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Abstract 
The problem of calculating the energy spectrum of turbulent velocity pulsa-
tions in the case of homogeneous isotropic and stationary turbulence is con-
sidered. The domain of turbulent energy production is treated as “a black 
box” on which boundary the spectral energy flux is given. It is assumed that 
the spectrum is formatted due to intermodal interactions being local in the 
wave-number space that leads to a cascade mechanism of energy transfer 
along the wave-number spectrum and the possibility of using the renormali-
zation-group method related to the Markovian features of the process under 
consideration. The obtained formula for energy spectrum is valid in a wide 
wave-number range and at arbitrary values of fluid viscosity. It is shown that 
in functional formulation of the statistical theory of turbulence, the procedure 
of separating local intermodal interactions, which govern energy transfer 
(straining effect), and filtering out nonlocal interactions, which have no in-
fluence on energy transfer (sweeping effect), is directly described without 
providing additional arguments or conjectures commonly used in the renor-
malization-group analysis of turbulent spectra. 
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1. Introduction 

The problem of calculating the energy distribution over wave-numbers of tur-
bulent fluid (spectral energy density) is a subject of numerous investigations. 
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Even within the framework of the simplest model of homogeneous isotropic and 
stationary turbulence, solving this problem is complicated by the fact that the 
Navier-Stokes equations, which describe a turbulent fluid, are nonlinear and for 
obtaining a closed set of equations for energy one needs to express the quantity 
of third-order statistical moment in terms of the second-order statistical mo-
ment with the help of one or other hypotheses of closing (as a survey see [1]) or 
to construct a solution in the form of perturbation theory series with subsequent 
term-by-term averaging the series obtained [2]. In the last case, the technique of 
Feynman diagrams is commonly applied. The specific feature of the system un-
der consideration consists in the fact that in a fully developed turbulence, a large 
number of various mode scales are excited and the effect of modes of all scales 
appears to be essential and has to be accounted for since a single act of inter-
modal interactions is only a link in a long cascade chain via the mechanism of 
energy transfer from the range of large-scale modes, where the turbulent energy 
of stochastic fluid velocity pulsations due to a development of instability of 
large-scale flows is produced, into the range of small-scale modes where the 
energy dissipates due to fluid viscosity. 

Somewhat different approach to finding the spectral energy density beyond 
the scope of explicit applying the Navier-Stokes equations was proposed by A. N. 
Kolmogorov [3] who postulated that the energy transfer along the wave-number 
spectrum goes due to nonlinear intermodal interactions between the modes of 
close scales, whereas the interaction between the modes of essentially distin-
guished scales is realized through the cascade sequence of acts relevant to in-
termodal interactions between modes of intermediate scales (the Richard-
son-Kolmogorov cascade); in other words, it has a place “a locality in the 
wave-number space” of intermodal interactions that form a cascade process of 
energy transfer over wave-number spectrum. The question of a locality nature 
was discussed in detail in the surveys devoted to application of the renormaliza-
tion-group method in turbulence theory [4] [5]. The locality relates to the fact 
that intermodal interaction between the modes with essentially different scales 
reduces to a primitive transfer of small-scale modes by large-scale ones without 
energy redistribution between modes (sweeping effect) [6]. In connection with 
this, when studying the spectrum form it arises the problem of selecting weak 
local interactions (dynamic interactions) forming the energy spectrum and act-
ing against the ground of strong nonlocal (kinematic) interactions [7]. In the 
author’s paper [8] it was claimed and argued the statement that in the turbulence 
theory with applying the RG-method [4] [5] use of the ε-expansion procedure, 
well-known in the theory of critical phenomena, is a way to select the local in-
termodal interactions and filtering out the effects of non-local (distant) interac-
tions. 

Kolmogorov proposed to divide the wave-number spectrum into three parts. 
1) The range of turbulent energy production in the domain of small wave 

numbers gk k<  where the energy of turbulent pulsations is generated due to 
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development of instability of large-scale flows. The energy production is simu-
lated by the action of an external random force that is similar to the Langevin 
force used in the theory of random processes. The energy production range lies 
beyond the scope of our analyses and in our model it will be treated as “a black 
box” when one knows nothing concerning the processes in the box and only 
knows conditions on its boundary (spherical surface of radius gk  in the 
wave-number space). As a boundary condition it is taken the spectral flux 
through the boundary surface ( )gW k , which is equal to the rate of energy 
pumping   received from the range gk k< . 

