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Abstract 
The large finite element global stiffness matrix is an algebraic, discreet, 
even-order, differential operator of zero row sums. Direct application of the, 
practically convenient, readily applied, Gershgorin’s eigenvalue bounding 
theorem to this matrix inherently fails to foresee its positive definiteness, pre-
dictably, and routinely failing to produce a nontrivial lower bound on the 
least eigenvalue of this, theoretically assured to be positive definite, matrix. 
Considered here are practical methods for producing an optimal similarity 
transformation for the finite-elements global stiffness matrix, following which 
non trivial, realistic, lower bounds on the least eigenvalue can be located, then 
further improved. The technique is restricted here to the common case of a 
global stiffness matrix having only non-positive off-diagonal entries. For such 
a matrix application of the Gershgorin bounding method may be carried out 
by a mere matrix vector multiplication. 
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1. Introduction 

Knowledge, even approximate, of the extremal eigenvalues of the, large, positive 
definite, global stiffness matrix generated by the finite-element method (see [1]), 
is essential for assessing the correctness of the numerical solution of the global 
algebraic system of equations set up by this variational method. Other numerical 
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procedures related to this large algebraic system, such as iterative solution me-
thods, are also greatly affected by the condition number, the ratio of the largest 
to the smallest eigenvalue, of the matrix (see [2]). In this note we, theoretically 
and numerically, examine various practical procedures for the numerical, 
a-posteriori, ever better, bounding of the eigenvalues of the large global stiffness 
matrices generated by the finite-element method, predominantly based on a 
preparatory, most favorable, similarity transformation. Special attention is paid 
in this note to the common class of matrices having non-positive off-diagonal 
entries (see [3] [4] [5]). For such matrices, application of the Gershgorin 
bounding method may be most conveniently carried out by a mere matrix vector 
multiplication, which may be, in turn, very effectively carried out on the element 
level (see [6]). 

2. Gershgorin’s Eigenvalue Bounds 

The utterly simple Gershgorin and Rayleigh eigenvalue bound theorems (see [7] 
[8]) are of such fundamental importance in computational linear algebra that we 
find it good to fully repeat them here. 

Throughout this paper we denote a number by a lower case Greek letter, a 
vector by a lower case Roman letter, and a matrix by an upper case Roman letter. 

The eigenvalue spectrum ( )Aλ  of real symmetric matrix A is real. For such 
a matrix Gershgorin’s theorem assumes the simpler form. 

Theorem (Gershgorin). Let ( ) TA A n n A= × =  be symmetric, and so of a 
real eigensystem. Then every eigenvalue of A lies in, or on the end points of, at 
least one of the intervals  

1 2 , 1, 2, , .ii i i inA A A A i nλ − ≤ + + + =               (1) 

Namely,  

( ) ( )

( )
1 2

1 2

min

max

ii i i ini

ii i i ini

A A A A A

A A A A

λ − + + + ≤ 

 ≤ + + + + 





               (2) 

for every eigenvalue of A. 
Proof. Let λ be an eigenvalue of A and { }1 2 0nx x x x= ≠  the correspond-

ing eigenvector, so that Ax xλ= . Assume that for this λ the kth component of 
, kx x , is largest in magnitude and is normalized so that 1kx =  and 1ix ≤ , 

i k≠ . The kth equation of Ax xλ=  is then  

1 1 2 2k k kk kn nA x A x A A x λ+ + + + + =                  (3) 

and  

1 1 2 2

1 1 2 2

1 2

kk k k kn n

k k kn n

k k kn

A A x A x A x

A x A x A x

A A A

λ − = + + +

≤ + + +

≤ + + +







               (4) 

since 1ix < . We do not know what k is, but are sure that λ certainly lies in one 
of these intervals.                                                  □ 
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Gershgorin’s theorem readily provides outside bounds on all eigenvalues of 
matrix A. 

3. Positive-Definite Matrices with Non-Positive Off-Diagonal 
Entries 

Positive definite and symmetric global stiffness matrices of a positive diagonal 
and non-negative off-diagonal entries are common in the finite elements, or fi-
nite differences, method. For such matrices the application of the Gershgorin 
theorem simplifies into a mere matrix-vector multiplication operation, efficient-
ly carried out as a summation of such multiplications on the element level of the 
global mesh (see [6]). 

Say matrix A is symmetric, TA A=  and positive (semi) definite, and of 
non-positive off-diagonal entries, then obviously  

( ) { }1 min , 1 or 1,1,1, ,1ii
A Ae e eλ ≥ = =                 (5) 

where ( )1 Aλ  is the smallest eigenvalue of matrix A, and ( )n Aλ  the largest. If 
matrix A is symmetric and positive definite, then ( )1 0Aλ > . For example  

( )1

1 1 1 0 0
1 2 1 1 0 , min 0 0, 0 .

1 2 1 1 1
i

Ae A
r

λ
−       

       = − − = = ≤       
       −       

         (6) 

Gershgorin’s theorem correctly predicts here that matrix A is, at least, positive 
semi-definite, but it fails to ascertain that it is actually positive definite, with a 
positive lowest eigenvalue. To obtain a more realistic, nontrivial, lower bound on 
the lowest eigenvalue of matrix A we resort to similarity transformations de-
signed to rescue the lower bound from triviality. 

