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Abstract 
Since the great financial crisis of 2008, many studies have pointed out that 
even in the portfolio where the asset allocation is sufficiently diversified; it is 
still possible that risk allocation is well concentrated to a few assets. One ap-
proach to this problem is risk parity strategies which equalize the risk contri-
bution of each asset. However, even if we equalize the risk contribution, risk 
sources are not necessarily diversified. In this paper, we propose non-hierarchical 
clustering-risk parity strategy which will equalize risk contribution from and 
within each cluster. In addition, in order to ensure robustness of clustering, 
we also propose x-means++ algorithm which combines k-means++ with 
x-means. Assuming assets with similar movement have common risk sources; 
our approach will construct a portfolio which equalizes risk sources. Empiri-
cal analysis using actual price data of various asset classes shows that our 
proposed method will outperform risk-parity strategies or hierarchical clus-
tering risk parity strategies. 
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1. Introduction 

Since the great financial crisis of 2008, many studies have pointed out that even 
in the portfolio where the asset allocation is sufficiently diversified; it is still 
possible that risk allocation is well concentrated to a few assets. 

Traditionally portfolios are constructed using the men-variance approach [1]. 
To calculate optimal portfolio weights, this method performs optimization using 
expected returns and risks. However, as these numbers are hard to estimate with 
precision, the calculated weights tend to be biased and often not as diversified as 
initially intended [2]. 

One approach to this problem is risk parity strategies which equalize the risk 
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contribution of each asset [3]. Also, according to [4], unlike mean variance, risk 
parity does not depend on the estimation accuracy of the covariance matrix for 
performance. While pension funds generally have a diversified portfolio of 
stocks and bonds, it is still said that their portfolios have a large bias in risk con-
tribution. 

As the risk of stocks is much larger than bonds, the majority of the portfolio 
risk comes from stocks. In the first place, we make diversified investments be-
cause we expect other assets to support the overall performance when one asset 
is in a poor condition. 

When the majority of the portfolio risk is occupied by stock, other assets do 
not make up for the stock market slump, and the expected effects of diversified 
investment cannot be obtained. Risk parity strategies have been proposed as an 
alternative to these conditions. 

The concept of risk parity applies to the asset allocation problem and there are 
many previous studies. For example, [3] demonstrates that risk parity perfor-
mance is more efficient as measured by Sharpe Ratio, compared to traditional 
balanced portfolios with a 60:40 equity and bond investment ratio.  

On the other hand, some caveats are pointed out for risk parity strategy too. [5] 
and [6] have pointed out that even if the risk contributions are made equal, the 
sources of risk are not diversified. 

Therefore, in this paper, we first group assets with similar movements using 
non-hierarchical clustering method. Then, we propose a non-hierarchical clus-
tering/risk parity strategy in which the risk contributions are equal both in each 
cluster and within the cluster. We also propose x-means++ which is a combina-
tion of x-means algorithm [7] [8] and k-means++ algorithm [9] in order to se-
cure the robustness of clustering. 

Assuming assets with similar movement have common risk sources; our ap-
proach will construct a portfolio which equalizes risk sources. Empirical analysis 
using actual price data of various asset classes shows that our proposed method 
will outperform risk-parity strategies [3] or hierarchical clustering risk parity 
strategies [10]. 

The remaining sections of this paper are organized as follows. In Section 2, we 
briefly describe the related studies of the risk-based portfolio. In Section 3, we 
introduce the risk parity portfolio and non-hierarchical risk parity portfolio. In 
Section 4, we describe the x-mean++ clustering and in Section 5, we verify its ef-
fectiveness through empirical analysis with the actual financial market data. Fi-
nally, we conclude in Notation. 

2. Related Work 

Unlike the mean-variance portfolio, which uses both estimated return and risk, 
risk-based portfolios only use estimated risk to construct a portfolio. As pre-
dicting future returns is troublesome and also error maximization features of 
mean-variance optimization approach tend to construct a portfolio concentrated 
on a few securities [2], risk-based portfolios that do not use the expected return 
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have attracted attention of practitioners. 
Typical risk-based portfolios are the minimum variance portfolio [11], the 

risk parity portfolio [3], and the maximum diversification portfolio [12]. Each of 
these has shown to provide better performance than market capitalized portfo-
lios and mean variance portfolios [13]. The minimum variance portfolio deter-
mines the asset allocation so that the variance of the portfolio is the smallest. 
This portfolio is located at the left end of the efficient frontier in the risk/return 
plane, and the expected return of this portfolio is also the smallest of the efficient 
frontier. However, it is known that minimum variance portfolios tend to have 
higher risk/return ratio ex-post. The maximum diversification portfolio is the 
portfolio with the largest diversification effect, and is obtained by maximizing 
the diversification ratio which is the weighted average of asset risk divided by 
portfolio risk. 

