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Abstract 
The paper presents a circular scale of time—and its diagrams—which can be 
successfully applied in calculating the Schrödinger perturbation energy of a 
non-degenerate quantum state. This seems to be done in a more simple way 
than with the aid of any other of the perturbation approaches of a similar 
kind. As an example of the theory suitable to comparison is considered the 
Feynman diagrammatic method based on a straight-linear scale of time which 
represents a much more complicated formalism than the present one. All di-
agrams of the approach outlined in the paper can obtain as their counterparts 
the algebraic formulae which can be easily extended to an arbitrary Schrödinger 
perturbation order. The calculations and results descending from the pertur-
bation orders N between N = 1 and N = 7 are reported in detail. 
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1. Introduction 

What is time? My answer is that it is a parameter which allows us to distinguish 
a later event from an earlier one; this distinction seems to be a fundamental 
property of time. On the other hand, according to Springer’s “Physikalisches 
Handwörterbuch” [1], time is defined as an independent variable of classical 
mechanics. One is suggested to add here the adjective “non-relativistic” to the 
notion of mechanics, because the relativity—in its special picture—makes any 
time interval dependent on such parameters as the body velocity and light veloc-
ity. Evidently in the general relativity the dependence of time is still more ex-
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tended, for example due to the presence of the mass of the body [2]. 
In science an important problem of time became to couple its behaviour with 

some other physical properties than those given by classical mechanics. Perhaps 
the best known example is here the entropy and its connections with time. In 
brief we need the parameters, or effects, which can be examined parallelly with 
time, though they do not necessarily represent an explicit dependence on the 
time variable. 

In the present case such example of the time connected with physics is given 
by a quantum perturbation effect. We assume that at some time moment—more 
or less accurately known—some time-independent perturbation to a quantum 
system is applied. For a ground state in the absence of the perturbation effect the 
notion of a stationary state implies an infinite duration of that state. Usually we 
are unable to follow in detail the history of a system changed by the perturbation, 
but—according to Schrödinger—we know the end of the state history equivalent 
to the end of the perturbation process: this is a new stationary state having a new 
eigenenergy, different than possessed by the system state before the perturbation 
was applied. 

Our aim is to present the time dependence of the perturbation history—and 
its results—in a possibly transparent way. 

2. Quantum-Mechanical Characteristics of the Schrödinger 
Perturbation Process 

In fact the original characteristics of the perturbation process done by Schrödinger 
[3] did not involve the idea, or a variable, of time. Also in more modern treat-
ments of the Schrödinger perturbation theory—see e.g. [4]—the time does not 
enter the calculations. 

In fact when the Hamiltonian operator 0Ĥ  of an unperturbed quantum 
problem is given, the main idea is to calculate the eigenenergies ( )0E  and ei-
genfunctions ( )0ψ  satisfying the eigenequation 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0ˆ .H E=r rψ ψ                     (1) 

The ( )0E  are constant energy terms and ( ) ( )0 rψ  are eigenfunctions depen-
dent solely on the position vector parameter r . In principle there can exist an 
infinite set of ( ) ( )0 rψ  and ( )0E . 

Let the perturbed problem be due to introduction of the so-called small per-
turbation potential 

( )per perV V= r                          (2) 

which is dependent only on the position variable r . By assuming—for the sake 
of simplicity—that the unperturbed problem is a non-degenerate one, we look 
now for the solution of the perturbed eigenequation 

( ) ( ) ( ) ( ) ( )0per per per per per perˆ ˆH H V E = + = r r r rψ ψ ψ          (3) 

where 

https://doi.org/10.4236/jmp.2020.1110095


S. Olszewski 
 

 

DOI: 10.4236/jmp.2020.1110095 1538 Journal of Modern Physics 
 

( )per perandE rψ                        (4) 

are the sets of the energy eigenvalues and eigenfunctions calculated respectively 
to some chosen perturbation potential (2). 

The idea of Schrödinger and his followers became—instead of solving (3)—to 
calculate the perturbed quantities (4) in terms of the sets of unperturbed ( )0

nE  
and ( ) ( )0

n rψ  belonging to various solutions n. If we limit the calculations to the 
energy problem alone, the perturbed term for energy can be represented by a se-
ries of terms belonging to different perturbation orders N, where N varies ac-
cording to the sequence of the integer numbers 

max1,2,3,4, , .N N=                        (5) 

The order N can be referred to the perturbation energy perE  and perturba-
tion wave function ( )per rψ  of a non-degenerate quantum state by the formulae 
(see e.g. [4]): 

( ) max
max

0per 2 3
1 2 3

N
NE E E E E E= + ∆ + ∆ + ∆ + + ∆λ λ λ λ         (5a) 

whereas 
( ) ( ) ( ) ( ) ( )maxmax0 1 2 3per 2 3 .NN= + ∆ + ∆ + ∆ + + ∆ψ ψ λ ψ λ ψ λ ψ λ ψ      (5b) 

The both series, (5a) and (5b), are expressed in terms of the powers of a para-
meter λ . These powers of λ  represent in (5a) the order given in (5) of the 
energy correction NE∆  and in (5b) the order of the wave function correction 

( )N∆ψ , respectively. 
The number maxN  denotes a maximal value of N applied in some practical 

calculation. In effect, for a convergent perturbation method and maxN  suffi-
ciently large, the accuracy of results for the perturbed energy is expected to in-
crease with the increase of a chosen maxN . In many occasions—in order to get a 
good approximation of the perturbed energy perE —there is necessary to calcu-
late a series of terms due to a large maxN : 

( ) ( ) ( ) ( )0 1 2 3per .E E E E E= + ∆ + ∆ + ∆ +                  (6) 

Here we have put λ = 1 in (5a) and the term ( )0E —entering also (5a)—labels 
the energy of an unperturbed state. The superscript entering ΔE represents the 
energy contribution due to the energy contribution to (6) due to the perturba-
tion order N. 

The subscript n which labels the index of the quantum state submitted to per-
turbation has been omitted in (5a), (5b) and (6) for the sake of brevity. Also, for 
the same reason, maxN  entering further calculations will be replaced simply by 
N. 