4. Rayleigh Quotient 

Let matrix TA A=  be real and symmetric. If x  is an eigenvector of A for cor-
responding eigenvalue λ , Ax xλ= , then T Tx Ax x xλ= , or T Tx Ax x xλ = . 
The rational function, for variable vector x   

[ ]
T

T , 0x AxR x x
x x

= ≠                        (7) 

is the Rayleigh quotient of matrix A. It has some interesting properties of great 
practical and theoretical reach. 

First property: The quotient [ ]R x  produces very accurate eigenvalue ap-
proximations from even not so good eigenvector approximations. Indeed, let v 
be an eigenvector corresponding to some λ , and let  

T T T T, 1, 1, 0x v w v v w w w v v w= + = = = =               (8) 

where w  is the error vector. 
Then  

[ ] ( ) ( )
( ) ( )

TT T T 2 T

T T T T 2 T

2
2

v w A v wx Ax v Av w Av w AwR x
x x v v w v w wv w v w

+ + + +
= = =

+ ++ +

   
  

     (9) 
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or  

[ ]
2 T T

2
2 21 1

w Aw w AwR x λ λλ+ −
= = +

+ +



 

               (10) 

since T 0w v = , implying that also T 0w Av = . Thus, here  

[ ] ( )2 .R x Oλ= +                         (11) 

Rayleigh quotient [ ]R x  produces a very accurate, ( )2O  , approximation to 
an eigenvalue from an approximation x to the corresponding eigenvalue that is 
not very accurate, only ( )O  . Conversely, a very good approximation to an ei-
genvalue does not imply it coming from a very good approximation to an eigen-
vector. 

Second property: If TA A= , then for any vector 0x ≠   

( ) [ ] ( ) ( ) ( )
T

T T
1 1T or , 1.n n

x AxA R x A A x Ax A x x
x x

λ λ λ λ≤ = ≤ ≤ ≤ =    (12) 

The Rayleigh quotient provides inner bounds on all eigenvalues of symmetric 
matrix A. Hence the Rayleigh bounds and the Gershgorin bounds complement 
each other. 

Theorem (Rayleigh.) Let the eigenvalues of TA A=  be arranged in the as-
cending order 1 2 nλ λ λ≤ ≤ ≤ , with orthogonal eigenvectors 1 2, , , nx x x . 
Then  

T
T T T

1 1 2T if 0, 0k n k
x Ax x x x x x x x
x x

λ λ+ ≤ ≤ = = = = ≠          (13) 

with the lower equality holding if and only if 1kx x += , and the upper inequality 
holding if and only if nx x= . Also  

T
T T T

1 1 1T if 0, 0n k n n n k
x Ax x x x x x x x
x x

λ λ − − − +≤ ≤ = = = = ≠        (14) 

with the lower equality holding if and only if 1x x= , and the upper if and only if 

n kx x −= . The two inequalities reduce to  
T

1 T n
x Ax
x x

λ λ≤ ≤                         (15) 

for arbitrary, nonzero, nx R∈ .  
Proof. Vector nx R∈ , orthogonal to 1 2, , , kx x x  has the unique expansion  

1 1 2 2k k k k n nx x x xα α α+ + + += + + +                  (16) 

with which  
T 2 2 2

1 1 2 2 .k k k k n nx Ax λ α λ α λ α+ + + += + + +                (17) 

We normalize x by  
T 2 2 2

1 2 1k k nx x α α α+ += + + + =                   (18) 

and use this equation to eliminate 2
1kα +  from Tx Ax  to be left with  

( ) ( ) ( )T 2 2
1 2 2 1 1 .k k k k n n kx x Axλ λ α λ λ α λ λ+ + + + += = + − + + −       (19) 

By assumption 1 0j kλ λ +− ≥  if 1j k> +  and hence  
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( ) 1kxλ λ += + non-negative quantity                 (20) 

or ( ) 1kxλ λ +≥ , with equality holding if and only if  

( ) ( )2 2
2 2 1 1 0.k k k n n kα λ λ α λ λ+ + + +− + + − =               (21) 

In case of distinct eigenvalues, 1 0, 2, ,j k j k nλ λ +− ≠ = +  , equality holds if 
and only if 2 3 0k k nα α α+ += = = = , and ( )1 1k kxλ λ+ += . If eigenvalues repeat 
and 1 0j kλ λ +− = , then jα  need not be zero, but equality still holds if and only 
if x is in the invariant subspace spanned by the eigenvectors of 1kλ + . 

To prove the upper bound we use  
2 2 2 2

1 2 11n k k nα α α α+ + −= − − − −                     (22) 

to eliminate it from ( )xλ , so as to be left with  

( ) ( ) ( )2 2
1 1 1 1n k n k n n nxλ λ α λ λ α λ λ+ + − −= − − − − −            (23) 

and ( ) nxλ λ≤  with equality holding if and only if nx x= . The proof to the 
second part of the theorem is the same.                                □ 

5. Perron’s Theorem on Positive Matrices 

Positive matrices are common in the finite-element method. The following is a 
symmetric version of Perron’s theorem on positive matrices (see [9]). 

Theorem (Perron). If A is a symmetric positive matrix, 0ijA > , then the ei-
genvector corresponding to the largest (positive) eigenvalue of A is positive and 
unique. 