Furthermore, it is known that these three portfolios can be written as a gene-
ralized risk-based portfolio [14]. Extensions to these three portfolios have been 
proposed. As an extension of the minimum variance portfolio, there are 1) those 
that include higher-order moments [15], 2) those that devise the method of es-
timating the co-variance matrix (Gaussian Process Latent Variable Model: GPLVM 
[16] and t-Process Laten Variable Model: TPLVM [17]), and those that use 
downside risk such as conditional value at risk (CVaR) [18] [19] which is an al-
ternative to co-variance based risk measure. 

As an extension of risk parity, there are principal component risk parity [5] 
and complex principal component risk parity [6] that focus on the source of risk. 
Furthermore, there is a hierarchical cluster risk parity [10] that divides the risk 
into clusters and distributes the risk to those clusters. This study proposes a 
non-hierarchical risk parity portfolio. 

3. Non-Hierarchial Clustering Risk Parity Portfolio 
3.1. Risk Parity 

We consider a portfolio of n risky asset and let ( )T
1, , NR R R=   be the return 

(random variable) vector of each assets, ( )T
1, , Nµ µ µ=   be the vector of ex-

pected returns, and ( )( )TE R Rµ µΣ = − − 
   be the covaraiance matrix of asset 

returns. Additionally, we denote weight vector of portfolio as ( )T
1, , Nw w w=  . 

To derive the specific form of the risk parity portfolio, we will introduce Mar-
ginal Risk Contribution (MRC) as a derivative of portfolio risk T

P w wσ = Σ  
by weight w. 

( )
, iP

i
P P

wwMRC MRC
w
σ

σ σ
Σ∂ Σ

= = =
∂

               (1) 

We will be able to decompose portfolio risk using MRC as following. 

T

1

N

P i i
i

w MRC w MRCσ
=

= × =∑                  (2) 

We will additionally define Risk Contribution (RC) as below. 
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i i
i

P

w MRC
RC

σ
×

=                       (3) 

Finally Risk Parity Portfolio can be defined as a portfolio which RCis from 
each asset i are equal. 

, for all ,i jRC RC i j=                     (4) 

Restricting short-selling and usage of leverage, [20] showed that portfolio 
weights can be calculated efficiently by solving optimization problem (5)-(6). As 
(5)-(6) are a convex optimization problem this will have a unique solution. 

( )
1 1

min
N N

i jw i j
RC RC

= =

−∑∑                    (5) 

1
s.t, 1, 0

N

i i
i

w w
=

= >∑                     (6) 

3.2. Non-Hierarchical Clustering Risk Parity 

Essence of risk parity portfolio is controlling risk allocation. While constructing 
a risk parity portfolio we choose to allocate risk contribution equally to each as-
set, but we can consider alternative way of allocating risk, which is called risk 
budgeting strategy [21]. 

In this article we aim to equalize risk contribution from each cluster and at the 
same time equalize risk contribution from each asset within every clusters. 

To achieve this goal, we will first perform non-hierarchical clustering using 
asset returns to determine risk clusters.  

And using this cluster we will solve optimization problem below to get the 
portfolio weights of non-hierarchical clustering risk parity portfolio. k stands for 
number of clusters and kN  stands for number of assets in each cluster. We can 
see that risk contribution from each cluster is equalized and risk contributions 
from each asset within each cluster are equalized in this portfolio. We will in-
troduce this method as non-hierarchical clustering risk parity strategy. 

1 1

1 1min
N N

iw i j k

RC
k N= =

 
− × 

 
∑∑                     (7) 

1
s.t, 1, 0

N

i i
i

w w
=

= >∑                       (8) 

4. x-Means++ 

The k-means is a standard algorithm of a hierarchical clustering method which 
is easy to implement and has high calculation efficiency.  

A cluster refers to a collection of data points aggregated together according to 
certain distances and a centroid iC  is a center point in each cluster. 

We first define a target centroid number k. 
The k-means divides the data into k clusters so as to minimize the following 
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evaluation function in which ( ),d x y  is the distance function. 

( )( )2

1
,

i

k

i
i x C

d x C
= ∈
∑ ∑                         (9) 

However, the k-means algorithm has two shortcomings. First, the result may 
depend on the initial clusters, so the algorithm does not guarantee the optimal 
clustering. Second, the algorithm needs to set the numbers of clusters k initially. 

