger as two distributions are further apart. 
Hence, a large divergence implies departure from the null hypothesis. 

Generally, a change point problem’s objective would be to propose an estima-
tor for the possible change-point τ given a set of random variables. 

Based on the divergence in 5 then a change point estimator can be constructed 
as; 

( )( ) ( ) ( )1 21

2max 1 ,
1n n

D Dτ φτ
λ λ θ θ

φ< <
= −

′′
               (7) 

where [ ]: 0,1
n
τλ = ∈Λ Λ =  and  1 2,θ θ  are the maximum likelihood estimates 

of the parameters before and after the change point.  
To test for the possibility of having a change in distribution of 1, , nx x  it is 

natural to compare the distribution function of the first τ observations to that of 
the last (n − τ) since the location of the change time is unknown. When τ is near 
the boundary points, say near 1 or near n then we are required to compare an 
estimation calculated on a correct large number of observations (n − τ) to an es-
timation from a small number of observations τ. This may result to an erratic 
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behavior of the test statistic [7] due to instability of the estimators of the para-
meters. If λ is not bounded away from zero and one, then the test statistic does 
not converge in distribution i.e. the critical values for the test statistic diverge to 
infinity as n → ∞ to obtain a sequence of level α tests [13]. However, fixed critical 
values can be obtained for increasing sample sizes when λ is bounded away from 
zero and one and yields significant power gains if the change point is in Λ. 

Let ε > 0 be small enough such that ( ),1λ ∈ −   
Suppose that λ maximizes the test statistic over [0, 1] then under the null hy-

pothesis, 

( ) ( ) ( )

[ ] ( )
,1

0,1

sup 1

sup as
pD O

D n
λ

λ

λ

λ
∈ −

∈

= ∀

→∞ →∞

  
                     (8) 

[13]. By this result and for ( ) ( ), , 1N n n= −    then the test statistic be-
comes, 

( ) ( ) ( )1 2
2max 1 ,
1n N

D D
n nτ φτ

τ τ θ θ
φ∈

  = −   ′′  
                (9) 

The change-point estimator τ̂  of a change point τ is the point at which there is 
maximal sample evidence for a change in distributional parameters characte-
rized by maximum divergence. It is estimated by the least value of τ that max-
imizes the test statistic 9. 

( ) ( ) ( )1 2
2ˆ min : max 1 ,
1n N

D D
n nτ φτ

τ ττ τ θ θ
φ∈

    = = −    ′′    
        (10) 

3. Consistency of the Change Point Estimator 

A minimal requirement for a good statistical decision rule is its increasing relia-
bility with increasing sample sizes [14]. 

Let 1, , nx x  be a sample of fixed size n with the density function ( );f x θ  
for dRθ ∈Θ ⊂  and ( );L x θ  be the likelihood function. It can be shown that 
by Taylor’s theorem under the null hypothesis, the φ , divergence based esti-
mator can be reduced to a two-sample Wald-type test statistic of the form 



( )
( ) ( ) ( )1 1 0 2 2max 1n N

W I
n nτ τ

τ τ θ θ θ θ θ
∈

  = − − −  
  

            (11) 

Suppose 1, , nx x  are iid random variables of size n with probability density 
function ( );f x θ  with ( )1, , ,k k nθ θ θ ′= <  being the vector of parameters 
governing the pdf. The likelihood function can be expressed as 

( ) ( )
1

| ;
n

i
i

L x f xθ θ
=

=∏                        (12) 

It is more convenient to work with the logarithm of the likelihood function 
given by  

( ) ( )
1

| log ;
n

i
i

x f xθ θ
=

= ∑                       (13) 
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Since the logarithm is a monotone increasing function, maximizing the like-
lihood function is equivalent to maximizing the log-likelihood function. Intro-
duce the following notations: 

( ) ( )log ; log ;i if x f xθ θ θ
θ
∂

∇ =
∂

                  (14) 

( ) ( )
2

2 log ; log ;i i
i j

f x f xθ θ θ
θ θ
∂

∇ =
∂ ∂

                (15) 

( ) ( )2

1

1 log ;
n

n i
i

H f x
n θθ θ

=

= ∇∑                    (16) 

( ) ( )log ; ,1
m

jm i
i j

U f x j m nθθ θ
=

= ∇ ≤ ≤ ≤∑               (17) 

The following equalities hold as n →∞ . 