2) The inertial range is a domain of wave numbers where there is no energy 
production and the dissipation effects are negligible. In this range the spectral 
flux remains constant, and it goes the process of energy transfer from the range 
of small wave numbers into the range of large wave numbers via the cascade se-
quence of local intermodal interaction acts. In the case of high Reynolds num-
bers (very small fluid viscosity) the inertial range has a sufficiently long length. 
In the inertial range it takes a place the Kolmogorov formula for spectral energy 
density  

( ) 2 3 5 3 ,KE k C k −=                        (1.1) 

where KC  is the Kolmogorov constant. This formula has been obtained only 
on the basis of dimensionality arguments without reference to the Navier-Stokes 
equations. 

3) The dissipation range relates to the case when the Reynolds number is not 
high and dissipation effects are not neglectable. As the Reynolds number de-
creases (the fluid viscosity grows) the domain of inertial range existence tends to 
zero and the Kolmogorov formula appears to be inapplicable. Below we consider 
the problem of building the model that is true beyond the inertial range and ob-
tain the formula for spectral energy distribution ( )E k  with account for viscos-
ity that is valid for all wave-numbers with the exception of ones from the energy 
production range. 

2. The Problem of Calculating Energy Spectrum 

If the fluid viscosity is accounted for, the spectral flux will depend on wave 
number and due to the locality of intermodal interactions the spectral energy 
density ( )E k  will be determined by the value of spectral flux at given 
wave-number ( )W k . This fact has to be accounted for when applying the di-
mensionality arguments. As the result, the formula for ( )E k  may be written in 
the form of “generalized Kolmogorov formula”  

( ) ( ) ( )2 3 5 3E k C k W k k −=                    (2.1) 

Here ( )C k  is a dimensionless function of dimensionless variables ( ) ( )gW k W k , 

( )gC k , gk k  and ( ) ( ) 3 4H k W k kν= ; ν  is the fluid viscosity and gk  is 
the upper boundary of energy production range.  

Beyond the energy production range dk k>  the equation of energy balance 
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has the form  
( ) ( )2d

= 2
d

W k
k E k

k
ν−                       (2.2) 

that relates two unknown quantities ( )W k  and ( )E k . For solving the prob-
lem one may use the energy balance Equation (2.2) in combination with the 
“generalized Kolmogorov formula” (2.1), but in this case it remains one more 
unknown function ( )C k , which is a functional analog of the Kolmogorov con-
stant. Thus it arises the need to have one more equation followed from some ad-
ditional considerations or hypotheses. One of them was proposed by Kovazhny 
[9], whose conjecture appears to be equivalent to the statement ( ) constC k = . 
In this approximation Equation (2.2) gives  

( )
( ) ( ) ( )

3

4 3 4 3
1 31 ,

2
g

g g

C k
W k k k W k

ν 
 = + − =
  
 


 

( ) ( ) ( ) ( )
2

2 3 4 3 4 3 5 3
1 31

2
g

g g

C k
E k C k k k k

ν
−

 
 = + −
  




         (2.3) 

According to Equation (2.3) the spectral flux ( )W k  decreases as the 
wave-number grows, however, at a certain value of wave-number  

( )

3 4
1 3

4 3

21d g
g g

k k
C k kν

 
 = +
  

  

the flux becomes zero and at dk k>  it becomes negative whereas the spectral 
energy grows that corresponds to the transport of the energy produced by a cer-
tain fictitious source from small-scale flows to large-scale ones. This “nonphysi-
cal result” points out to the fact that the approximation ( ) ( )const gC k C k= =  
is unsatisfactory and needs for a refinement. In particular, in author’s paper [10] 
it was proposed to treat the result (2.3) as two first terms of the series expansion 
in fluid viscosity powers of exponent that reproduces the results obtained by Pao 
[11] (see also [12]). Below it will be shown that this proposal appears to be true. 

3. Cascade Mechanism of Turbulent Energy Transfer and  
Renormalization-Group Method 

The required additional equation, which allows one to find ( )C k , may be ob-
tained by taking into account the cascade mechanism of energy transfer by local 
in the wave-number space intermodal interactions. 