The main—and a rather fundamental problem of the Schrödinger theory—is 
that the number and complication of the perturbation terms which are necessary 
for calculating any 

( )NE∆                              (7) 

entering (6) increases rapidly with N; an increase of the number of terms neces-
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sary to obtain (7) is represented by the formula [5] [6] 

( )
( )

2 2 !
! 1 !N

N
S

N N
−

=
−

                         (8) 

and detailed values of SN are given in Table 1. But simultaneously—to the best of 
my knowledge—no systematic rule was provided to build up the set of individu-
al terms entering (8), and this task becomes a much complicated one for large N. 

In effect the calculation of terms (7) suitable for large N becomes a difficult 
task already at the stage of their construction. But a removal of this complication 
provides us not only with a simplicity necessary to solve the calculational prob-
lem. In fact, the importance of the perturbation methods in general can be con-
sidered as a decreasing obstacle in view of the development of the computational 
machinery and its technique applied to solve the physical problems. The point of 
importance is that an essential simplification can be attained due to the intro-
duction of the time parameter into the perturbation theory. This introduction 
provides us with a suitable arrangement of the time points on the scale labelling 
the contact events of the perturbation potential with an originally unperturbed 
quantum system. The details of this idea and its use in the Schrödinger method 
are presented below. 

3. Perturbation Order and a Suitable Scale of Time 

Not only in the everyday life, but in physics too, we are accustomed to applying a 
straight-linear scale of time according to which each of the later events does 
happen after an earlier one. Topologically the scale does assume the shape of an 
infinite straight line on which a distance of some chosen earlier point to an actual 
point of time increases systematically with the time variable; see Figure 1. This 
 
Table 1. The SN numbers from formula (8) and Feynman’s P(N) numbers of formula (9) 
(see [8]) calculated for different N. 

Perturbation order N ( )S N  ( )P N  

1 1 1 

2 1 1 

3 2 2 

4 5 6 

5 14 24 

6 42 120 

7 132 720 

8 429 5040 

9 1430 40,320 

10 4862 362,880 

11 16,796 3,628,800 

12 58,786 39,916,800 
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Figure 1. The straight-linear (progressive) scale of time. The point 
b.e. represents the present situation: b is the beginning point of the 
future (on the right), the point e is the end point of the past (on the 
left). An access is solely from point 1 to 2; no access is from 2 to 1. 

 
situation does not change also in the case when—according to the Feynman’s 
idea—the terms of the Schrodinger perturbation theory are sought to be plotted 
along the scale with the aim to calculate the necessary diagrams of energy [7] [8]. 
These diagrams can be classified also according to the perturbation order N, 
however, in order to get a contribution of energy ( )NE∆  given in (7) the num-
ber of diagrams should be not that presented in (8) but becomes 

( ) ( )1 !P N N= −                          (9) 

Only for very small N we have 
( ) ( ) ,P N S N=                         (10) 

but for 1N   the inequality 
( ) ( )P N S N                         (11) 

evidently does exist giving for example for 20N =  the ratio 

( ) ( ) 820 : 20 0.7 10 ,P S ≅ ×                     (12) 

The formulae (11) and (12) imply that in order to get—in average—a single 
Schrödinger component term for the perturbation energy of a non-degenerate 
quantum state—a large, or even very large, number of results due to the Feyn-
man energy diagrams should be first calculated, next suitably combined. Such a 
difficulty does not apply to the calculations based on a circular scale developed 
in the present paper. 

4. Perturbation Process along a Circular Scale of Time and 
Its Energy Terms 

We assume that the perturbation process is a set of successive collisions of the 
perturbation potential (2) with an unperturbed quantum system. The collision 
events are extended along a topological circle characteristic for a given order N 
of the perturbation potential; in the next step the collisions are labelled by sepa-
rate time points whose number is equal to N. Therefore the number of the time 
points on the scale increases gradually with the increase of N; see Figure 2 and 
Figure 3. 

A characteristic feature is that the set of the time points present on the scale 
characteristic for a given N is sufficient to represent all SN perturbation terms 
given in (8); moreover we obtain a one-to-one correspondence between the in-
dividual diagrams obtained with the aid of the scale and the Schrödinger energy 
terms entering the perturbation order N; see [9] [10] [11]. This goal can be at-
tained on condition the following rules concerning formation of supplementary 
diagrams characteristic for any N are satisfied: 
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Figure 2. Time scale for the perturbation order N = 1. 
Only one time point (beginning-end = b.e.) is present 
on the scale. 

 

 
Figure 3. Time scale for the perturbation order N = 2. 
Beyond the beginning-end (b.e.) point there is only 
one other point 1 on the scale. 

 
1) one of the time points on each scale is considered as the beginning-end 

point of that scale and this point cannot be submitted to contractions with the 
other time points present on that scale; 

2) the lines created in result of contractions of the time points on the scale 
should not cross; 

3) any other contraction of the time points than that satisfying the rules 1) and 
2) should not be taken into account. 

In effect, beyond the time loops indicated in Figure 1 and Figure 3 also other 
loops of time can be created; they correspond to N > 2 and are discussed below. 
In the terminology applied henceforth the time loop having the beginning-end 
point on it is called the main loop of time; it is a single loop on any diagram. The 
other loops of time, called the side loops, are due to contraction, or contractions, 
of the time points; see Section 6. 

A general look on the time-point contractions and their applications is given 
in Section 10. 

5. Energy Terms Belonging to N = 1 and N = 2 

Evidently—according to the rules 1) and 2) given above—no contraction as well 
as no side loop can be created for N = 1 and N = 2. The first contraction of the 
time points is possible for N = 3 between the points 1 and 2 represented by the 
formula 

1 2: 1: 2.t t =                           (13) 

In this case, beyond a non-contracted diagram for N = 3 presented in Figure 4, 
we obtain a new diagram connected with (13); see Figure 5. In effect we obtain 
for N = 3 the number of two diagrams: that of Figure 4 and that of Figure 5. 
This is in accordance with the formula (8) from which we have 

3 2.S =                             (14) 
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Figure 4. Time scale for the perturbation order N = 3. 
Beyond the beginning-end (b.e.) point, there are two 
other points, 1 and 2, on the scale. 