The initialization method called k-means++ [9] was proposed for the first 
shortcoming. And x-means [7] [8] was proposed for the second one. In this pa-
per, we combine the k-means++ initialization with x-means. Next section de-
scribes the k-means++ and x-means algorithm which are the components of our 
proposed. Table 1 shows the comparing each algorithm.  

4.1. k-Means++ 

The feature of k-means++ is the initialization of centroids iC . The k-means++ 
algorithm decides the k clusters as follows: 

Step 1: 
Choose one data point at random in data as an initial centroid 1C . 
Step 2: 
For each data point ix , compute ( )id x , the distance between ix  and the 

nearest centroid that has already been chosen. 
Step 3: 
Choose one new data point px  at random as a new centroid with the fol-

lowing probability 

( )( ) ( )( )
12 2

1

n

p i
i

d x d x
−

=
∑                      (10) 

here, the data already selected as the cluster has the probability 0 because the 
distance between the data and the nearest centroid is 0. 

Step 4: 
Repeat the step 2 and 3 until k centroids have been chosen. 
 

Table 1. Comparison of clustering algorithms. 

 
Pros Cons 

k-means 
easy to implement and has high  
calculation efficiency. 

depends on the initial clusters. 
needs to set the numbers of clusters  
k initially. 

k-means++ 
can decrease the dependency on initial 
clusters. 

needs to set the numbers of clusters  
k initially. 

x-means 
can determine the optimal number of 
clusters. 

depends on the initial clusters. 

x-means++ 
(Ours) 

can determine the optimal number  
of clusters. 
can decrease the dependency on initial 
clusters. 

- 
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4.2. x-Means 

The x-means algorithm can determine the optimal number of clusters unlike 
k-means algorithm which the number of clusters has to be given in advance. 

The process of x-means clustering is to perform k-means repeatedly from 
2k =  until a Bayesian information criterion (BIC) does not improve.  

This study applies the following algorithm proposed by [8]. 
Step 1: 
We prepare p-dimensional data whose sample size is n. 
Step 2: 
We apply k-means ( 2k = ) to all data. We name the divided clusters as 

1 2,C C . 
Step 3: 
We repeat the following procedure from step 4 to step 9 by setting 1,2i = . 
Step 4: 
For a cluster iC , we apply k-means ( 2k = ). We name the divided clusters as 

1 2,i iC C . 
Step 5: 
We assume the following p-dimensional normal distribution for the data 

i ix C∈ : 

( )
( )

( ) ( )T 1

2

1 1; exp
22 det

i i i ip

i

f x x V x
V

θ µ µ−= − − −
π

     (11) 

Then, we calculate BIC as 

( )2log ; logi i i iBIC L x C q nθ= − ∈ +             (12) 

where [ ],i i iVθ µ=  is the maximum likelihood estimate of the p-dimensional 
normal distribution; iµ  is p-dimensional means vector, and iV  is p p×  di-
mensional covariance matrix; q is the number of the parameters dimension, and 
it becomes ( )3 2q p p= + . in  is the number of elements in iC . L is the like-
lihood function which indicates ( ) ( )L f⋅ = ⋅∏ . 

Step 6: 
We assume the p-dimentional normal distributions with their parameters 
( ) ( )1 2,i iθ θ  for 1 2,i iC C  respectively. The probability density function of this 2-di- 

vision model becomes 

( ) ( )( ) ( )( ) ( )( ) 1
1 2 1 2, ; ; ; ,

i i

i i i i ig x f x f x
δ δ

θ θ α θ θ
−

   =               (13) 

where 
1

2

1, if is included in

0, if is included in
i

i
i

x C

x C
δ

= 


                 (14) 

ix  will be included in either 1
iC  or 2

iC ; iα  is a constant which lets equa-
tion (12) be a probability density function (1 2 1iα≤ ≤ ). We approximate iα  
as follows: 

( )0.5 ,i iKα β=                        (15) 
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where iβ  is a normalized distance between the two clusters, shown by 
2

1 2

1 2

,i V V
µ µ

β
−

=
+

                      (16) 

( )K ⋅  stands for a lower probability of normal distribution. The BIC for this 
model is 

( )2log ; logi i i iBIC L x C q nθ′ ′ ′= − ∈ +               (17) 

where ( ) ( )1 2,i iiθ θ θ ′ =    is the maximum likelihood estimate of the p-dimensional 
normal distribution; since there are two parameters of mean and covariance for 
each p variable, the number of parameters dimension becomes ( )3q p p′ = + . 
L′  is the likelihood function which indicates ( ) ( )L g′ ⋅ = ⋅∏ .  