Proof. If nx  is a unit eigenvector corresponding to nλ , and nx x≠  is such 
that T 1x x = , then  

( )T T
n n n nx Ax x x Axλ λ< = =                     (24) 

and nλ  is certainly positive. Moreover, since 0ijA >  the components of nx  
cannot have different signs, for this would contradict the assumption that nx  
maximizes ( )xλ . Say then that ( ) 0n i

x ≥ . But none of the ( )n i
x  components 

can be zero since n n nAx xλ= , and obviously 0nAx > . Hence 0nx > . 
There can be no other positive vector orthogonal to nx , and so the eigenvec-

tor, and also the largest eigenvalue nλ , are unique.                      □ 
The following is another important and useful statement on positive matrices. 
Theorem. Suppose that A has a positive inverse 1A− . Let x be any vector sa-

tisfying Ax e r− = , { }1,1, ,1e =  , 1r
∞
< . Then  

1 .
1 1

x x
A

r r
−∞ ∞

∞
∞ ∞

≤ ≤
+ −

                    (25) 

Proof. Obviously 1 1x A e A r− −= +  so that 
1 1 1 1x A e A r A A r− − − −

∞ ∞∞ ∞ ∞ ∞
≤ + ≤ +              (26) 

and  

1 .
1

x
A

r
−∞

∞
∞

≤
+

                        (27) 
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To prove the other bound write ( )1 1x A e A r− −= − − , observe that  
1 1A e A− −

∞ ∞
= , and have that  

1 1 1 1 .x A e A r A A r− − − −
∞ ∞∞ ∞ ∞ ∞
≥ − ≥ −             (28) 

Hence, if 1r
∞
< , then  

1 .
1

x
A

r
−∞

∞
∞

≥
−

                       (29) 

This completes the proof.  

6. Similarity Transformation, Similar Matrices 

We will make also great use of the following fact. 
Theorem. If λ  is an eigenvalue of matrix A, then λ  is also an eigenvalue 

of similar matrix 1P AP− . Similar matrices A and 1P AP−  have the same ei-
genvalues. 

 Proof. We have  
1 1

1 1 1

, , ,

, ,

Ax x P Ax P x x Py

P APy P Py P APy y

λ λ

λ λ

− −

− − −

= = =

= =
                (30) 

and the result follows.                                              □ 
In this note we are greatly interested in accurate eigenvectors. 
To fix ideas consider the typical finite-elements, or finite-differences, matrix  

1

1 1 3 2 1
1 2 1 , 2 2 1 .

1 2 1 1 1
A A−

−   
   = − − =   
   −   

              (31) 

The matrix A is symmetric and positive definite, ( )1 0Aλ > , with a corres-
ponding eigenvector that is positive. The fact that 1A−  is completely positive is 
a manifestation of the physical fact that a point force applied to the system caus-
es all free points of the system to move, and all in the same direction. 

To save Gershgorin’s theorem from the trivial, and useless prediction 
( )1 0Aλ ≥ , we propose to similarly transform matrix A with a positive diagonal 

matrix D, 0iiD > , such that  

( )1 1
1

1 1
min min 1 , 1 .

1 1
i i

D ADe D AD A eλ− −

   
   = ≤ =   
      

           (32) 

The fact that diagonal matrix D is positive, 0iiD > , guarantees that similar 
matrix 1D AD−  retains the entry sign pattern of original matrix A. Namely, 

( )1 0
ii

D AD− > , ( )1 0
ij

D AD− ≤ . 
For example, with  

( )1
1

6 1 6
15 , 1 5 , and 0.167.
6

3 1 3
D D ADe Aλ−

   
   = = ≥ =   
      

      (33) 
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Now Gershgorin’s theorem correctly recognizes that matrix A is positive defi-
nite. 

For a better bound, matrix D needs to raise the lowest entry and to lower the 
highest entry of 1D ADe− . Thus, 

The optimal D is for which all entries of 1D ADe−  are equal, or  

( ) ( )1 , .D ADe e A De Deλ λ− = =                   (34) 

Namely, the optimal D is such that De is the eigenvector corresponding to the 
lowest eigenvalue of matrix A. With such a better D, obtained here by inverse 
iterations on, the here positive, 1A− , 1 0ijA− > , we have  

( )

1

1

793 157 793
636 , 21 106 , and

353 70 353
157 0.197982.
793

D D ADe

Aλ

−

   
   = =   
      

≥ =

          (35) 

Taking the diagonal entries of matrix D as vector x we obtain from Rayleigh’s 
quotient  

[ ] ( )
T

1T 0.198062x AxR x A
x x

λ= = ≥                  (36) 

or  

( )10.197982 0.198062Aλ≤ ≤                   (37) 

which are good enclosing bounds. 
As for the highest eigenvalue of matrix A, ( )3 Aλ , we have from Gershgorin 

and Rayleigh that  

[ ] ( ) { }
T

3T 3.24673 4, 19, 42,33x AxR x A x
x x

λ= = ≤ ≤ = −         (38) 

with x obtained by the application of three steps of the power method to matrix 
A starting with { }0 1, 1,1x = −  to have a reasonable approximate for the eigen-
vector corresponding to the highest eigenvalue of A. 