( ) ( )

( ) ( )1 0

n

n

H I

H I
n

θ θ

θ θ

→ −

+ →
                      (18) 

On assumption that 1 2θ θ≠  for 1 2, dRθ θ ∈Θ ⊂ , then 
 

 

( ) ( )

1 1 2 2

1 2

1 1

, as

and are solutions to

log ; 0 and log ; 0 respectively.
n

i i
i i

n

f x f x
τ

θ θ
τ

θ θ θ θ

θ θ

θ θ
= = +

→ → →∞

∇ = ∇ =∑ ∑

    (19) 

Theorem 3.1. Let 1 2 1 1 2 20 , ,n n n nδ δ δ δ< < < ∞ = =  

( ) ( )
1
2

0 1 2lim max : 1pU n n Oττ
τ θ τ
−

→∞

  < < = 
  

             (20) 

Theorem 3.2. Let 0 1< < −   for 0>  small enough. Then as n →∞  

( ) ( ) ( ) ( )
1

12
0 0max : 1n pI U N Oττ θ θ τ

− −  ∈ = 
  

            (21) 

For the proof of theorems 3.1 and 3.2 see [15]. 
Theorem 3.3. Let 1 20 δ δ< < < ∞  and 1 1 2 2,n n n nδ δ= =  For 1n ≥  

( ) ( ) ( )11 2
0 0 0 1 2

1lim max : 0n nn
n I U n n

n
θ θ θ θ−

→∞

  
− − < →  

  
      (22) 

Proof 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

0 0 0 0 0
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1 1 1
2 2 2
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U U U U
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θ θ θ θ θ θ θ θ

θ θ

θ θ θ θ
− − −

′ ′′′= = + − + −

= − +

= − − +





     (23) 

The third term on the RHS is ( )1po  [14]. By definition of MLE ( ) 0n nU θ = .  

( ) ( ) ( ) ( ) ( ) ( )
1 1
2 2

0 0 0 0 0n n n n n n nU nH n U n Hθ θ θ θ θ θ θ θ
−

= − − = − −     (24) 
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From Equation (24) we obtain 

( ) ( ) ( )
1 1

12 2
0 0 0n n nn n H Uθ θ θ θ−− = −  

Hence 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1 12 2
0 0 0 0 0 0

1
n n n nn I U H I n U

n
θ θ θ θ θ θ θ

−− −− − ≤ −    (25) 

But by Equation (18) 

( ) ( )1
0 0 0nH Iθ θ−− →  

By theorem 3.1 ( )
1
2

0nn U θ
−

 is bounded in probability. Hence the proof. 

Theorem 3.4. Let 0 1< < −   for 0>  small enough. Then  
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 (27) 

Considering the term on the RHS, by theorem 3.3. For ,nτ → ∞  
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 ( ) ( )

1
12

1 0 0 1 0

1
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2 0 0 1, 0
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−
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Hence the proof. 
Assume that within a finite set of data a change point τ exists and n →∞  

such that ( ), nτ τ− → ∞  
Define, 

( ) ( ) ( )0 1 0 1 0n nU U U
nτ τ
τθ θ θ= −  

Consider the following two sample homogeneity test 

( ) ( ) ( ) ( )0 0 0 for 1n n n
nQ U I U n

nτ τ τθ θ θ τ
τ τ

= < <
−

         (28) 
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[15] defined a consistent estimate of 28 as  



( )
( ) ( )( ) ( )1

n n n n n
nQ U H U

nτ τ τθ θ θ
τ τ

−

=
−

            (29) 

By the principles of maximum likelihood estimation, 0nnQ =  since ( ) 0n nU θ = , 

0 0nQ =  since ( )0 . 0U = .  
Consider ( )nUτ θ . By Taylor’s theorem, 
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τ
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=
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∂
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∂
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∑

∑
              (30) 

Since by the principle of maximum likelihood estimation ( ) 0Uτ τθ = .  