The locality of intermodal interaction acts, which are treated as links of cas-
cade chain, manifest itself in the fact that there is no a certain scale which stands 
out of another scales (the equal role in cascade chain of all links with given scale). 
In this case the characteristics of all links in cascade chain ( )W k  and ( )C k  
are defined only by the characteristics ( )0 0W W k= , ( )0 0C C k=  of the link 
with 0k k=  selected as initial one and are independent of how this link was 
formatted (the independence of a previous history). This means that the process 
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of energy transfer over wave-number spectrum is a Markovian process. If the 
energy transfer be a Markovian process, we will have  

( ) ( ) ( ) ( )0 0 0 0 0 0; , , , ; , ,W k W k W C k C k C k W C k= =  

And the dimensionality arguments enable one to represent the functions desired 
in the form of dimensionless functions of dimensionless variables 

( ) ( )( ) ( ) ( )( )0 1 0 0 0 0 2 0 0 0, , , , , ,W k W k k H k C C k C k k H k Cϕ ϕ= =  

( ) ( ) 3 4H k W k kν=                      (3.1) 

From Equation (3.1) it follows that the dimensionless functions ( )1,2 , ,x h cϕ  of 
dimensionless variables 0x k k= , ( )0h H k=  and 0c C=  obey the normaliza-
tion conditions  

( )1,2 1, , 1h cϕ =                         (3.2) 

The functions ( )1,2 , ,x h cϕ  possess a certain additional symmetry related to 
an ambiguity in a way of setting the boundary conditions that are reduced to a 
choice of a certain link with wave-number 0k  as an initial link in cascade chain 
and specifying the characteristics of this link, namely, 0W  and 0C ; in what 
follows the value 0k  will be referred to as the normalization point. 

If another link with the wave-number 1k k=  be taken as initial one and the 
values of parameters of this link ( )1 1W k W=  and ( )1 1C k c=  be given, the 
form of functions 1,2ϕ  remains unchanged; this means that the following rela-
tionships have to be satisfied  

( ) 0 1 1 1 1 1
0 1

, , , ,k kW k W h c W h c
k k

ϕ ϕ
   

= =   
  

 

( ) 2 1 2 1 1
0 1

, , , ,k kC k c h c c h c
k k

ϕ ϕ
   

= =   
  

              (3.3) 

Due to the presence of ambiguity in a choice of the value 0k  (unit of scale) it 
follows that the functions ( )1,2 , ,x h cϕ  are invariant with respect to the opera-
tion of scale transformation 0 1k k→  and relevant change (renormalization) of 
the parameters ( )0 1 1W W W k→ =  and ( )1 1c c C k→ = . 

The totality of above pointed operators of scale transformations in combina-
tion with renormalization of governing parameters obeys the group composition 
law, contains the operators of identical and inverse transformations, i.e. it made 
up a group called the renormalization group (RG-group), and the invariance of 
the function forms under RG-transformations referred to as RG-invariance. In a 
special case when RG-transformations and RG-invariance are related to change 
in putting initial or boundary conditions (our case) the term “functional 
self-similarity” is used [13]. 

Putting 1k k=  in Equation (3.3) and using the normalization condition (3.2)  

( ) ( )1 0 1 1 2 1 0, , , , , ,W W h c c c h c k kϕ α ϕ α α= = =           (3.4) 

we arrive at the functional RG equations  
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( ) ( ) ( ) ( ) ( )1
1,2 1,2 1,2 24

, ,
, , , , , , , , , ,

h h cxx h c h c x h c c h c
ϕ α

ϕ ϕ α ϕ ϕ α
α α
 

=  
 

   (3.5) 

here α  is an arbitrary dimensionless parameter. 
These equations are similar to the Kolmogorov-Chapman semi-group equa-

tions in the theory of Markovian random processes (the Einstein-Smolukhovsky 
equations in physics of Brownian motion). 

By differentiating the functional RG-equations with respect to α  and next 
putting 1α =  we obtain the RG-differential equations  

( ) ( ) ( ) ( ) ( )1,2 1,2 1 2 1,2, , , , 4 , , , 0r h c x h c x r h c h r h c c x h c
x h c

ϕ ϕ∂ ∂ ∂ + − + − + =   ∂ ∂ ∂ 
(3.6) 

here 

( ) ( )1,2
1,2

1

, ,
,

x

x h c
r h c

x
ϕ

=

∂
=

∂
                    (3.7) 

The functions 1,2r  are similar to the operators of infinitesimal transformations 
in the Lie theory of continuous groups. 