Next we turn our attention to more realistic finite element examples. 

7. Taut String (Cable) 

The basic issues of this paper are best illustrated on some concrete cases. First we 
consider the one-dimensional problem of the taut string discretized by n linear 
finite elements of which the element stiffness matrix is  

( ) ( )1 2

1 11 2, 0,
1 1

k k k
h h

λ λ
− 

= = = − 
               (39) 

in which 1h n=  is the size of the element, n being the number of mesh subdi-
visions. Little element matrix k is positive semi-definite with a zero eigenvalue 
for eigenvector { }1,1x = . Element stiffness matrix k is, moreover, such that 

0iik > , 0ijk ≤ , and of this sign pattern is also any global matrix A assembled 
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from it. 
We assemble the element k matrices into the global matrix A, here over a 

mesh of five elements, impose the essential boundary condition of a fixed end 
point by deleting the first row and first column of the assembled global matrix, 
and are left with  

2 1
1 2 1

, 1,1 2 1
1 2 1

1 1

A h

− 
 − − 
 = =− −
 

− − 
 − 

 

( ) ( )1 50.081014053, and 3.6825.A Aλ λ= =             (40) 

Global stiffness matrix A is now positive definite, ( ) 0Aλ > . Matrix A is, 
moreover, tridiagonal with non-positive off-diagonal entries 0ijA ≤ . 

We know (see [10] [11]) that as the size of matrix ( )A n n×  increases, its 
lowest eigenvalue decreases, actually ( )2O n− . 

8. Taut String, Similarity Transformation Followed by a 
Gershgorin Bound 

Being keenly interested in an actual, numerical lower bound on ( )1 Aλ  we 
naively apply Gershgorin’s theorem directly to global stiffness matrix A of Equa-
tion (40) and obtain from it the disappointing  

( )0 4.Aλ≤ ≤                         (41) 

The bounding fails to confirm that matrix A is positive definite, only that it is 
positive semi-definite. We remark that the lower Gershgorin bound is obtained 
here as  

( ) { }min , 1,1,1, ,1ii
Ae e =                     (42) 

inasmuch as 0iiA >  and 0ijA ≤ . 
To avert a trivial Gershgorin bound we propose to similarly transform matrix 

A into P−1AP with a positive diagonal matrix P to facilitate the inversion, and sub-
sequent matrix-matrix multiplications, while still maintaining ( )1 0

ij
P AP− ≤ . 

For example, we take [ ]diag 10,19,27,33,37P =  and have  

( ) { }1 0.100,0.053,0.074,0.061,0.108 ,P AP e− =  

( )1min 0.053,
ii

P APe− =                     (43) 

and  

( )0.053 4Aλ≤ ≤                        (44) 

triumphantly ascertaining that global stiffness matrix A is indeed positive defi-
nite. 

We have already remarked that we desire matrix P to be such that all entries 
of ( )1P AP e−  are nearly equal, or that  
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( ) ( ) ( )1 ,P AP e e A Pe Peλ λ− = =                  (45) 

or that Pe is the (positive) eigenvector corresponding to ( )1 Aλ . 
How to efficiently get good approximations to the first eigenvector of global 

stiffness matrix A is the subject of the rest of this note. 

9. Taut String, Linearization of the Characteristic  
Polynomial 

We know that as the size of matrix ( )A n n×  increases, its lowest eigenvalue 
decreases, tending to zero, actually ( )2O n−  (see again [10] [11]). We start the 
linearization by writing  

{ }, 1, , , ,Ax x xλ α β γ δ= =                    (46) 

and have by a successive linearization for λ  of each equation that, approx-
imately  

11 15 0, 0.06667.
15

λ λ− = = =                  (47) 

Then, linearly  

2 , 3 4 , 4 10 , 5 20 ,α λ β λ γ λ δ λ= − = − = − = −            (48) 

and it follows that the eigenvector corresponding to the lowest eigenvalue of 
matrix A is approximately  

{ }15,29,41,50,55 ,x =                     (49) 

and, correspondingly  

[ ]
T

T 0.081117.x AxR R x
x x

= = =                  (50) 

We put [ ]diagonalP x=  and have from  

( ) 1min 0.06667
i

G G x P APe−= = =                (51) 

the reasonable bounds  

( ) ( )1 1or 0.06667 0.081117.G A R Aλ λ≤ ≤ ≤ ≤           (52) 

10. Taut String, Quadratization of the Characteristic  
Polynomial 

Keeping quadratic terms of λ  in the characteristic equation of matrix 
( )5 5A A= ×  we have for vector x of Equation (46) the five quadratically cur-

tailed equations of Ax xλ= :  

2

2

2

2

2

3 4

4 10 6

5 20 21

35 15 1 0,

α λ

β λ λ

γ λ λ

δ λ

λ λ

= −

= − +

= − +

= − +

− + =

                      (53) 

and  
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{ }0.082578, 1,1.917,2.677,3.215,3.492xλ = =             (54) 

resulting in  

[ ] 10.0810117 and min 0.07919,
i

R R x G P APe−= = = =         (55) 

and  

( ) ( )1 1or 0.0792 0.081017.G A R Aλ λ≤ ≤ ≤ ≤             (56) 

The success of the linearization, or quadratization, of the characteristic equa-
tion hinges on the theoretically assured fact (see [10] [11]) that ( )1 1Aλ  , and 
that as the size of the finite-elements global stiffness matrix A increases ( )1 Aλ  
further decreases. 

