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Abstract 
In this paper we show a boundary result of controllability by a new approach 
using a linear, continuous and surjective operator built from the solution of 
the heat system. And, subsequently, the border exact controllability of the 1D 
heat equation through a compactness criterion and the use of strategic zone 
actuators were established. 
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1. Introduction 

These last years, the exact controllability of distributed systems has been signifi-
cantly enhanced by J. L. Lions [1] [2] with the development of the Hilbert Uni-
queness Methods (HUM). It is based essentially on the uniqueness properties of 
the homogeneous equation by a particular choice of controls, the construction of 
a Hilbert space and a continuous linear application of this Hilbert space in its 
dual which is, in fact, an isomorphism that establishes exact controllability. 

For hyperbolic problems, this method yielded important results (Lions [3]); 
although when the controls are small support (Niane [4], Seck [5] [6]), it seems 
not very effective, likewise when for technical reasons the multiplier method 
does not give satisfactory results. 

As for the parabolic equations, there are the results of Imanuvilov-Fursikov [7] 
and G. Lebeau-L. Robbiano [8] who proved with different methods but very 
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technical and long, the exact control of the Heat equation. 
Also, the harmonic method is inoperative also for this kind of equations. 
In this work, to circumvent certain constraints related to estimates in G. Le-

beau’s work, we show that a new method which solves some of these difficulties. 
It is based Seck’s work; on criteria of surjectivity of a continuous linear operator 
of a Hilbert space in another construct directly from the problem of exact border 
controllability. 

The criteria are of two types:  
1) A surjectivity criterion that is a consequence of the properties of unique-

ness (J. L. Lions);  
2) A criterion of compactness that derives from the parabolic nature of the 

operator or the regularity of the control;  
In both cases, these criteria are easier to verify than those of the Lions HUM 

method. 
This method which we call Boundary Exact Controllability by Surjectivity 

and Compactness opens wide perspectives to the theory of the exact controlla-
bility in general, as well as to the theory of the exact controllability by actuators 
strategic zones and allows for the parabolic equations, from Schrödinger, plates, 
linearized Navier-Stockes to solve many questions thus opening up many pers-
pectives.  

2. Characterization of Exact Controllability  

Indeed, we have the following result of functional analysis (see J. L. Lions and 
Ramdani [9]) which will allow us to characterize the exact controllability of the 
heat equation. 

For proof see also jeups 2012 Karim-Ramdani or J. L. Lions.  

2.1. Exact Controllability Reminders  

Let ] [0,1I =  an open interval of  . We put A to the operator defined by:  

 ( ) ( ) ( ) ( )
2 2

1 2
0 2 2

d d/ ; ,
d d

u uD A u H I L I u D A Au
x x

 
= ∈ − ∈ ∀ ∈ = − 
 

       (1) 

Lemma 1. Let E and H two Hilbert spaces and ( ),E H∈  . Then,   is 
surjective if and only if its adjoint *  is bounded below, i.e. there exists a con-
stant 0C >  such that  

 ( )* , .EH
C Hβ β β≥ ∀ ∈                      (2) 

Lemma 2. The following assertions are equivalent: 
1) The system (12) below is exactly controllable for 0T > .  
2) The operator *

T  is inferiorly bounded, i.e. there exists 0TC >  such that  

 
] [( ) ( )2

1
2 2* *

0 0 000, ,
e d ,

T sA
T T TL T I

z s C z z I= ≥ ∀ ∈∫          (3) 

See Lions, El. Jai [10] [11] or also Ramdani-Karim jeups 2012. 
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Definition 1. Let   the operator defined below. We will say that the system 
defined by (12) that it is exactly controllable in time T if and only if   is 
surjective.  

2.2. Preliminary Results of Controllability  

Definition 2. An integrable square function : Iµ ⊂ Ω→   is called strategic if 
it satisfies, for all ( )2

0 L Iψ ∈ , the solution ψ +  of heat equation  

 

( ) ( ) ] [
( ) ] [
( ) 0

, , 0 in 0,

, 0 in 0,

0 in

T

T

t x t x Q I

t x I

I

ψ ψ

γψ

ψ ψ

+ +

+

+

 ′ − ∆ = = +∞ ×
 = Σ = +∞ ×∂


=

             (4) 

satisfies:  

 ( ) ( ) 00, , d 0 then 0.
I

t x t x xµ ψ ψ+∀ > = =∫               (5) 

Remark.  
1) It suffices that the relation (5) be checked over an interval ] [0,T  so that it 

is true over ] [0,+∞ , because of the analycity of ( ) ( ), d
I

t x t x xµ ψ +∫  on 
*
+ , Brezis [12].  
2) Here Ω  is an open bounded of 2 , of regular border; ( )2L I  is, a priori, 

the state space and T defines the time horizon considered for the exact control-
lability of the system (4). 