 

 
Figure 5. Contraction of the time points 1 and 2 present 
on the scale representing the perturbation order N = 3 
creates a side loop of time on the scale similar to the 
time loop characteristic for N = 1; see Figure 2. 

 
It is easy to check that 

1 2 1S S= =                           (15) 

which imply only single diagrams present for N = 1 and N = 2 in Figure 1 and 
Figure 3 respectively. Let us consider now the energy terms associated with the 
obtained diagrams. 

The perturbation energy connected with N = 1 is represented by 
per

1E V n V n∆ = =                      (16) 

which is a single matrix element. 
On the other hand, for N = 2 a summation process over the running states p 

different than n is involved: 

( ) ( )

per per

2 0 0
.

p n n p

n V p p V n
E VPV

E E≠

∆ = =
−

∑              (17) 

The symbols V are connected with the matrix elements in the numerator, sym-
bol P refers to a single energy difference in the denominator. 

6. Contractions of the Time Points on the Scale Provide us 
with the Side Loops of Time; Perturbation Orders N = 3 
and N = 4 

For N = 3 we have three time points on the scale: 1, 2, and 3. Let 3 be the begin-
ning-end point, so the points 1 and 2 can be submitted to contraction: 

1 2: 1: 2;t t =                          (18) 

no contraction with point 3 can be applied. Since S3 = 2 we have two Schrödin-
ger terms for N = 3. The first one corresponds to the lack of contractions on the 
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scale; see Figure 4. This gives the energy term 

( ) ( )( ) ( ) ( )( )
per per per

0 0 0 0
p q n p n q

n V p p V q q V n
VPVPV

E E E E
=

− −
∑∑          (19) 

where p n≠  and q n≠ . On the other side, the contraction (18) (see Figure 5) 
gives the energy term 

2VP V V−                          (20) 

which is a product of 

( ) ( )( )
per per

2
20 0p n

n p

n V p p V n
VP V

E E≠

=
−

∑                 (21) 

and V  which is the term given in (16). The product (20) is taken with a mi-
nus sign. 

It has to be noted that the power of the energy term in the denominator in (21) 
is equal to the power of P on the left of (21). The minus sign in (20) is dictated 
by the even number of the bracket terms present in the product in (20); an odd 
number of the bracket terms presenting an energy term leads to a plus sign for 
that term; see (16), (17) and (19). 

The term V  in (20) represents a contribution due to a side loop of time 
created by contraction (18); see Figure 5. Because of a difference of the time 
point indices 2 and 1 entering (18) which is equal to 

2 1 1,− =                            (22) 

the side loop created by contraction (18) contributes the term 

1V E= ∆                           (23) 

entering as a multiplier in (20). In effect the total perturbation energy of N = 3 is 
equal to a sum: 

2
3 1E VPVPV VP V E∆ = − ∆                   (24) 

because of (23) taken into account in (20). 
The energy belonging to the order N = 4 (see Figure 6) can be considered in a 

similar way. If the beginning-end point on the scale is labelled by 4, we have 
three time points 

1 2 31, 2, 3,t t t= = =                       (25) 

 

 
Figure 6. Time scale for the perturbation order N = 4. 
Beyond the beginning-end (b.e.) point, three other 
points (1, 2 and 3) are present on the scale. 
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which are suitable to contractions. Without any time contraction the contribu-
tion to energy is represented by the term 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
per per per per

0 0 0 0 0 0
p q r n p n q n r

n V p p V q q V r r V n
VPVPVPV

E E E E E E
=

− − −
∑∑∑    (26) 

where , ,p q r n≠ . Next come contractions of the points in (25): 

1 2: 1: 2,t t =                          (27) 

1 3: 1: 3,t t =                          (28) 

2 3: 2 : 3,t t =                          (29) 

1 2 3: : 1: 2 : 3.t t t =                        (30) 

The contractions presented in (27)-(30) give respectively the energy terms: 

( ) ( )( ) ( ) ( )( )
per per per

2
20 0 0 0p q

n p n q

n V p p V q q V n
VP VPV V V

E E E E
− = −

− −
∑∑      (31) 

where ,p q n≠  and 1V E= ∆  [contraction 1:2], 

( ) ( )( ) ( ) ( )

per per per per
2

2 0 00 0p q n qn p

n V p p V n n V q q V n
VP V VPV

E EE E
− = −

−−
∑ ∑   (32) 

where ,p q n≠  and 2VPV E= ∆  because of (17) [contraction 1:3], 

( ) ( )( ) ( ) ( )( )
per per per

2
20 0 0 0p q

n p n q

n V p p V q q V n
VPVP V V V

E E E E
− = −

− −
∑∑      (33) 

where ,p q n≠  and 1V E= ∆  [contraction 2:3], 

( )
( ) ( )( )

( )
per per

2 23
30 0p

n p

n V p p V n
VP V V V

E E
=

−
∑            (34) 

where p n≠  and ( ) ( )2 2
1V E= ∆  [contraction 1:2:3]. Let us note that the 

sum of powers of P in any energy term is equal to 1 3N − = , and the sum of 
powers of V within the brackets of each energy term is N = 4. 

Together with the energy term (26) we obtain from (31)-(34) 

( )
4

2 4 2 ! 6! 5
3!4! 3!4!

S
× −

= = =                     (35) 

energy terms for N = 4. The perturbation energy belonging to N = 4 is equal to a 
sum of five terms given in (26) and (31)-(34): 

( )

2 2
4 1 2

22 3
1 1 .

E VPVPVPV VP VPV E VP V E

VPVP V E VP V E

∆ = − ∆ − ∆

− ∆ + ∆
          (36) 

Evidently the fourth term on the right of (36) is equal to the second term be-
cause of symmetry. 

The rule defining the sign of the perturbation terms is very simple: for an odd 
number of terms entering the product giving a perturbation term the sign of 
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product is positive; an even number of terms entering a similar product giving a 
perturbation term makes this term to have a negative sign. 