11. Taut String, Linearization Following a Shift 

To work with a matrix of a lesser minimal eigenvalue we turn to the shifted ma-
trix  

( ) ( ), 0.081117, i iB A RI R B A Rλ λ= − = = −              (57) 

from which we get the approximate linear characteristic polynomial  

9.85553 0.00102 0,λ + =                     (58) 

then  

{ }0.000102999, 1,1.919,2.683,3.229,3.513 ,xλ = − =  

[ ] 0.081014052771,R R x= =                   (59) 

and  
1min 0.08101402206921

i
G P APe−= =               (60) 

with  
83.1 10 .R G −− = ×                       (61) 

12. Taut String, Shifted Power Method 

We continue with our quest for good approximations to the fundamental eigen-
vector of the finite elements global stiffness matrix A. We propose to first iterate 
for the highest eigenvalue and the corresponding eigenvector. We choose to use 
the power method since it requires but one vector-matrix multiplication per step. 
We start with  

{ } [ ]0 6 5 61, 1,1, 1,1 , to have , 3.68242.x x Ax R x= − − = =         (62) 

Then we undertake the shift  

6 ,B R I A= −                          (63) 

and apply to it the power method starting now with  

{ }0 1 01,4,6,8,9 ,x x Ax= =                     (64) 

to successively have  
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5 5

6 6

7 7

8 8

0.0821133, 0.00985
0.0817712, 0.0108047
0.0815362, 0.0255912
0.0813744, 0.036619986

R G
R G
R G
R G

= = −

= =

= =

= =

                (65) 

as upper and lower bounds on ( )1 Aλ . 

13. Hanging String 

The freely down hanging string (see [12]) is of zero tension at the free lower end, 
and with the tension growing linearly towards the fixed upper hanging point, 
that carries the entire weight of the string. 

The element stiffness matrix of the hanging string of size h is  
1 11 2 1
1 12i

ik
h

− −
=  − 

                      (66) 

assembled into the global stiffness matrix  

1

1 1 563 248 143 80 35
1 4 3 248 248 143 80 35

1,3 8 5 143 143 143 80 35
315

5 12 7 80 80 80 80 35
7 16 35 35 35 35 35

A A−

−   
   − −   
   = =− −
   

− −   
   −   

   (67) 

including the essential boundary condition of zero movement of the hanging 
point. Global stiffness matrix A factors as  

1 1 1 1
1 1 3 1 1

2 1 1 5 1 1
1 1 7 1 1

1 1 9 1

A

−     
     − −     
     = − −
     

− −     
     −     

  (68) 

showing matrix A to be symmetric and positive definite. In fact,  
( )1 0.398987923256Aλ =  and ( )5 22.007479Aλ = . 
We are seeking good lower and upper bounds on ( )1 0Aλ > , the lowest ei-

genvalue of global stiffness A. 

14. Hanging String, Linearization of the Characteristic  
Polynomial 

Here we have  

{ } 5 34 2981, , , , , 1 , 1 , 1 , 1
3 15 105

x α β γ δ α λ β λ γ λ δ λ= = − = − = − = −     (69) 

with the linearized characteristic polynomial for λ   

1069 315 0λ − =                        (70) 
then  

{ } [ ]0.294668, 1,0.705,0.509,0.332,0.164 , 0.42172494x R R xλ = = = =  (71) 

from which we get  
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( ) 1min 0.29467
i

G G x P APe−= = =                 (72) 

and then the reasonable bounds  

( ) ( ) ( )1 1 1, 0.2947 0.4217, 0.398987923256.G A R A Aλ λ λ≤ ≤ ≤ ≤ =    (73) 

15. Hanging String, Second Sweep for a Linearized  
Characteristic Polynomial 

Now we undertake the shift  

, 0.4217249428452726B IR A R= − =               (74) 

intended to further reduce ( )1 Bλ , and have for  

{ }1, , , , ,x Bx xα β γ δ λ= =                    (75) 

a linearization resulting in  
0.578275
0.356409 1.38552
0.193228 1.57125
0.0650291 1.63685

α λ
β λ
γ λ
δ λ

= +
= +
= +
= +

                   (76) 

and then the linearized characteristic polynomial  

0.339557 14.5657 0, 0.023312131.λ λ− = =              (77) 

From this we have  

{ }1,0.601587,0.388708,0.229857,0.103188x =            (78) 

by which we compute for original matrix A  

[ ] [ ]0.398988578, 0.3984128R x G x= =               (79) 

and ( )1G A Rλ≤ ≤ , translating into the good bounds  

( ) ( )1 10.39841 0.3989886, 0.398987923256.A Aλ λ≤ ≤ =         (80) 

16. Hanging String, Quadratization of the Characteristic  
Polynomial 

Here, for vector x of Equation (75), and the quadratization of Ax xλ=  we have  

2 2 25 1 34 13 298 1651 , 1 , 1 , 1 ,
3 3 15 15 105 105

α λ β λ λ γ λ λ δ λ λ= − = − + = − + = − +   (81) 

and, from the last equation of Ax xλ= , the quadratic approximate characteris-
tic polynomial  