( ) ( )  ( )n nU Hτ τ τ τθ τ θ θ θ= − −                   (31) 
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( ){ } ( ) ( )
( ){ } ( ) ( )

( ){ } ( )
( )

1

1

1 0 1 0

1

1 0 1 0

1

1 0 1 0

1

1 0

1 0

1 1

1 1

n n

n

n n

n n

n

n

H U

H U U
n

H U U
n

H U U
n

n H U
n
n I U

n

τ τ τ τ

τ τ τ
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= −
−

 =  −  



        (32) 

By the CLT, 

 ( ) ( ) 10,n
nN I
nτ τ
τθ θ θ
τ

−− − →  
 

 

and thus  ( )nτθ θ−  has squared Mahalanobis norm  

 ( ) ( )  ( )
1

1
n n

n I
nτ τ τ
τθ θ θ θ θ
τ

−
−− − − 

 
                 (33) 

Hence 

 ( ) ( )  ( ) 

1
1

n n n
n I Q
nτ τ τ τ
τθ θ θ θ θ
τ

−
−− − − ≈ 

 
              (34) 

implying that nQ τ  is approximately equal to the Mahalanobis norm of  ( )nτθ θ− . 
The Mahalanobis norm can be used to detect change points within a given finite 
time series data [11]. Since the test statistic 33 can quantify the difference be-
tween ( )nθ  and ( )τθ  then nQ τ  can similarly be used to quantify the deviation 
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between the two parameter estimates. The value of nQ τ  ideally grows larger in 
evidence of the alternative hypothesis and tends towards zero when the null hypo-
thesis is true. Suppose we define a maximal type test statistic  ( )nQ tτ  such that  

  ( ) ( ){ }max :n nQ Q t t Nτ τ= ∈                    (35) 

then we can obtain a measure of the largest difference between ( )nθ  and ( )τθ . 
Consider the divergence based estimator which was reduced to a two sample test 
statistic in Equation (11).  

Definition 3.1. A matrix M is called positive definite if 0, nx Mx x R′ ≥ ∀ ∈ , 
with equality if and only if 0x = . The following inequality holds, 

{ }2 2x Mx y My M x y y x y′ ′− ≤ − + −             (36) 

Consider the following result 

( )
 ( ) ( )  ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 0 1 2

1 1
0 0 0 0 0

n n

n n

n
W Q I

n

n nI U I I U
n n

τ τ

τ τ

τ τ
θ θ θ θ θ

θ θ θ θ θ
τ τ τ τ

− −

−
− = − −

′      −    
− −      

   (37) 

By inequality 36 

( )  ( ) ( ) ( ) ( )

( ) ( ) ( )  ( ) ( ) ( ) ( )

2
1

0 1 2 0 0

1 1
0 0 1 2 0 02

n n n

n n

nW Q I I U
n

n nI U I U
n n

τ τ τ

τ τ

θ θ θ θ θ
τ τ

θ θ θ θ θ θ
τ τ τ τ

−

− −

− < − −
−

+ − − 
− − 

 (38) 

Consider the last term on the RHS. By the result of theorem 3.4 

 ( ) ( ) ( ) ( )1
1 2 0 0 0n

n I U
n τθ θ θ θ

τ τ
−− − →

−
             (39) 

And hence  

 ( ) ( ) ( ) ( )
2

1
1 2 0 0 0n

n I U
n τθ θ θ θ

τ τ
−− − →

−
             (40) 

Considering the second term on the RHS. By the results in theorem 3.2, 

( ) ( ) ( )1
0 0 1n pI U Oτθ θ− =                     (41) 

From these results as ,nτ → ∞   

0n nW Qτ τ− →                          (42) 

Definition 3.2. (Asymptotic consistency). A change point detection algorithm 
is said to be asymptotically consistent if the estimated segmentation is such that 

ˆ
max 0

n n
τ τ
− →                          (43) 
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The change point fractions are consistent, and not the indexes themselves. Con-
sistency results in the literature only deal with change point fractions since the 
distances τ̂ τ−  and their estimated counter parts do not converge to zero [11]. 