Proposition 3. There are strategic actuators with support contained in any 
interval ] [,a b  such that: 

0 1a b< < <  

Proof. We can first notice that µ  is strategic if and only if: * , 0kk µ∀ ∈ ≠ . 
Let ] [, 0,1a b∈  such that a b<  and assume that: ] [,a bµ χ= . 
So, we have  

] [ ( ) ( )

( ) ( )

( ) ( )

1

,0
2 sin d

2 cos cos

2 2sin sin
2 2

k a b x k x x

k b k a
k

k b a k b a
k

µ χ=

= − − 

π

π π
π

π π



− +   
=

π
−    

   

∫

 

We have 0kµ =  if and only if  

 

( )

( )

,
2

or

,
2

k b a
l l

k b a
r r

π −
= π ∈



 π + = π ∈






                      (6) 

Therefore, for 0kµ ≠  it is enough that: 

b a− ∉  and b a+ ∉ . 

So, if we take a∈  and b a r= +  where r∉  then ] [,a bµ χ=  is strategic.  
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Remark. Of course, other strategic actuators can be built without difficulty, 
see also El. Jai.  

We define the Hilbert spaces that follow:  

 22

1 1
0, e kT

T k k k
k k

T G w λµ µ µ
+∞ +∞

= =

 ∀ > = = < +∞ 
 

∑ ∑            (7) 

We equip TG  with the following scalar product ( ),
TG : 

( ) 2

1
, e k

T

T
k kG

k
x y x y λ

∞

=

= ∑  

and, of the norm .
TG . 

We know that TG  is a Hilbert space; its dual is defined by:  

 2* 2

1 1
0, e kT

T k k k
k k

T G w λµ µ µ
+∞ +∞

−

= =

 ∀ > = = < +∞ 
 

∑ ∑          (8) 

We equip *
TG  with the scalar product  

( ) *
2

1
, e k

T

T
k kG

k
x y x y λ

∞
−

=

= ∑  

and, of the norm *.
TG . 

We define the duality hook for * ,T Tx G y G∈ ∈  by  

 *
1

,
T T k kG G

k
x y x y

∞

=

= ∑                        (9) 

Let *
0 TGψ ∈ , we notice ψ +  the solution of the following heat equation  

 

( ) ( ) ] [
( ) ( ) ] [
( ) ( )0

, , 0 in 0,

,0 ,1 0 in 0,

0, in

t x t x I

t t

x x I

ψ ψ

ψ ψ

ψ ψ

′+ +

+ +

+

 − ∆ = ∞ ×
 = = ∞


=

              (10) 

Let 0 TGψ ∈ , we notice ψ −  the solution of  

 

( ) ( ) ] [
( ) ( ) ] [
( ) ( )0

, , 0 in 0,

,0 ,1 0 in 0,

0, in

t x t x I

t t

x x I

ψ ψ

ψ ψ

ψ ψ

′− −

− −

−

 − ∆ = ∞ ×
 = = ∞


=

              (11) 

3. Main Result of Boundary Exact Control  

In the following, we want to establish an exact controllability result by the con-
struction of a particular linear, continuous and surjective operator. Indeed, we 
want to solve the following problem: 

for all 0y  in a space to be determined after, find ] [( )2 0,L Tβ ∈  such that if 
y is a solution of the homogeneous heat equation:  

 
] [

( ) ( ) ( )
( ) 0

0 in 0,

,0 0, ,1

0 in

Ty y Q I

y t y t t

y y I

β

′ − ∆ = = +∞ ×


= =
 =

                (12) 

then ( ) 0y T = . 
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Thus, considering that ( ) ( ),1y t tβ=  and either ( )x xµ = , we have 

( )

( ) ( )

2

2

d 0
d
0 0, 1 1

x
x

µ

µ µ


− =

 = =

                       (13) 

and ( )2L Iµ ∈  so we get ( ) ( )y t tγ β µ=  on ] [0,T I×∂ . 
One can formally also see how the operator L can be constructed. 
Multiply the Equation (12) by ψ −  solution of the Equation (11), we have:  

 ( ) ( ) ( ) ( ) ( )
0 0 0

,
d , d d 0

T

I

t
y T T x y t t

ψ σ
ψ ψ β µ σ σ

ν

−
−

Ω ∂

∂
− + =

∂∫ ∫ ∫   (14) 

Let  

 ( ) ( ) ( )
0 0 0

,
, d d

T

I

t
y t t

ψ σ
ψ β µ σ σ

ν

−

∂

∂
=

∂∫ ∫               (15) 

In order for the second member to make sense, it must be assumed that: 
( ) ] [( )2,

0, ,
t

L T I
ψ σ

ν

−∂
∈ ∂

∂
. It suffices to assume that ] [ ( )( )2 0, ,L T D Aψ − ∈ . 