2767 1069 315 0, 0.4231227,λ λ λ− + = =                (82) 

and have from this λ  that  

{ } [ ]1,0.577,0.354,0.196,0.080 , 0.4022336291.x R x= =        (83) 

17. Hanging String, Power Method 

The global stiffness matrix we take is still the modest 5 5×   
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( )
( )

1

5

1 1
1 4 3

0.398987923256
,3 8 5

22.007479
5 12 7

7 16

A
A

A
λ
λ

− 
 − −  =
 = − −

= 
− − 

 − 

      (84) 

with corresponding eigenvectors 

( ) { }1 9.71716,5.84013,3.77107,2.22872,1x A =  

( ) { }5 0.00252621, 0.0530693,0.317706, 0.858211,1 .x A = − −       (85) 

We start the power method with  

{ } [ ]0 01, 1,1, 1,1 , 14.6x R x= − − =                 (86) 

to successively produce  

[ ] [ ] [ ]
[ ] [ ]

1 2 3

4 5

21.0301, 21.7884, 21.9497,

21.9917, 22.0031,

R x R x R x

R x R x

= = =

= =
         (87) 

then  

[ ]6 22.0063R x =  for 

{ }6 5 0.00296949, 0.0578104,0.330741, 0.869775,1 .x Ax= = − −      (88) 

It follows then, from Rayleigh and Gershgorin, that  

( ) ( )6 622.0063 24, 22.0075.A Aλ λ≤ ≤ =              (89) 

18. Hanging String, Shifted Power Method 

Next we turn our attention to computing, an ever better, approximation to 
( )1 Aλ , the lowest eigenvalue of global stiffness matrix A of the hanging string. 

For this we take the shifted matrix  

[ ] ( ) [ ] ( )6 6, .B R x I A B R x Aλ λ= − = −               (90) 

The power method applied to matrix B converges now to 1x , the eigenvector 
corresponding to the lowest eigenvalue of original matrix A. 

We start with  

{ } [ ] [ ]0 0 09,5,3,2,1 , 0.408333, 0.333333x R x G x= = = −         (91) 

and repeatedly compute  

{ }1 0 1,0.556701,0.345357,0.216497,0.103095 ,x Bx= =  

[ ] [ ]1 10.403054, 0.02975,R x G x= =  

{ }2 1 1,0.5593,0.351981,0.214014,0.0989981 ,x Bx= =  

[ ] [ ]2 20.401485, 0.192842,R x G x= =  

{ }3 2 1,0.562325,0.356026,0.213042,0.097039 ,x Bx= =  

[ ] [ ]3 30.400867, 0.269716,R x G x= =  
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{ }4 3 1,0.565334,0.35880,0.212863,0.0961647 ,x Bx= =  

[ ] [ ]4 40.400526, 0.306781,R x G x= =  

{ }5 4 1,0.568152,0.360926,0.213109,0.095850 ,x Bx= =  

[ ] [ ]5 50.400289, 0.325285,R x G x= =  

{ }6 5 1,0.570725,0.362709,0.213587,0.0958295 ,x Bx= =  

[ ] [ ]6 60.400105, 0.33514R x G x= =  

{ }7 6 1,0.573053,0.364291,0.214189,0.0959672 ,x Bx= =  

[ ] [ ]7 70.399954, 0.34100R x G x= =  

{ }8 7 1,0.575153,0.365742,0.214857,0.0961906 ,x Bx= =  

[ ] [ ]8 80.399827, 0.34503R x G x= =  

{ }9 8 1,0.577051,0.367094,0.215554,0.0964599 ,x Bx= =  

[ ] [ ]9 90.399719, 0.34823,R x G x= =                (92) 

and have that  

( ) ( )1 10.399719 0.348229, 0.398988,A Aλ λ≤ ≤ =          (93) 

which we gladly accept. 

19. The Four-Nodes Rectangular Membrane Element 

Next we move on to two dimensional finite-element membrane problems, or the 
boundary value problem  

( )
2 2

2 2 , 0 inu u f x y D
x y
∂ ∂

+ + =
∂ ∂

 

1 20 on , and 0 onuu S S
n
∂

= =
∂

                 (94) 

where n is an outwardly normal to boundary S encompassing domain D. 
The element stiffness and mass matrices for the rectangular four-nodes mem-

brane finite element of sides a and b are  

2 2 1 1 2 1 2 1
2 2 1 1 1 2 1 2

1 1 2 2 2 1 2 16 6
1 1 2 2 1 2 1 2

b ak
a b

− − − −   
   − − − −   = +
   − − − −
   
− − − −   

          (95) 

and  

4 2 2 1
2 4 1 2
2 1 4 236
1 2 2 4

abm

 
 
 =
 
 
 

                     (96) 

respectively. If a b h= = , then  
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2

4 1 1 2 4 2 2 1
1 4 2 1 2 4 1 21 and .
1 2 4 1 2 1 4 26 36
2 1 1 4 1 2 2 4

hk m

− − −   
   − − −   = =
   − − −
   
− − −   

        (97) 

with eigenvalues  

( ) { } ( ) { }
21 0,4,6,6 , 1,3,3,9 .

6 36
hk mλ λ= =              (98) 

Element stiffness matrix k of Equation (97) is of a positive diagonal and 
non-positive off-diagonal entries, and hence such is also any global matrix as-
sembled from it. 