4. Change Point Analysis in the Generalized Pareto  
Distribution 

Definition 4.1. The Generalized Pareto distribution function is defined by; 

( )

1

1 1 , 0

1 exp , 0

x

H x
x

ξξ ξ
σ

ξ
σ

−
  − + ≠   = 

  − − =   

                  (44) 

where,  

[ )0, , 0

0, , 0
x

ξ

σ ξ
ξ

 ∞ ≥


∈ 
− < 

 

 

σ is referred to as the scale parameter characterizes the spread of the distribution 
and ξ referred to as the tail index/shape parameter determines the tail thickness. 
More specifically, given that ( ),X GP σ ξ∼  then the probability density func-
tion is;  

( )

1 11 1 , 0

1 exp , 0

x

h x
x

ξξ ξ
σ σ

ξ
σ σ

− −
  + ≠   = 

  − =   

                 (45) 

For any given finite set of data, at least one of the following is likely at any 
given change point ( )1 nτ τ< < : ξ changes by a non-zero quantity; σ changes by 
a non-zero quantity; both ξ and σ change by non-zero quantities. A simple 
change point problem can be formulated in one of the following ways; 

( )
( )
( )

0 1 1

1 1 1

2 2

: ~ , against

: ~ ,

~ ,

t

t

t

H X GP

H X GP t

X GP t

σ ξ

σ ξ τ

σ ξ τ

≤

>

                 (46) 

( )
( )
( )

0 1 1

1 1 1

1 2

: ~ , against

: ~ ,

~ ,

t

t

t

H X GP

H X GP t

X GP t

σ ξ

σ ξ τ

σ ξ τ

≤

>

                 (47) 

( )
( )
( )

0 1 1

1 1 1

2 1

: ~ , against

: ~ ,

~ ,

t

t

t

H X GP

H X GP t

X GP t

σ ξ

σ ξ τ

σ ξ τ

≤

>

                 (48) 

Since change points are unknown in advance, then either of the three hypo-
thesis formulations is likely. Without knowledge on the types of changes con-
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tained in the time series, the question arises on which testing procedure to use. 
In most instances hypotheses 46 is tested since it is assumed that both distribu-
tional parameters change. 

Figure 1 shows different GP density plots with a constant scale parameter but 
varying shape parameters. On the other hand, Figure 2 shows different GP den-
sity plots with a both scale and shape parameters varying. If any of the parame-
ters were to change at any given point in time, then the thickness of the general 
tail distribution would change and this would in turn have an effect of the inten-
sity of extreme values observed. 

Assume that X is independently and identically distributed random variables 
drawn for the generalized Pareto distribution and consider a sample data set 

1 1, , , , , nx x x xτ τ +   of fixed size n(n ≥ 3). Say 
1

fθ  is governed by the parameter 
space ( )1 1 1,θ ξ σ=  and 

2
fθ  is governed by the parameter space ( )2 2 2,θ ξ σ=  

where 1 2θ θ≠ ∈Θ . The data set is assumed to contain an unknown change point 
τ where the distribution parameters ξ and σ abruptly change. Then  

( )
( )

1

2

1

1

, , ~

, , ~n

x x f x

x x f x
τ θ

τ θ+





 

Then the density function 49 governs the first τ observations and 50 governs the 
last ( )n τ−  observations. 
 

 
Figure 1. Density plot with constant scale.  

 

 
Figure 2. Density plot with varying scale and shape. 
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( )

1

1

1 1
1

1
1 1

1
1 1

1 1 , 0

1 exp , 0

x

f x
x

ξ

θ

ξ
ξ

σ σ

ξ
σ σ

− −
  + ≠   = 

  
− =  

  

                  (49) 

( )

2

2

1 1
2

1
2 2

1
2 2

1 1 , 0

1 exp , 0

x

f x
x

ξ

θ

ξ
ξ

σ σ

ξ
σ σ

− −
  + ≠   = 

  
− =  

  

                 (50) 

We will restrict to the case where 0ξ >  i.e. heavy tailed distributions thereby 
only considering the first part of the density function with support [ )0,x∈ ∞ . 