We know that: 

2 22 2 2
0 00

1 1

1e d : e 1 ,
2

k k
T t T

k k k k
k k

tλ λλ ψ λ ψ
∞ ∞

= =

 = − ∑ ∑∫  

Therefore, we deduce that  

2 22 2 2
0 00

1 1

1e d e .
2

k k
T t T

k k k k
k k

tλ λλ ψ λ ψ
∞ ∞

= =

≤ < +∞∑ ∑∫  

Remember that we had defined the following spaces:  

22

1 1
e kT

T k k k k
k k

G w λµ µ λ µ
∞ ∞

= =

 = = < +∞ 
 

∑ ∑  

and we equip it with the following scalar product:  

( ) 2

1
, e k

T

T
k k kG

k
x y x y λλ

+∞

=

= ∑  

and the natural norm .
TG  of dual *

TG  defined by  

2* 2

1 1
e kT

T k k k k
k k

G w λµ µ λ µ
∞ ∞

−

= =

 = = < +∞ 
 

∑ ∑  

also provided with the scalar product ( ) *,
TG  and its natural norm.  

With the previous notations, the formula (15) is written  

 ( ) ( ) ( )
*0 0 , 0

,
, d d

T T

T

G G I

t
y t t

ψ σ
ψ β µ σ σ

ν

−

∂

∂
=

∂∫ ∫             (16) 

 ( ) ( ) ( )
0

,
d d

T

I

t
t t

ψ σ
β µ σ σ

ν

−

∂

∂
=

∂∫ ∫             (17) 

By integrating by part by Green, we obtain  

 ( )*0 0 , 0
, d d

T T

T

G G I
y t x tψ β ψ µ−= ∆∫ ∫                   (18) 
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 ( )
0

d d
T

I
t x tβ ψ µ−′= −∫ ∫                        (19) 

 ( )
*00 ,

, d
T T

T

G G
t tβ µ ψ−′= −∫                    (20) 

 ( )
*00 ,

d , .
T T

T

G G
t tβ µ ψ−′= − ∫                    (21) 

where  

 ( ) *
0 0

d in
T

Ty t t Gβ µ−′= −∫                        (22) 

which allows us to define the operator  

 ( ) ( ) *
1 0

d in
T

TL t t Gβ β µ−′= −∫                       (23) 

Remark. We can notice that: x y=  in *
TG  equals  

 ( ) ( ) ( ) ( ) ( )1 1 2inx T y T L I− −+ +−∆ = −∆                  (24) 

We thus define the operator L by  

 ( ) ( )( ) ( )1

0
d

T
L t T t tβ β µ− +′= −∆ −∫                   (25) 

Using the relationship  

 ( ) ( ) ] [0 in 0,T t T t T Iµ µ+ +′ − − ∆ − = ×                 (26) 

Remark. The Lemma 1 and Lemma 2, responds to another philosophy than 
the usual one whose main hypothesis is the coercivity that assumes the verifica-
tion of an estimate difficult to establish in explicit spaces.  

So, we have the following boundary controllability result  
Theorem 4 (Main result). For all *

0 Ty G∈ , it exists ] [( )2 0,L Tβ ∈  such that 
if y is the solution of  

 
] [

( ) ( ) ( )
( ) 0

0 in 0,

,0 0, ,1

0 in

Ty y Q I

y t y t t

y y I

β

′ − ∆ = = +∞ ×


= =
 =

                   (27) 

then ( ) 0y T = .  
Proof. First step: 
By construction, ] [( ) ( )( )2 20, ,L L T L I∈ . Indeed, the operator L is exactly 

defined by a formula (26); So just show that µ  is strategic. 
We have ( )2L Iµ ∈ , after that  

( )

( ) ( )

( )

1

0

1

0

2 sin d , 1

2 21 sin

1
2 1

k

k

k

x k x x k

k x
k k

k
k

µ

π

= ∀ ≥

= − −

π

π
π

+

−
−

π
= ∀ ≥

∫

 

So µ  is strategic: not degenerated. 
Second step: 
Let’s show that ] [( ) ( )( )2 20, ,L L T L I∈  is surjective?  