Global stiffness matrix A for the modest 3 3×  mesh is  

16 2 0 2 2 0 0 0 0
2 16 2 2 2 2 0 0 0

0 2 8 0 2 1 0 0 0
2 2 0 16 2 0 2 2 0
2 2 2 2 16 2 2 2 2

0 2 1 0 2 8 0 2 1
0 0 0 2 2 0 8 1 0
0 0 0 2 2 2 1 8 1
0 0 0 0 2 1 0 1 4

A

− − − 
 − − − − − 
 − − −
 
− − − − − 
 = − − − − − − − −
 

− − − − − 
 − − − 

− − − − − 
 − − − 

          (99) 

with, as expected, 0iiA >  and 0ijA ≤ . The eigenvalues and eigenvectors of 
global stiffness A are  

{ }1 0.14854,0.2737,0.3541,0.2737,0.5209,0.6713,0.3541,0.6713,1x =  

1 1.61549λ =  

{ }2 0.1258,0.242,0.4179,0.242,0.2034,0.3329,0.418,0.3329, 1x = − −  

2 5.07254λ =  

{ }3 0, 0.538359, 1.97486,0.538359,0, 1,1.97486,1,0x = − − −  

3 6.94842λ =  

{ }4 0.385,0.4198,2.934,0.4198,0.6593, 2.762,2.935, 2.762,1x = − −  

4 8.20581λ =  

{ }5 0, 0.119,0.5390,0.1197,0, 1, 0.5390,1,0x = − − −  

5 10.2995λ =  

{ }6 26.991, 19.691,13.26, 19.692, 12.05,7.953,13.26,7.953,1x = − − − −  

6 12.189λ =  

{ }7 9.224,8.124, 0.246,8.124, 6.739, 0.292, 0.246, 0.292,1x = − − − − − −  

7 18.0621λ =  

{ }8 0, 4.773, 0.7950, 4.773,0, 1,0.7950,1,0x = − − −  

8 18.752λ =  

{ }9 6.105, 0.0677,1.487, 0.0677, 8.579,1.152,1.487,1.152,1x = − − −  

9 18.855.λ =                        (100) 

https://doi.org/10.4236/am.2020.119060


I. Fried et al. 
 

 

DOI: 10.4236/am.2020.119060 937 Applied Mathematics 
 

20. Rectangular Membrane, Power Method 

We prefer the power method as it requires only a vector-matrix multiplication, 
We start the method with the initial 0x   

{ } [ ]0 06,0, 2,0, 10,1,2,1,1 , 18.8027x R x= − =            (101) 

and keep multiplying, or raising to ever higher power, to have.  

{ }1 0 10,0.1724,3.017,0.1724, 16.03,1.983,3.017,1.983,1.897x Ax= = −  

[ ]1 18.8418R x =  

{ }2 1 10,0.234,2.815,0.2342, 15.730,2.023,2.815,2.023,1.865x Ax= = −  

[ ]2 18.8491R x =  

{ }3 2 10,0.266,2.703,0.266, 15.52,2.018,2.702,2.018,1.830x Ax= = −  

[ ]3 18.8516R x =  

{ }4 3 10,0.280,2.638,0.280, 15.37,2.005,2.638,2.005,1.807x Ax= = −  

[ ]4 18.8526R x =  

{ }5 4 10,0.283,2.5985,0.283, 15.25,1.991,2.599,1.99,1.791x Ax= = −  

[ ]5 18.8531R x =  

{ }6 5 10,0.2791,2.573,0.2791, 15.16,1.98,2.573,1.980,1.779x Ax= = −  

[ ]6 18.8533R x =  

{ }7 6 10,0.271,2.556,0.271, 15.09,1.971,2.556,1.971,1.769x Ax= = −  

[ ]7 18.8535R x =  

{ }8 10,0.2595,2.544,0.260, 15.025,1.964,2.544,1.964,1.76x = −  

[ ]8 18.8537R x =                       (102) 

such that, by Rayleigh and Gershgorin  

[ ]918.8537 32.Aλ≤ ≤                     (103) 

21. Rectangular Membrane. Shifted Power Method 

Now we go after the, more interesting, lowest eigenvalue of the global stiffness 
matrix A and replace it by the shifted matrix  

[ ]4 .B R x I A= −                       (104) 

We start with 0x  and continue to have  

{ }0 1,3, 4,3,5,7, 4,7,10x =  

[ ] [ ]0 01.64964, 6R x G x= = −  

{ }1 0 1.441,2.815,3.85,2.815,5.348,6.954,3.85,6.95,10x Bx= =  

[ ] [ ]1 11.61878, 0.759863R x G x= =  
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{ }2 1 1.51,2.821,3.76,2.82,5.35,6.91,3.757,6.905,10x Bx= =  