From the divergence in Equation (5), let ( ) ( )logt tφ = −  

( ) ( )
( )
( ) ( )

( )
( )
( ) ( )

( )
( )
( ) ( )

( ) ( )( ) ( )

1
2

2

1
2

2

2
2

1

2 1

1 2

2 1

, d

log d

log d

, ,KL KL

f x
D f x x

f x

f x
f x x

f x

f x
f x x

f x

D f x f x D

θ
φ θ

θ

θ
θ

θ

θ
θ

θ

θ θ

θ θ φ µ

µ

µ

θ θ

 
=   

 
 

= −   
 

 
=   

 

= ≡

∫

∫

∫

           (51) 

An application of properties of the generalized Pareto distribution [16], numer-
ical computations and methods of integration the divergence between two gene-
ralized Pareto distributions becomes 

( ) ( )

1

2
2 1 1

1

1 1
1 1 2

1
2 2 1 2

, log 1

1 1 1 1 d

KLD

x x
ξ

σ
θ θ ξ

σ

σ ξ ξ
ξ

ξ σ σ σ

− −

 
= − + 

 

     
− + + +     
     

∫

      (52) 

The divergence is a function of the parameters of the two densities. 

5. Simulation Study 

The performance of the estimator is examined by considering the effects of the 
change in sample size. The single change-point estimation problem is considered 
where the change-point τ is fixed at n/2 for n = 200, 500, 1000. Figures 3-5 dis-
play the plots for the location of the change-point estimator as estimated by the 
proposed estimator 10 with the divergence measure as in 52 for the various sam-
ple sizes. The hypothesis considered here is 

( )
( )
( )

0

1

: ~ 1,0.1 against

: ~ 1,0.1

~ 3,0.35

t

t

t

H X GP

H X GP t

X GP t

τ

τ

≤

>

                  (53) 
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Figure 3. Sample size= 200, 100τ = , ˆ 88τ = . 
 

 
Figure 4. Sample size= 500, 250τ = , ˆ 245τ = . 
 

 
Figure 5. Sample size= 1000, 500τ = , ˆ 494τ = . 
 

To check consistency of the estimator, we consider the following: first, we 
consider data simulated from the GP density with parameters ( )11,ξ  and 
( )23,ξ  for the scale and shape respectively before and after the change point. 
1000 simulations are carried out to estimate the change point and the results are 
given in Table 1 and Table 2.  

6. Conclusion 

In this paper, a divergence (pseudo-distance) based estimator is used to detect 
change points within a parametric framework focusing on the generalized Pareto  
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Table 1. Effect of the sample size with varying scale and varying shape ( 2nτ = ). 

  2 0.4ξ =  2 0.3ξ =  2 0.2ξ =  

n τ  τ̂  
ˆ
n n
τ τ
−

 
τ̂  

ˆ
n n
τ τ
−

 
τ̂  

ˆ
n n
τ τ
−

 

100 50 35 0.15 31 0.19 30 0.2 

200 100 88 0.06 85 0.075 82 0.09 

500 250 245 0.01 241 0.018 241 0.018 

1000 500 494 0.006 493 0.007 491 0.009 

 
Table 2. Effect of the sample size with varying scale and varying shape ( 3nτ = ). 

  2 0.4ξ =  2 0.3ξ =  2 0.2ξ =  

n τ  τ̂  
ˆ
n n
τ τ
−

 
τ̂  

ˆ
n n
τ τ
−

 
τ̂  

ˆ
n n
τ τ
−

 

200 66 70 0.02 69 0.015 64 0.01 

500 166 164 0.004 163 0.006 165 0.002 

1000 333 330 0.003 333 0 333 0 

 
distribution. Change points are attributed to the change in model parameters at 
unknown points in time with the parameter estimates before and after the 
change point unknown. The estimator is shown to be consistent theoretically. 
Simulation studies also show that the change point estimator is consistent. 
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Appendix 

Derivation of the change point estimator nW τ  
Consider a second order Taylor expansion of  ( )1 2,Dφ θ θ  about the true pa-

rameter values 1 2,θ θ  
For 1, ,i d=   

 ( ) ( ) ( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )
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1 2
1 2 1 2 1 1

1 1

1 2
1 1

1 1
2

1 2
1 1 1 1

1 1 1 1

2
1 2

2 2 2 2
1 1 2 2

2
1 2

1 1 2 2
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i i
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i i
i i
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i i i i
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i i j j
i i i j

d d

i i j j
i i i j

D
D D

D

D

D

D
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φ
φ φ

φ

φ

φ

φ
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θ θ θ θ θ θ
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θ θ
θ