https://doi.org/10.4236/am.2020.1110065


C. Seck et al. 
 

 

DOI: 10.4236/am.2020.1110065 997 Applied Mathematics 
 

We know that the operator L is defined by:  

 ( ) ( )( ) ( )1

0
d

T
L t T t tβ β µ− +′= −∆ −∫                   (28) 

 ( ) ( )
0

1
e dk

T T t
k k

k
t w tλβ µ

+∞
− −

=

= ∑∫                     (29) 

 ( ) ( )
0

1
e dk

T T t
k k

k
t w tλβ µ

∞
− −

=

= ∑∫                     (30) 

and his dual is  

 ( ) ( ) ( )*
0

1
e dk

T t T
k k

k
L t w tλβ β µ

∞
− −

=

= ∑∫                    (31) 

 ( ) ( )
0

1
e dk

T T t
k k

k
t w tλβ µ

∞
−

=

= ∑∫                    (32) 

So  

 ( ) ( ) ( )
*

2 2 2 22*
0

1
e dk

T

T T t
k kG k

L t w tλβ β µ
∞

− −

=

≥ ∑∫             (33) 

 ] [( )
( )

2
2 22 2

0, e k T t
k kL T wλβ µ − −≥                 (34) 

 ] [( )2
2

0,L TK β≥ ⋅                              (35) 

where K a constant defined by { }
( )2 22

1min e k T t
k kkK wλµ − −

≥= . 
By the Lemma 1 and Lemma 2, we can deduce that L is surjective.  
Third step: conclusion.  
We know that µ  is not degenerate, the operator L is surjective and, in addi-

tion, the operator *LL  is compact see also Seck. 
Let now *

0 Ty G∈ , it exists ( )2Lβ ∈ Ω  such that  

( ) ( ) ( ) ( )1

0
d

T
y T t T t tβ µ− + +−∆ = − −∫  

so  

( ) ( )( ) ( )
0

d
T

y T t T t tβ µ+ += − −∆ −∫  

Let  

( ) ( ) ( ) ( ) ( )00 0
d so d

T T
y T t T t t y t t tβ µ β µ+ + −′ ′= − − = −∫ ∫  

Let 0 TGψ ∈ , we have  

( )*0 0 0, 0
1

, e dk

T T

T t
k k kG G

k
y t tλψ β µ λ ψ

+∞

=

= ∑∫  

As  

( )

] [( )

] [( ) ] [( )

2

2 2

00
1

00,
1

00, 0,

e d

1 e
2

1
2

k

k

T

T t
k k k

k

T
k k kL T

k

L T L T G

t tλ

λ

β µ λ ψ

β µ λ ψ

β µ ψ

+∞

=

∞

=

≤

≤

∑∫

∑  
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So,  

( )

( ) ( )

( ) ( )
( )

*0 0 0, 0
1

0

0

0

, e d

d d

d d

,
d d

k

T T

T t
k k kG G

k
T

I
T

I

T

I

y t t

t t x t

t t x t

t
t

λψ β µ λ ψ

β µψ

β µ ψ

ψ σ
µ σ

ν

+∞

=

−

−

−

∂

= −

′=

= ∆

∂
=

∂

∑∫

∫ ∫

∫ ∫

∫ ∫

 

Now, multiply the system (27) by ( )tψ −  integrating by parts  

( ) ( )
( ) ( )

( ) ( )
*1 1

0
0 0 , 0,

,1
, , d

T T

T

G GH I H I

t
y T T y t t

ψ
ψ ψ β

ν−

−
− ∂

− = −
∂∫  

So  

 ( ) ( )
( ) ( )1 1

0
0 ,

, , 0T H I H I
G y T Tψ ψ −

−∀ ∈ =           (36) 

From where ( ) 0y T = : which completes the proof.  

4. Conclusion and Perspective 

The exact controllability results by the HUM (Hilbert Uniqueness Method of 
Lions) method are not suitable for parabolic type operators. To get around these 
difficulties, in particular the coercivity hypothesis for the establishment of the 
inverse inequality, many have used Carlemann inequalities Fursikov-Imanuvilov, 
Lebeau-Robbiano, Khodja [13], Tusnack [14], ... But the length and heaviness 
of the calculations in the Carleman inequalities are dissuasive, from where this 
idea came to us to couple the notion of strategic zone actuators and the subjec-
tivity-compactness of a linear operator which allowed us to have the exact 
controllability. And this technique opens up many perspectives for linear and 
semi-linear parabolic systems, of Schrodinger, of plates, ... 
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