Step 7: 
If BIC BIC′> , we prefer the two-divide model, and decide to continue the 

division; we set 1
i iC C← . As for 2

iC , we push the p-dimensional data, the clus-
ter centers, the log likelihood and the BIC onto the stack. We return to Step 4. 

Step 8: 
If BIC BIC′≤ , we prefer not to divide clusters anymore, and decide to stop. 

We extract the stacked data, which is stored in Step 7, and we set 2
i iC C← . We 

return to Step 4. If the stack is empty, go to Step 9. 
Step 9: 
The 2-division procedure for iC  is completed. We renumber the cluster 

identification such that it becomes unique in iC  
Step 10: 
The two-division procedure for initial 2k =  divided clusters is completed. 

We renumber all cluster identifications such that they become unique. 
Step 11:  
We note the outputs of the cluster identification, the center of each cluster, the 

log likelihood of each cluster, and the number of elements in each cluster. 

5. Empirical Results 

This section describes the empirical study with real market data. 

5.1. Datasets 

We perform empirical analysis using equity and bond futures price data. The in-
dices we use in this study are summarized in Table 2. We use 15 equity futures 
and 12 bond futures from May 2005 to May 2020. The summary of statistics of 
each index is reported in Table 3. 

5.2. Parameters Settings 

We compare risk parity (RP) [3], hierarchical risk parity (HRP) [10], clustering 
risk parity (CRP) using k-means++ which the number of clusters is fixed, and 
non-hierarchical risk parity using x-means++ (XRP). We set k of k-means++ 
from 2 to 8. Our simulation process is given below. 
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Table 2. Investment assets. 

 Investment assets 

Equity 
furure 

(15 assets) 

S&P500 
(SP) 

NAS 
DAQ 
(NQ) 

CA 
(PT) 

GB 
(Z) 

FR 
(CF) 

DE 
(GX) 

EU 
(VG) 

ES 
(IB) 

NL 
(EO) 

CH 
(SM) 

NIKKEI 
(NK) 

TOPIX 
(TP) 

HK 
(HI) 

AU 
(XP) 

SG 
(QZ) 

 

Bond 
furure 

(12 assets) 

US2Y 
(TU) 

US5Y 
(FV) 

US10Y 
(TY) 

US20Y 
(US) 

AU3Y 
(YM) 

AU10Y 
(XM) 

CA10Y 
(CN) 

DE2Y 
(DU) 

DE5Y 
(OE) 

DE10Y 
(RX) 

GB10Y 
(G) 

JP10Y 
(JB) 

    

aWords in parentheses denote tickers. 
 

Table 3. Summary of statistics of investment assets. 

Performance 
Statistics 

SP NQ PT Z CF GX VG IB 

Return (%, Ann) 5.32 8.53 4.49 3.13 2.90 3.34 2.89 2.37 

Risk (%, Ann) 19.34 26.30 18.70 18.42 22.38 22.86 23.42 23.04 

R/R 0.28 0.32 0.24 0.17 0.13 0.15 0.12 0.10 

Performance 
Statistics 

EO SM NK TP HI XP QZ 

Return (%, Ann) 2.97 5.38 4.85 3.74 6.22 5.08 4.80 

Risk (%, Ann) 22.02 18.36 23.87 22.58 23.05 16.34 19.51 

R/R 0.13 0.29 0.20 0.17 0.27 0.31 0.25 

Performance 
Statistics 

OE RX G JB 

Return (%, Ann) 2.50 4.28 3.44 1.93 

Risk (%, Ann) 3.03 5.17 5.79 2.95 

R/R 0.82 0.83 0.59 0.65 

Performance 
Statistics 

TU FV TY US YM XM CN DU 

Return (%, Ann) 1.33 3.03 4.31 5.76 2.80 2.80 3.92 0.83 

Risk (%, Ann) 1.42 3.72 5.75 9.88 7.17 7.17 5.41 1.15 

R/R 0.94 0.82 0.75 0.58 0.39 0.39 0.72 0.72 

 
First, we estimate covariance matrix and perform clustering methods using 

250 days of asset return data. Then, we construct each portfolio every 20 busi-
ness days. Our simulation period is from April, 2001 to May, 2020. 