In terms of the functions 1,2ϕ  the balance energy Equation (2.2) takes the 
form  

( ) ( ) ( )1 1 3 1 3 2 3
1 2

, ,
2 , , , ,

x h c
ch x x h c x h c

x
ϕ

ϕ ϕ−∂
= −

∂
           (3.8) 

from which it follows  

( ) 1 3
1 , 2r h c ch−= −                        (3.9) 

However, the differential RG Equations (3.6) contain a new unknown quanti-
ty ( )2 ,r h c  determined by the function ( )C k  in the generalized Kolmogorov 
Equation (2.10). Knowledge of this function is necessary for solving the RG dif-
ferential equation. However, in our analyses it is enough to know this quantity in 
the lowest perturbation theory approximation, namely, the first-order term of a 
series expansion in the fluid viscosity. This is in agreement with the procedure of 
improving the perturbation theory by applying the RG method proposed by 
Bogoyubov and Shirkov in the quantum field theory [14]. 

To the zero-order approximation of perturbation theory it is assigned the case 
when ( ) constC k = , i.e. 2 1ϕ =  and 2 0r = , that reproduce the Kovazhny 
theory containing “nonphysical singularity”. The first-order approximation 
contains a term being proportional to fluid viscosity of first degree. An account 
for dimensionality arguments gives the following representation for the function 

( )2 , ,x h cϕ   

( ) ( )1 3 4 3
2 , , 1 1x h c ch xϕ µ −= + −  

where µ  is a certain dimensionless parameter calculated by using statistical 
solving the Navier-Stokes equations within the framework of perturbation 
theory [2] at given external random force. This lies beyond the scope of the 
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model under consideration. From that it follows ( ) ( )2 1, ,r h c r h cµ=  and we 
will analyze the relevant solution  

( ) ( )
( )3 1 3

1 3 4 3
1

1 3, , 1 1 ,
2

x h c ch x
µµϕ

−
−− = − − 

 
 

( ) ( )2 1, , , ,x h c x h cµϕ ϕ=                            (3.10) 

From Equation (3.10) one can see that in the range 0 1 3µ< <  the solution 
contains “nonphysical” singularity and the position of a singular point goes from 

dk  to infinity as µ  goes from zero to 1/3. Since the transition to 1 3µ →  is 
weakly defined, we consider this case separately by direct solving the differential 
RG Equation (3.6).  

The equation for ( )1ln , ,x h cϕ  can be written in the form  

( ) ( ) ( ) ( )1 2 1 14 , , ln , , ,x h r h c h r h c c x h c r h c
x h h c

ϕ ∂ ∂ ∂ ∂  − − + + = −  ∂ ∂ ∂ ∂  
 (3.11) 

From the easily verified identity  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 1, , , , 3 , ,r h c h r h c c r h c r h c r h c r h c
h c
∂ ∂ + = − +   ∂ ∂ 

 

it follows that the expression in square brackets is zero when 2 1 3r r= . Thus 
one can seek for the solution to Equation (3.10) in the form  

( ) ( ) ( )1 1ln , , ,x h c r h c F xϕ =  

where the function ( )F x  obeys the equation  

( ) ( ) ( )
1

dd 41 0, 1 0, 1
d 3 d

x

F x
x F x F

x x
=

 + − + = = =  
 

that gives  

( ) ( )4 33 1
4

F x x= −  

As the result the formulas for spectral flux and spectral energy density take the 
forms  

( ) ( )4 3 4 3
1 3

3exp
2 g

cW k k kν = − − 
 




             (3.12) 

( ) ( )2 3 5 3 4 3 4 3
1 3

3exp
2 g

cE k c k k kν−  = − − 
 




          (3.13) 

Here we choose the wave-number gk , corresponding to the upper boundary 
of turbulent energy production range, as a normalization point, and use the no-
tation ( )gW k=  and ( )gc C k= . In particular case when 0gk =  the results 
(3.12)-(3.13) appear to be identical to formulas proposed by Pao [11] [12], who 
put forward the hypothesis on proportionality of energy density ( )E k  to spec-
tral flux ( )W k  without any argumentation. 