7. Energy of the Perturbation Orders N = 5 and N = 6 

The time scales corresponding to above N are presented in Figure 7 and Figure 8. 
Here the recurrence procedure can be useful to apply, so for N = 5 we take 

first into account the perturbation terms of the order N lower than 5, and for N 
= 6 the terms of the order lower than 6, respectively. 

In this way the first five terms belonging to the order N = 5 can be obtained 
from S4 = 5 terms of Section 6 by introducing the time point 4 as a free point 
different than the beginning-end point of time. This makes any bracket contri-
bution due to the main loop of time entering ΔE4 [see (36)] changed by an in-
crease equal to PV put at the end of the bracket term. The first 5 energy terms 
belonging to ΔE5 are: 

( )

2 2
1 2

22 3
1 1 .

VPVPVPVPV VP VPVPV E VP VPV E

VPVP VPV E VP VPV E

− ∆ − ∆

− ∆ + ∆
         (37) 

The first term in (37) is a modification of the term (26), the remaining four 
energy terms in (37) are due to suitable modifications of the terms entering (36). 

Further contributions to ΔE5 are due to the fact that in the case of N = 5 the 
new time point 4 can be submitted also to contractions. They begin with point 1 
and the other points between 1 and 4: 

1: 4, 1: 2 : 4, 1:3: 4, 1: 2 :3: 4.                   (38) 

The contractions in (38) together with the side loops created by them give the 
following energy terms: 

( )32 3 3 4
3 1 2 2 1 1, , , .VP V E VP V E E VP V E E VP V E− ∆ ∆ ∆ ∆ ∆ − ∆     (39) 

 

 
Figure 7. Time scale for the perturbation order N = 5. 
Beyond the beginning-end (b.e.) point, four other 
points (1, 2, 3 and 4) are present on the scale. 

 

 
Figure 8. Time scale for the perturbation order N = 6. 
Beyond the beginning-end (b.e.) point, five other 
points (1, 2, 3, 4 and 5) are present on the scale. 
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Since ΔE3 present in the first term in (39) gives two Schrödinger perturbation 
terms, the set of terms in (39) represents the next S4 = 5 perturbation terms of 
energy belonging to N = 5. The index 4 of S4 refers to a maximal number 4 of the 
time points entering contractions (38). 

In a further step contraction of the time points 2 and 3 with point 4 have to be 
considered. They are 

2 : 4, 2 : 3 : 4,                          (40) 

which give respectively two perturbation energy terms: 

( )22 3
2 1, .VPVP V E VPVP V E− ∆ ∆                (41) 

The last set of the energy perturbation terms belonging to N = 5 is given by a 
single contraction 

3 : 4.                             (42) 

In this case the time points 1 and 2 present before point 3 can be either free, or 
contracted together. For 1 and 2 free the contraction in (42) gives the perturba-
tion term 

2
1.VPVPVP V E− ∆                       (43) 

On the other hand, the contraction 1:2 combined with that in (42) gives the per-
turbation term 

( )22 2
11: 2 3 : 4 .VP VP V E→ ∆                  (44) 

In effect we obtain from (37), (39), (41), (43) and (44) a sum of 

( )
5

2 5 2 ! 8! 14
4!5! 4!5!

S
× −

= = =                   (45) 

perturbation terms belonging to N = 5, if we note that ΔE3 in (39) combines two 
Schrödinger perturbation terms. 

A full perturbation energy of the order N = 5 becomes a sum of S5 terms en-
tering the formulae quoted before (45): 

( )

( )

( )

( )

2 2
5 1 2

22 3 2
1 1 3

33 3 4
1 2 2 1 1

22 3
2 1

22 2 2
1 1 .

E VPVPVPVPV VP VPVPV E VP VPV E

VPVP VPV E VP VPV E VP V E

VP V E E VP V E E VP V E

VPVP V E VPVP V E

VPVPVP V E VP VP V E

∆ = − ∆ − ∆

− ∆ + ∆ − ∆

+ ∆ ∆ + ∆ ∆ − ∆

− ∆ + ∆

− ∆ + ∆

      (46) 

Again, because of the presence of ΔE3, the sixth term on the right of (46) 
represents two Schrödinger perturbation terms. Evidently—because of symme-
try—some terms entering (46), for example the second term and one-by-last 
term on the right, become equal. 

The calculation of ΔE6 being the energy of the perturbation order N = 6 is 
much similar. The first 14 terms are obtainable from the energy expression (46) 
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representing ΔE5 due to the fact of supplying the time point 5 as a free point for 
the case of N = 6. The corresponding part of the perturbation energy ΔE6 comes 
by adding the PV term at the end of any bracket term in ΔE5 which is due to the 
main loop of time. On the basis of (46) we obtain the following contribution of 
S5 = 14 energy terms entering ΔE6: 

( )

( )

( )

( )

2 2
1 2

22 3 2
1 1 3

33 3 4
1 2 2 1 1

22 3 2
2 1 1

22 2
1 .

VPVPVPVPVPV VP VPVPVPV E VP VPVPV E

VPVP VPVPV E VP VPVPV E VP VPV E

VP VPV E E VP VPV E E VP VPV E

VPVP VPV E VPVP VPV E VPVPVP VPV E

VP VP VPV E

− ∆ − ∆

− ∆ + ∆ − ∆

+ ∆ ∆ + ∆ ∆ − ∆

− ∆ + ∆ − ∆

+ ∆

    (47) 

In the next step we take into account that the time point 5 for N = 6 can con-
tract with point 1 and all points between 1 and 5. This gives the following con-
tractions and the energy terms corresponding to them: 

2
41: 5 VP V E→ − ∆  (5)               (48) 

3
1 31: 2 :5 VP V E E→ ∆ ∆  (2)               (49) 

( )23
21:3:5 VP V E→ ∆  (1)               (50) 

3
3 11: 4 :5 VP V E E→ ∆ ∆  (2)               (51) 