5.3. Performance Measures 

For evaluating an investment strategy, we use the following measures that are 
widely used in financial space. Returns are annualized, risk is calculated as stan-
dard deviation of return and R/R stands for return/risk ratio. In this paper, each 
portfolio will have different risk levels as we utilize wide range of assets with 
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various risk levels. We think R/R which is the efficiency of the portfolio perfor-
mance, is more appropriate measure for performance evaluation for this study 
than return alone. 

1

250Return
T

t
t

r
T =

= ∑                        (18) 

( )2

1

250Risk
1

T

t
t

r
T

µ
=

= −
− ∑                    (19) 

R R Return Risk=                       (20) 

[ ]
[ ]

1,
1,

maxDD min 0, 1
max

k

k T
jj k

W
W∈

∈

 
 = −  
 

                 (21) 

Here, tr  denotes the portfolio return at time t, µ  denotes average of tr  
and kW  denotes the wealth of portfolio at time k. 

5.4. Results 

Table 4 shows the result of simulation. The upper row shows the results for the 
entire period, the middle row shows the results for the first half, and the lower 
row shows the results for the second half. We compare risk parity (RP), hierar-
chical risk parity (HRP), clustering risk parity (CRPx) with x denoting the num-
ber of clusters, and non-hierarchical risk parity using by our proposed x-means++ 
(XRP). 
 
Table 4. Performance statistics of portfolios. 

Performance 
Measures 

RP HRP CRP2 CRP3 CRP4 CRP5 CRP6 CRP7 CRP8 XRP 

All Period (from Apr, 2001 to May, 2020) 

Return (%, Ann) 2.31 1.22 1.05 2.48 2.50 2.67 2.60 3.31 2.71 3.06 

Risk (%, Ann) 2.04 1.35 3.59 2.65 2.78 3.38 2.48 2.83 3.20 2.25 

R/R 1.14 0.90 0.29 0.93 0.90 0.79 1.05 1.17 0.85 1.36 

maxDD (%) 7.24 3.93 18.07 11.20 9.96 8.66 8.48 7.48 9.23 7.07 

First Half Period (from Apr, 2001 to Apr, 2010) 

Return (%, Ann) 2.28 1.74 −0.06 2.21 2.42 2.31 2.30 2.34 2.81 2.91 

Risk (%, Ann) 2.42 1.82 4.26 3.14 3.54 3.23 2.83 3.00 3.95 2.62 

R/R 0.94 0.95 −0.01 0.71 0.68 0.71 0.81 0.78 0.71 1.11 

maxDD (%) 7.24 3.93 18.07 11.20 9.96 8.66 8.48 7.48 9.23 7.07 

Second Half Period (from May, 2010 to May, 2020) 

Return (%, Ann) 2.34 0.75 2.04 2.71 2.58 2.99 2.86 4.17 2.62 3.18 

Risk (%, Ann) 1.61 0.68 2.86 2.12 1.85 3.50 2.11 2.67 2.32 1.85 

R/R 1.45 1.10 0.71 1.28 1.39 0.86 1.36 1.56 1.13 1.72 

maxDD (%) −4.79 −1.23 −8.11 −5.68 −5.59 −8.86 −5.71 −5.81 −5.37 −4.23 
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In terms of R/R for all period, XRP is the most efficient among RP, HRP and 
all CRPs. In addition, the return level of XRP is higher than all methods exclud-
ing CRP7. Also, maxDD of XRP is smaller than all methods excluding HRP. Our 
result shows that XRP has the best performance of all. XRP also gives the best 
R/R and second best maxDD in both the first half and the second half. 

6. Conclusions 

Our study makes the following contributions: 
• We propose non-hierarchical clustering-risk parity strategy in which the risk 

contributions are equal both in each cluster and within the cluster. 
• We also propose x-means++ algorithm which combines k-means++ algo-

rithm with x-means algorithm to ensure robustness of clustering. 
• Empirical analysis shows that the portfolio equalized risk contribution from 

each risk sources by our proposed approach, outperforms risk parity strate-
gies or hierarchical clustering risk parity strategies. 

Our future tasks are to perform empirical analysis using larger dataset such as 
individual stocks to verify the robustness of our proposed strategy and to apply 
our method to a complex valued risk diversification strategy. 
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Notation 

R: Return (random variable) vector  
µ : Vector of expected returns 
Σ : Covaraiance matrix  
w: Weight vector of portfolio 

Pσ : Portfolio risk 
MRC: Marginal Risk Contribution 
RC: Risk Contribution 

iC : Center point in cluster i 
k: Number of clusters 

in : Number of elements in iC  
( )d ⋅ : Distance function 
( ); if x θ : p-dimensional normal distribution for the data x and paramater iθ  
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