If the parameter µ  exceeds one third the spectral characteristics monotoni-
cally decrease as k tends to infinity and no singularities arise. In this case the 
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formulas for energy flux and spectral energy density take the forms 

( ) ( )
( )3 3 1

4 3 4 3
1 3

3
2 g

cW k k k
µν − −

 = − − 
 



             (3.14) 

( ) ( )
( ) ( )3 2 3 1

2 3 5 3 4 3 4 3
1 3

3
2 g

cE k c k k k
µ µν − + −

−  = − − 
 




         (3.15) 

4. Local and Nonlocal Interactions 

Our analysis is based on the statement that the energy spectrum is formed due to 
intermodal interactions being local in the wave-number space, and this enables 
one to tell about a cascade mechanism of energy transfer over wave-number 
spectrum and a Markovian character of the process. Precisely this property of 
the process gives a possibility to assume that the solution describing the cascade 
chain depends uniquely on numerical parameters of the link in the chain treated 
as initial one and is independent of the fact how this link was formatted (inde-
pendence on previous history). The property of independence on previous his-
tory of formatting the initial and boundary conditions (functional self-similarity) 
is an inherent one for differential equations that do not contain integral terms. 
Solutions to such equations possess the property of invariance with respect to 
the way of setting additional (initial and boundary) conditions. Namely, under 
the shift of the hyper-surface on which additional conditions are given and rele-
vant changing (renormalization) numerical parameters specifying additional 
conditions the solution remains to be unchanged. The balance energy Equation 
(2.2) relates to the class of such equations. 

However, in the statistical theory of turbulence, the chain of equations that 
relates statistical moments of various orders arises due to nonlinearity of the 
Navier-Stokes equation, and this relation necessary contains integral terms. In 
particular, the equation for the Fourier-transform of the second-order statistic 
moment of velocity field ( ),B k ω  has the form  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , , , ,L k B k T k D k G kω ω ω ω ω+ =           (4.1) 

where the second-rank tensor ( ),T k ω , also referred to as the inertial term, is 
expressed via the integral of the third-order statistical moment of turbulent ve-
locity pulsations (Equation (A.4) in Appendix). The inertial term describes the 
processes of momentum and energy redistribution due to mixing induced by 
velocity pulsations. The relevant intermodal interactions are obviously nonlocal, 
and the question of validity the form of balance energy Equation (2.2) and an 
ability to use various symmetry properties like the RG-invariance arises. Thus 
we arrive at the problem of filtering out these interactions. In the Yakhot-Orszag 
renormalization-group theory of turbulence [15], this problem is solved by using 
the ε-expansion procedure when one first calculates the quantity desired in the 
low-order approximation in ε near the point 0ε =  and next extends the result 
obtained into the point 4ε = . This procedure is similar to the t’Hooft-Veltman 
dimensional regularization method in quantum field theory. 

https://doi.org/10.4236/jmp.2020.1110092


E. V. Teodorovich 
 

 

DOI: 10.4236/jmp.2020.1110092 1510 Journal of Modern Physics 
 

An account for the effect of turbulent velocity pulsations leads to a correction 
to fluid viscosity (a turbulent viscosity), and as a result the representation for the 
Fourier-transform of reverse Green’s function takes the form  

( ) ( ) ( ) ( )
101 , , ,G k G k kω ω ω
−

−  = −Σ                 (4.2) 

( ) ( ) ( ) ( )
10 0 2, ,G k L k i kω ω ω ν
−

  = = − +   is the reverse Green function of the li-
near problem. (This equation can be rewritten in the form of Dyson’s equation 
well-known in quantum-field-theory  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , , , ,G k G k G k k G kω ω ω ω ω= + Σ  

where ( ),k ωΣ  is referred to as the self-energy operator.) 
Another result of account for a mixing by turbulent velocity pulsations con-

sists in appearance of effective random force which variance is written as  

( ) ( ) ( ) ( ) ( )0 1, , ,D k D k D kω ω ω= +                (4.3) 

Here ( ) ( )0 ,D k ω  is the variance of external random forces that simulate the 
emergence of stochasticity due to development of instability of large-scale flows 
and is similar to Langevin forces in the theory of random processes; the second 
summand ( ) ( )1 ,D k ω  arises due to account for transport phenomena produced 
by mixing processes. 

The quantity ( ),D k ω  enters into the equation for the second-order statistic 
moment of velocity field ( ),B k ω   

( ) ( ) ( ) ( ), , , ,B k G k D k G kω ω ω ω= − −              (4.4) 

first obtained by Schwinger [16] when building the theory of quantized fields 
beyond the scope of perturbation methods. The Schwinger approach is based on 
statistical description of quantized fields in terms of characteristic (generating) 
functional. In the statistical theory of turbulence this equation was obtained by 
Wyld [2] with the help of summing up the perturbation theory series and ap-
plying the technique of Feynman diagrams. 