( )24
1 21: 2 :3:5 VP V E E→− ∆ ∆  (1)               (52) 

4
1 2 11: 2 : 4 :5 VP V E E E→− ∆ ∆ ∆  (1)               (53) 

( )24
2 11:3: 4 :5 VP V E E→− ∆ ∆  (1)               (54) 

( )45
11: 2 :3: 4 :5 VP V E→ ∆  (1)               (55) 

In the brackets at the end of each row is given the number of Schrödinger 
energy terms connected with the considered row. This means that (48)-(55) give 
next S5 = 14 Schrödinger perturbation terms. Here 5 is a maximal number of 
points entering contractions listed in the above formulas. The other time con-
tractions are: 

2
32 : 5 VPVP V E→ − ∆  (2)                (56) 

3
1 22 :3:5 VPVP V E E→ ∆ ∆  (1)                (57) 

3
2 12 : 4 :5 VPVP V E E→ ∆ ∆  (1)                (58) 

( )34
12 :3: 4 :5 VPVP V E→− ∆  (1)                (59) 

with the time point 1 left free giving 5 perturbation terms because the index 4 
due to presence of contraction points gives S4 = 5. 

But both points 1 and 2 can be left free combining with contractions 
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2
23 : 5 ,VPVPVPVP V E→ − ∆                   (60) 

( )23
13 : 4 : 5 .VPVPVPVP V E→ ∆                  (61) 

Another situation is obtained when 1 and 2 contract together, in this case we 
obtain in place of (60) and (61) the energy terms combined with 1:2, so 

2 2
1 21: 2 3 : 5 ,VP VP V E E→ ∆ ∆                (60a) 

( )32 3
11: 2 3 : 4 : 5 .VP VP V E→ − ∆               (61a) 

In effect from the formulae (60) to (61a) we obtain next 4 perturbation terms 
belonging to ΔE6. 

Finally a single contraction 

4 : 5                            (62) 

can combine either with the free points 

1, 2, 3                           (63) 

giving one energy term 
2

1,VPVPVPVP V E− ∆                    (64) 

or with contractions of 1, 2, and 3, viz. 

( )22 2
11: 2 4 : 5 ,VP VPVP V E→ ∆               (65) 

2 2
2 11: 3 4 : 5 ,VP VP V E E→ ∆ ∆                (66) 

( )33 2
11: 2 : 3 4 : 5 ,VP VP V E→ − ∆               (67) 

( )22 2
12 : 3 4 : 5 ,VPVP VP V E→ ∆               (68) 

which give together four energy terms presented in the second step of (65)-(68). 
In effect the number of the perturbation terms belonging to N = 6 obtained 

from (47), (48)-(55), (56)-(59), (60)-(61a), and (62)-(68) becomes: 

614 14 5 4 1 4 42 S+ + + + + = =                  (69) 

which is the expected result; see Table 1. A full perturbation energy of the order 
N = 6 is equal to a sum of the terms belonging to expressions listed above equa-
tion (69); see (47)-(61a) and (64)-(68). 

8. Perturbation Energy Belonging to N = 7 

This is the most complicated case considered in the present paper. The first S6 = 
42 terms are those connected with N = 6 because the time point 6 is now a free 
point of time on the scale; see Figure 9 and a list of terms below (69). The energy 
terms can be constructed by substituting the product 

PV  

at the end of any main bracket expression entering the energy term belonging to 
N = 6 obtained in Section 6: 
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Figure 9. Time scale for the perturbation order N = 7. 
Beyond the beginning-end (b.e.) point, six other 
points (1, 2, 3, 4, 5 and 6) are present on the scale. 
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+ ∆ ∆ − ∆ − ∆

+ ∆ + ∆ ∆ − ∆

+ ∆

 (70) 

The next S6 = 42 energy terms come from contractions of point 6 with point 1 
and the points between 1 and 6: 

2
51: 6 VP V E→ − ∆  (14)             (71) 

3
1 41: 2 : 6 VP V E E→ ∆ ∆  (5)              (72) 

3
2 31:3: 6 VP V E E→ ∆ ∆  (2)              (73) 

3
3 21: 4 : 6 VP V E E→ ∆ ∆  (2)              (74) 

3
4 11:5 : 6 VP V E E→ ∆ ∆  (5)              (75) 

( )24
1 31: 2 :3: 6 VP V E E→− ∆ ∆  (2)              (76) 

( )24
1 21: 2 : 4 : 6 VP V E E→− ∆ ∆  (1)              (77) 

4
1 3 11: 2 :5 : 6 VP V E E E→− ∆ ∆ ∆  (2)              (78) 

4
2 1 21:3: 4 : 6 VP V E E E→− ∆ ∆ ∆  (1)              (79) 

( )24
2 11:3:5 : 6 VP V E E→− ∆ ∆  (1)              (80) 

( )24
3 11: 4 :5 : 6 VP V E E→− ∆ ∆  (2)              (81) 
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( )35
1 21: 2 :3: 4 : 6 VP V E E→ ∆ ∆  (1)              (82) 

( )25
1 2 11: 2 :3:5 : 6 VP V E E E→ ∆ ∆ ∆  (1)              (83) 

( )25
1 2 11: 2 : 4 :5 : 6 VP V E E E→ ∆ ∆ ∆  (1)              (84) 

( )35
2 11:3: 4 :5 : 6 VP V E E→ ∆ ∆  (1)              (85) 

( )56
11: 2 :3: 4 :5 : 6 VP V E→− ∆  (1)              (86) 

which give also a set of S6 = 42 perturbation terms: 

14 5 2 2 5 2 1 2 1 1 2 1 1 1 1 1 42+ + + + + + + + + + + + + + + =         (87) 

because a maximum of 6 points coupled together. Here (87) is a sum of the 
number of the perturbation terms indicated in brackets at the end of each row in 
(71)-(86). 