θ θ
θ θ θ θ

θ θ

θ θ
θ θ θ θ

θ θ

θ θ
θ θ θ θ

θ θ

=

=

= =

= =

= =

∂
= + −

∂

∂
+ −

∂

∂ ′+ − −
∂ ∂

∂ ′+ − −
∂ ∂

∂ ′+ − −
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+

∑

∑

∑∑

∑∑

∑∑

 

2 2

1 1 2 2oθ θ θ θ   − + −   
   

       (54) 

Under the assumption of the null hypothesis, 

( ) ( )
( )

( )
( )

( )
( )

( )

( ) ( ) ( )

1 1
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  ∂∂
′=   ∂ ∂ 

∂
′=

∂

∂′=
∂

=

∫

∫

∫

              (55) 

This is by assumption 1 and that interchanges of derivatives and integrals are va-
lid. 
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      (56) 
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By the standard regularity assumptions (theorem 5.2.1) [14], then  
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                  (57) 

Using the arguments in (55)-(57) Equation (54) reduces to 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )  

1 1 1 1 1 2 1 1 2 1
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   

        (58) 

Further, 
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′    = − − + − + −   ′′    
(59) 

Assuming that a change point τ divides the data into two heterogeneous parts 
with the parameters 1 2,θ θ  before and after the change point respectively with 
sample sizes τ, (n − τ) respectively, then by the regularity conditions the mles’s 
are such that 
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τ θ θ θ

−

−

− →

− − →
               (60) 

For ( ), ,n nτ τ→ ∞ →∞ − →∞  
Let ( )0,1

n
τλ = ∈  then, 

( )
( ) ( )( )

( )
( ) ( ) ( )( )

1
1 1 1

1
2 2 2

0,

0, 1

n
N I

n
n

N I
n

τ τ
θ θ λ θ

τ τ
θ θ λ θ

−

−

−
− →

−
− → −

           (61) 

By the assumption of the null hypothesis 1 2 0θ θ θ= = , 

( )
 ( ) ( )( )1

2 1 00,
n

N I
n

τ τ
θ θ θ −−

− →              (62) 

under the assumption that the parameter estimates are consistent.  
Suppose that under the maximum likelihood estimation for a sample of fixed 

size n, nθ θ→  as n →∞ . By the law of large numbers, the observed informa-
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tion matrix is such that, 

( ) ( ) ( ) ( )
2 2

1

1 log ; log ;
n

n
i i j i j

I f x E f x I
n

θ θ θ θ
θ θ θ θ=

    ∂ ∂
= − → − =     ∂ ∂ ∂ ∂      

∑ (63) 

If we substitute nθ  for θ  

( ) ( ) ( ) ( )
2 2

1

1 log ; log ;
n

n

n
i i j i j

I f x E f x I
n

θ θ

θ θ θ θ
θ θ θ θ= =

    ∂ ∂
= − → − =     ∂ ∂ ∂ ∂      

∑ (64) 

which is defined as a consistent estimator of the information matrix. 
The elements of ( )I θ  are continuous in θ  and it holds that 

( ) ( ) asnI I nθ θ→ →∞                       (65) 

From Equation (59) we obtain 

( )
( ) ( ) ( )  

2 2

1 2 1 1 2 1 1 2 2

n
I o o

n
τ τ

θ θ θ θ θ θ θ θ θ
− ′    − − + − + −   

   
       (66) 

From Equation (9) and Equations (56)-(66) then the test statistic can be ex-
pressed as  

( )

( )
( ) ( ) ( )  

2 2

1 2 1 1 2 1 1 2 2maxn N

n
D I o o

nτ τ

τ τ
θ θ θ θ θ θ θ θ θ

∈

−  ′    = − − + − + −    
    

(67) 

Let  

( )

( )
( )


( )

( )

( ) ( )
 

1 2 1 1 2

2 2

1 1 2 2

max

max max

nN

n nN N

n
I W

n

D W o o

ττ

τ ττ τ

τ τ
θ θ θ θ θ

θ θ θ θ

∈

∈ ∈

 − ′ − − = 
  

   = + − + −   
   



 

          (68) 

But 

 ( )

 ( )

2

1 1

2

2 2

1

1

p

p

o o

o o

θ θ

θ θ

 − = 
 
 − = 
 

 

Since the second and third terms of 67 are ( )1po  then the distribution of nD τ  
is similar to that of nW τ . 
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