In the space-time variables the inertial term ( )1,2T  contains the third-order 
statistical moment of velocity field (see Appendix, Equation (A4)) and the ques-
tion arises whether the Fourier-transform of inertial term will contain integral 
terms and how to close the set of equations by excluding the third-order statis-
tical moment. 

Within the framework of statistical description of turbulence in terms of cha-
racteristic (generating) functional it can be obtained the formula for inertial 
term  

( ) ( ) ( ) ( ) ( ) ( )1, , , , ,T k k B k G k D kω ω ω ω ω= −Σ −          (4.5) 

firstly pointed out in author’s paper [17]. It should be noted that this formula is 
an exact one since no approximations or additional conjectures were used in its 
derivation. 

The quantities Σ  and ( )1D  are defined by solving the Navier-Stokes equa-
tions, but these quantities can be excluded by using Equation (4.2) and Equation 
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(4.4) that gives  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0, , , , ,T k L k B k G k D kω ω ω ω ω= − +           (4.6) 

For the quantity ( ) ( ), d 2T k T k ω ω π= ∫  we obtain  

( ) ( ) ( ) ( ) ( )02T k k B k G k D kν= − +  

If to put ( ) ( )d dT k W k k= , we arrive at the balance energy equation that coin-
cides with Equation (2.2) beyond the energy production range. The above pre-
sented procedure is another way of excluding nonlocal intermodal interactions 
when building the theory of turbulent spectra. 

5. Conclusion 

The theory of spectral energy distribution is based on the Kolmogorov conjec-
ture that the energy spectrum is formatted by intermodal interactions being local 
in wave-number space. From this, it follows a cascade mechanism of energy 
transfer along the wave-number space, the Markovian properties of the process, 
as well as an ability to apply various similarity arguments such as the property of 
renormalization-group invariance (functional self-similarity). In this case, the 
problem of separating local intermodal interactions (straining effects) and fil-
tering out nonlocal ones (sweeping effects) arises. An account for mixing 
processes by turbulent velocity pulsations (swimming effects) reveals in the form 
of an addition ( )1D  to a variance of external random forces (turbulent random 
force) and addition Σ to viscous term in the Navier-Stokes equations (turbulent 
viscosity). In Section 4 it was shown that in the functional formulation of statis-
tical description of turbulence, these quantities prove to be excluded from the 
balance energy equation. As the result, the problem of selecting local intermodal 
interactions and filtering out nonlocal ones appears to be solved exactly without 
applying other methods such as the ε-RG (see more recent survey [18]). 
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Appendix. Basic Equations in Space-Time Variables 

To simplify the writing in formulas we will use digital notation for space-time 
variables and the index of vector components { }1 1 1, , 1r t α ≡  according to which 

( ) ( )1 11
, 1u r t uα ≡ . Also it will be implied the integration over space-time coordi-

nates and the summing over component indexes for coinciding digital numbers 
(the Einstein rule), i.e.  

( ) ( ) ( ) ( )1 1 1 1 1 11 1 , , d du v u r t v r t r t≡ ⋅∫  

The Navier-Stokes equations (NSE) with the presence of the external random 
force ( )1X  and the external regular force ( )1f   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 11,2 2 1| 2,3 2 3 1 1
2

L u V u u X f+ = +         (A.1) 

(for more details related to notation see [16]). 
Variance of external random force  

( ) ( ) ( ) ( )0 1, 2 1 2D X X=                   (A.2) 

The equation for ( ) ( ) ( )1,2 1 2B u u=   
( ) ( ) ( ) ( ) ( ) ( ) ( )0 91,1 1 ,2 1,2 1,1 1 ,2L B T G D′ ′ ′ ′+ =            (A.3) 

Inertial term  

( ) ( ) ( ) ( ) ( ) ( ) ( )11,2 1| 3,4 3,4,2 , 1,2,3 1 2 3
2

T V B B u u u= =      (A.4) 

Exact representation for inertial term  

( ) ( ) ( ) ( ) ( ) ( )11, 2 1,1 1 ,2 1,1 1 ,2T B G D′ ′ ′ ′= − Σ −            (A.5) 

The Schwinger-Wyld formula  

( ) ( ) ( ) ( )1,2 1,1 2,2 1 ,2B G G D′ ′ ′ ′=                (A.6) 

( )1,2D  is the variance of effective random forces. 
Another form of Equation (A.6)  

( ) ( ) ( ) ( )11,1 1 ,2 1,1 1 ,2B G G D−′ ′ ′ ′=               (A.7) 
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