The next contractions of the time points give S5 = 14 terms because of a 
maximal number of 5 points entering contractions: 

2
42 : 6 VPVP V E→ − ∆  (5)              (88) 

3
1 32 :3: 6 VPVP V E E→ ∆ ∆  (2)              (89) 

( )23
22 : 4 : 6 VPVP V E→ ∆  (1)              (90) 

3
3 12 :5 : 6 VPVP V E E→ ∆ ∆  (2)              (91) 

( )24
1 22 :3: 4 : 6 VPVP V E E→− ∆ ∆  (1)              (92) 

4
1 2 12 :3:5 : 6 VPVP V E E E→− ∆ ∆ ∆  (1)              (93) 

( )24
2 12 : 4 :5 : 6 VPVP V E E→− ∆ ∆  (1)              (94) 

( )45
12 :3: 4 :5 : 6 VPVP V E→ ∆  (1)              (95) 

Next come S4 = 5 energy terms due to contractions 
2

33 : 6 VPVPVP V E→ − ∆  (2)              (96) 

3
1 23 : 4 : 6 VPVPVP V E E→ ∆ ∆  (1)              (97) 

3
2 13 :5 : 6 VPVPVP V E E→ ∆ ∆  (1)              (98) 

( )34
13 : 4 :5 : 6 VPVPVP V E→− ∆  (1)              (99) 

which do exist with free time points 1 and 2 on the scale giving the energy terms 
presented above. But also we can have contractions combined with 1:2 giving 
other S4 = 5 energy terms: 

2 2
1 31: 2 3: 6 VP VP V E E→ ∆ ∆  (2)            (100) 

( )22 3
1 21: 2 3: 4 : 6 VP VP V E E→− ∆ ∆  (1)            (101) 

2 3
1 2 11: 2 3:5 : 6 VP VP V E E E→− ∆ ∆ ∆  (1)            (102) 
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( )42 4
11: 2 3: 4 :5 : 6 VP VP V E→ ∆  (1)            (103) 

Let us note that each ΔE3 in (96) and (100) gives S3 = 2 terms. 
Another set of contractions involving point 6 represents 

2
24 : 6 VPVPVPVP V E→ − ∆                         (104) 

( )23
14 : 5 : 6 VPVPVPVP V E→ ∆                      (105) 

on condition the time points 1, 2, and 3 are left free. But (104) and (105) can be 
combined also with contractions of the points 1, 2, and 3 giving 

2 2
1 21: 2 4 : 6 ,VP VPVP V E E→ ∆ ∆                   (106) 

( )32 3
11: 2 4 : 5 : 6 ,VP VPVP V E→ − ∆                (107) 

( )22 2
21: 3 4 : 6 ,VP VP V E→ ∆                      (108) 

( )22 3
2 11: 3 4 : 5 : 6 ,VP VP V E E→ − ∆ ∆               (109) 

( )23 2
1 21: 2 : 3 4 : 6 ,VP VP V E E→ − ∆ ∆               (110) 

( )43 3
11: 2 : 3 4 : 5 : 6 ,VP VP V E→ ∆                  (111) 

2 2
1 22 : 3 4 : 6 ,VPVP VP V E E→ ∆ ∆                   (112) 

( )32 3
12 : 3 4 : 5 : 6 .VPVP VP V E→ − ∆                (113) 

In effect the number of terms due to (104)-(113) is equal to 2S4 = 10 because the 
points 1, 2 and 3 can combine in S4 = 5 ways. 

The last set of contractions containing point 6 is represented by 5:6. When a 
combination of 5:6 with the set of free time points 1, 2, 3, and 4 is considered we 
obtain 

2
15 : 6 VPVPVPVPVP V E→− ∆  (1)          (114) 

The remaining combinations with 5:6 are due to contractions between points 1, 
2, 3 and 4: 

( )22 2
11: 2 5 : 6 VP VPVPVP V E→ ∆  (1)          (115) 

2 2
2 11:3 5 : 6 VP VPVP V E E→ ∆ ∆  (1)          (116) 

2 2
3 11: 4 5 : 6 VP VP V E E→ ∆ ∆  (2)          (117) 

( )33 2
11: 2 :3 5 : 6 VP VPVP V E→− ∆  (1)          (118) 

3 2
1 2 11: 2 : 4 5 : 6 VP VP V E E E→− ∆ ∆ ∆  (1)          (119) 

( )23 2
2 11:3: 4 5 : 6 VP VP V E E→− ∆ ∆  (1)          (120) 

( )44 2
11: 2 :3: 4 5 : 6 VP VP V E→ ∆  (1)          (121) 

( )32 2 2
11: 2 3: 4 5 : 6 VP VP VP V E→− ∆   (1)          (122) 
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( )22 2
12 :3 5 : 6 VPVP VPVP V E→ ∆  (1)          (123) 

2 2
2 12 : 4 5 : 6 VPVP VP V E E→ ∆ ∆  (1)          (124) 

( )33 2
12 :3: 4 5 : 6 VPVP VP V E→− ∆  (1)          (125) 

( )22 2
13 : 4 5 : 6 VPVPVP VP V E→ ∆  (1)          (126) 

The total number of energy terms due to (114)-(126) is S5 = 14 which is the 
number of combinations due to presence of the 4 free time points, see (8) and 
Table 1. 

In total we obtain for N = 7 the S6 = 42 energy terms collected in (70), next 
also S6 = 42 energy terms collected in (87). Another set of terms is given in the 
formulae from (88) to (95) which provide us with 

5 2 1 2 1 1 1 1 14+ + + + + + + =                   (127) 

terms. The next 2S8 = 10 perturbation terms are given by the formulae (96)-(99) 
and (100)-(103), but also 10 terms are provided by (104)-(113). Finally contrac-
tion 5:6 gives from (114) to (126) the energy terms whose number is 

51 1 1 2 1 1 1 1 1 1 1 1 1 14 .S+ + + + + + + + + + + + = =           (128) 

This makes a total number of kinds of the energy perturbation terms belonging 
to N = 7 equal to: 

742 42 14 10 10 14 132 S+ + + + + = =                (129) 

which is not only in accordance with the formula (8), but satisfies also the for-
mula: 

1 6 2 5 3 4 4 3 5 2 6 1 7 .S S S S S S S S S S S S S+ + + + + =            (130) 

The result in (130) is a special case of a general formula which holds for calcu-
lating SN: 

1 1 2 2 3 3 3 3 2 2 1 1.N N N N N N NS S S S S S S S S S S S S− − − − − −= + + + + + +     (131) 

9. General Characteristics of the Energy Perturbation Terms 

In general the terms of the Schrödinger perturbation energy which originate 
from a non-degenerate quantum state are represented by the products of the 
contribution due to the main loop of time and contributions due to the side loops. 
This second kind of contributions is equal to definite perturbation energies 

( )NE ′∆                           (132) 

of the order N' smaller than the examined order N. The formulae of the kind of 
(132) which are due to the side loops of time provide an important simplifica-
tion of the perturbed energy calculations. 

The side loops originate from contractions of the time points on the main 
loop characteristic for a given perturbation order N. In effect the order N' cha-
racteristic for any expression (132) is equal to a difference of the indices 
representing the time points entering contraction. There can exist also multiple 
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contractions giving products 
( ) ( ) ( )N N NE E E′ ′′ ′′′∆ ∆ ∆                      (133) 

where , , ,N N N′ ′′ ′′′
  are defined by the difference between the time point in-

dices participating successively in a multiple contraction. 
One point on the main loop, which is the beginning-end point of the scale, is 

excluded from contractions. Respectively, for each N does exist only one energy 
term which is given solely by the main loop of time; this loop of time has no 
contractions and the corresponding energy term does not involve the contribu-
tions of the side loops. 

The kind of energy contributions due to the main loop is in general different 
than that given in (132) or (133). In the absence of contractions the main loop 
gives a single energy term equal to 

VPVPVP PVPV                      (134) 

in which the number of V is equal to the perturbation order N and number of P 
amounts N − 1. In effect any time point on the scale—excepting the begin-
ning-end point—has its own P, and the number of terms V is equal to the num-
ber of distances separating the neighbouring time points on the scale. 

The contractions change the power exponents of P entering (134) which are 
all equal to 1 in (134) into the exponents 

1.>τ                            (135) 

The number τ is equal to the number of the time points participating in contrac-
tion, therefore τ becomes equal to the number of the side loops created by con-
traction increased by one. So for one side loop present in a given time point 

1 1,= +τ                          (135a) 

for two side loops present in the same point 

1 2,= +τ                         (135b) 

etc. In effect the number of P terms which remain on the main loop of time and 
have the exponents represented by (135) is equal to the number of the time con-
tractions present on the scale. 

An important feature is that some P entering (134) can be shifted to the side 
loops. This situation holds in case when the differences between the time-point 
indices entering contraction are larger than 1. For example the contraction be-
tween the points 1 and 3 shifts the point 2—and its P term—to a side loop. This 
is an expected result if we note that , , ,N N N′ ′′ ′′′

  in (132) or (133) can be 
larger than unity. 

Nevertheless the sum of the power exponents of P present along the 
scale—those which remain on the main loop as well as those which are shifted to 
the side loop or loops—should remain unchanged. In effect any perturbation 
term belonging to a given N has the same number N − 1 of the P terms and 
number N of the V terms, because the total number of V terms in the main loop 
and side loops remains constant. All SN terms give different diagrams along the 
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time scale plotted for a given N, but the computational results due to several di-
agrams can be equal which is the effect of the diagram symmetry. 

10. General View on Contractions of the Time Points on the 
Time Scales and Their Application 

The way of calculating the Schrödinger perturbation energy—called sometimes 
also the Rayleigh-Schrödinger perturbation series—presented in the paper is ra-
ther different than procedures applied in the former approaches; see e.g. [12]. In 
fact the terms entering the series can be obtained mainly from an analysis of the 
geometry of the time-point patterns present on the scale, and by applying the 
rules connecting that geometry with the time-independent matrix elements en-
tering the Schrödinger wave mechanics, than by proceeding according to any of 
the developed wave-mechanical perturbation formalisms. 

A basic property concerns the importance of contraction points of time en-
tering the applied time scale and their origin. At the first step—i.e. in the ab-
sence of contractions—the scale giving the perturbation energy of order N is as-
sumed to have N separate time points on it, and one of these points is the begin-
ning-end point of the scale. Evidently for N = 1 there is present only the begin-
ning-end point. We assume that this point cannot be submitted to contractions 
in case of any N. Therefore an increase of the perturbation order to N = 2 gives 
the scale which has two points on it: one is the beginning-end point and the 
second point is allowed which remains free. 

A substantial difference in the calculation scheme begins with N = 3. In this 
case there exist outside the beginning-end point two other points which (a) can 
be left separated each from other, but also (b) can be contracted together. What 
does it mean from the point of view of the scale geometry and the calculations? 
The case (a) represents two separate points of time any of which gives its own 
contribution to the perturbation energy term belonging to N = 3. According to 
Section 6 the energy term supplied by these both points together becomes 

.VPVPV                           (136) 

So what is the effect of contraction of two points on the scale upon the per-
turbation energy? Geometrically it means that contraction of point 1 with point 
2 labelled by the symbol 

1: 2                             (137) 

produces two different scales of time. The first one is the scale containing the be-
ginning-end point of the original loop of time. The time parameters t1 and t2 label-
ling the perturbation events on that loop become equal, so an alternative formula 
to (137) is  

1 2 .t t=                            (137a) 

This means that there is no possibility to have a time point between t1 and t2 on 
the main loop of time. But contraction represented by (137a) implies creation of 
a supplementary loop of time for which the situation given in (137a) represents 
the beginning-end point of time. This supplementary loop, called also a side 
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loop, is independent of the original (main) loop of time. The side loop has no 
time points on it excepting the beginning-end point (137a). Such loop is identic-
al with the main loop of time for N = 1; see Figure 2. 

In effect of creation of the new loop of time, a new—i.e. the second—perturbation 
term of energy is obtained for the perturbation order N = 3 beyond the term given 
in (136). This is a product of two bracket terms, viz. 

2 2
1.VP V V VP V E− = − ∆                   (138) 

The first bracket term is given in (21), the second term is simply the perturba-
tion energy of order one (N = 1); see (16). 

For N > 3, say for N = 4, the free time points on the main loop can be t1, t2 and 
t3, whereas the point t4 is assumed to represent the beginning-end point on the 
loop; see Figure 6. In this case—beyond contractions between the neighbouring 
time points like (137) and (137a)—the contraction between the non-neighbouring 
time points 

1 3t t=                           (139) 

or 

1: 3                           (139a) 

is also possible. This contraction implies that the point t2 which originally is 
placed between t1 and t3 should be shifted to a side loop. This side loop has its 
beginning-end point given by contraction (139) or (139a), but one free time 
point, namely t2, does remain on the loop. In effect the side loop becomes iden-
tical to that for N = 2; see Figure 3. The perturbation energy due to contraction 
(139) is therefore equal to product 

2 2
2 .VP V VPV VP V E− = − ∆                (140) 

For the first bracket term in (140) see (21), for the second bracket term—see (17). 
The minus sign in (138) and (140) is dictated by the even number of the bracket 
terms entering product. 

In Table 2 we summarize the data on the time points and their contractions 
which give the energy terms belonging to the perturbation orders from N = 1 to 
N = 6. 

11. Conclusions 

The history of investigations on time is probably as old as the history of science. 
In the Newtonian formulation of mechanics, the time interval is independent of 
any other physical parameter; in the theory of relativity, the dependence of the 
time interval is mainly due to the speed of the observed change. 

But in many cases, including the problem considered in the present paper, the 
influence of the speed effect—or other physical parameters—on the time inter-
vals can be neglected. The kind of approach proposed here is different than the 
Newtonian-like, namely an insight into time given by Leibniz [13] [14] [15] 
seems to be here of importance. 
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Table 2. Number of the time points on the main loop of time and symbols of contraction 
points giving the side loops for the perturbation orders from N = 1 to N = 6. The second 
component entering the last column is equal to the contractions number of the time 
points (see the 3rd column). 

N 
Number of the time 
points on the main 

loop of time 
Contractions of the time points 

Total number of the 
perturbation terms  

SN (see Table 1) 

1 1 + 0 no contractions 1 

2 1 + 1 no contractions 1 

3 1 + 2 1: 2  1 1 2+ =  

4 1 + 3 1: 2 , 1: 3 , 2 : 3 , 1 4 5+ =  

  1: 2 : 3   

5 1 + 4 1: 2 , 1: 3 , 1: 4 , 1 13 14+ =  

  2 : 3 , 2 : 4 , 3: 4 ,  

  1: 2 3: 4 , 1: 2 : 3 ,  

  1: 2 : 4 , 1: 3 : 4 , 1: 4 2 : 3 ,  

  1: 2 : 3 : 4 , 2 : 3 : 4   

6 1 + 5 1: 2 , 1: 3 , 1: 4 , 1: 5 , 2 : 3 , 1 41 42+ =  

  2 : 4 , 2 : 5 , 3: 4 , 3: 5 , 4 : 5 ,  

  1: 2 : 3 , 1: 2 : 4 , 1: 2 : 5 ,  

  1: 3 : 4 , 1: 3 : 5 , 1: 4 : 5 ,  

  2 : 3 : 4 , 2 : 3 : 5 , 2 : 4 : 5 ,  

  3: 4 : 5 , 1: 2 : 3 : 4 , 1: 2 : 3 : 5 ,  

  1: 2 : 4 : 5 , 1: 3 : 4 : 5 , 2 : 3 : 4 : 5 ,  

  1: 2 : 3 : 4 : 5 , 1: 2 : 3 4 : 5 , 1: 2 3: 5 , 1: 2 4 : 5 ,  

  1: 2 3: 4 : 5 , 1: 2 3: 4 , 1: 3 4 : 5 , 2 : 3 4 : 5 ,  

  1: 4 2 : 3 , 1: 5 2 : 4 , 1: 4 : 5 2 : 3 , 1: 5 2 : 3 ,  

  1: 5 3: 4 , 1: 5 2 : 3 : 4 , 1: 2 : 5 3: 4 , 2 : 5 3: 4   

 
Leibniz idea was that time is represented by a sequence of events which appear 

successively in a definite order. A knowledge of the sizes of time intervals be-
tween the separate events become then of not much use, since the main point 
concerns an arrangement of the events along a proper scale of time. 

In the present paper the problem of the shape of the time scale and its physical 
verification has been attached to the Schrödinger perturbation theory. Physically 
this means that the history of a perturbed quantum state—done by a potential 
independent of time—becomes of importance. This history has a non-relativistic 
background, for it refers to a general applicability of the non-relativistic 
Schrödinger equation in the quantum physics. 
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In principle the perturbation theory—linked also with the Schrödinger’s au-
thorship [3]—provides us with a method how solutions known for a simple 
problem can provide us with an approximate knowledge of more complicated 
Schrödinger’s solutions. A difficulty was that a tedious procedure had to be ap-
plied in order to extract to calculations the separate kinds of energy terms be-
longing to a large perturbation order N. This difficulty could be much reduced 
when the time scale of a circular character composed of the N collision time 
points of a quantum system with the perturbation potential Vper is assumed for 
each N. 

The number of the allowed time-point arrangements on the scale provides us 
precisely with the SN perturbation energy terms characteristic for a given N. In 
effect the perturbation terms should not be derived with the aid of a usually te-
dious iterative procedure connected with solving the perturbed Schrödinger eq-
uation, but can be readily obtained by analyzing the contractions to which the 
time points are submitted along the scale. 

It should be noted that agreement of the results for SN, as well as the energy 
perturbation terms for a given N, obtained in the present theory with those cal-
culated by the Schrödinger formalism is not proved in general but has been 
demonstrated in the paper for the perturbation orders beginning from N = 1 to 
N = 7. 

No time intervals or continuous time variables are considered in the paper. 
The calculations are based on definite sets of the discrete time points 
representing the collisions of an unperturbed non-degenerate quantum system 
with a time-independent perturbation potential.  
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