[ ] [ ]2 21.61685, 1.39789R x G x= =  

{ }3 2 1.519,2.816,3.700,2.816,5.329,6.868,3.700,6.868,10x Bx= =  

[ ] [ ]3 31.61624, 1.56061R x G x= =  

{ }4 3 1.518,2.804,3.661,2.804,5.307,6.839,3.661,6.839,10x Bx= =  

[ ] [ ]4 41.61594, 1.57068R x G x= =  

{ }5 4 1.514,2.793,3.634,2.793,5.289,6.815,3.634,6.816,10x Bx= =  

[ ] [ ]5 51.61577, 1.57916R x G x= =  

{ }6 5 1.509,2.782,3.613,2.782,5.273,6.796,3.613,6.796,10x Bx= =  

[ ] [ ]6 61.61567, 1.58616R x G x= =  

{ }7 6 1.505,2.773,3.598,2.773,5.260,6.780,3.598,6.78,10x Bx= =  

[ ] [ ]7 71.6156, 1.59187R x G x= =  

{ }8 7 1.501,2.766,3.59,2.766,5.25,6.767,3.59,6.767,10x Bx= =  

[ ] [ ]8 81.61556, 1.59651,R x G x= =                (105) 

and  

( ) ( )1 11.59651 1.61556, 1.61549,A Aλ λ≤ ≤ =           (106) 

which we appraise as quite good and tight numerical bounds. 

22. Triangular Membrane, Triangular Finite Elements 

The linear, first order, membrane finite element stiffness matrix k for a triangle 
of sides 1 2 3, ,L L L  and area T is  

( )2 2 2
1 1 2 2 3 3

1
4

k L C L C L C
T

= + +                  (107) 

where 1 2 3, ,C C C  are the constant matrices  

1 2 3

2 1 1 0 1 1 0 1 1
1 1 11 0 1 , 1 2 1 , 1 0 1 .
2 2 2

1 1 0 1 1 0 1 1 2
C C C

− − − −     
     = − = − − = −     
     − − − −     

  (108) 

Otherwise, the element stiffness matrix is written, by the aid of the law of the 
cosines, as  

2
1 1 2 3 1 3 2

2
1 2 3 2 2 3 1

2
1 3 2 2 3 1 3

cos cos
1 cos cos

4
cos cos

L L L L L
k L L L L L

T
L L L L L

θ θ
θ θ
θ θ

 − −
 

= − − 
 − − 

        (109) 

where iθ  is the angle opposite iL . If 2iθ < π , then 0ijk < , and so is any 
global stiffness matrix assembled from it. 

We consider now an equilateral triangular membrane discretized by four 
equilateral triangular finite elements per side. The membrane is held fixed on 
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one side, to produce the 10 × 10 symmetric and positive definite global stiffness 
matrix  

6 2 0 0 1 0 0 0 0 0
2 12 2 0 2 2 0 0 0 0

0 2 12 2 0 2 2 0 0 0
0 0 2 6 0 0 1 0 0 0
1 2 0 0 6 2 0 1 0 0

0 2 2 0 2 12 2 2 2 0
0 0 2 1 0 2 6 0 1 0
0 0 0 0 1 2 0 6 2 1
0 0 0 0 0 2 1 2 6 1
0 0 0 0 0 0 0 1 1 2

A

− − 
 − − − − 
 − − − −
 

− − 
 − − − −
 =

− − − − − − 
 − − − − 

− − − − 
 − − − − 
 − − 

       (110) 

with, as expected, 0iiA >  and 0ijA ≤ . The ten computed eigenvalues of this 
matrix are:  

{ }0.61,2.29,4.06,4.74,6.67,6.98,8.45,10.55,14.82,14.83 .λ =     (111) 

23. Triangular Membrane, Power Method 

We start our iterative quest for the highest eigenvalue of matrix A with 0x , and 
then continue with the power method to have  

{ }0 1, 1, 1,1, 1,1, 1, 1, 1,1x = − − − − − −  

{ }1 0 0.38, 0.5, 0.5,0.38, 0.25,1, 0.25, 0.25, 0.25,0.17x Ax= = − − − − − −  

[ ]1 13.9798R x =  

{ }2 1 0.22, 0.45, 0.45,0.22, 0.16,1, 0.16, 0.18, 0.18,0.05x Ax= = − − − − − −  

[ ]2 14.6874R x =  

{ }3 2 0.16, 0.44, 0.44,0.16, 0.14,1, 0.14, 0.17, 0.17,0.03x Ax= = − − − − − −  

[ ]3 14.8011R x =  

{ }4 3 0.13, 0.43, 0.43,0.13, 0.13,1, 0.13, 0.17, 0.17,0.03x Ax= = − − − − − −  

[ ]4 14.8234R x =  

{ }5 4 0.12, 0.42, 0.42,0.12, 0.13,1, 0.13, 0.17, 0.17,0.03x Ax= = − − − − − −  

[ ]5 14.8286R x =  

{ }6 5 0.11, 0.42, 0.42,0.11, 0.13,1, 0.13, 0.17, 0.17,0.03x Ax= = − − − − − −  

[ ]6 14.8301R x =  

{ }7 6 0.11, 0.41, 0.41,0.11, 0.13,1, 0.13, 0.18, 0.18,0.03x Ax= = − − − − − −  

[ ]7 14.8306R x =  

{ }8 7 0.11, 0.41, 0.41,0.11, 0.13,1, 0.13, 0.18, 0.18,0.03x Ax= = − − − − − −  

[ ]8 14.8308,R x =                      (112) 
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and thus, by Rayleigh and Gershgorin  

( ) ( )10 1014.8308 24, 14.831.A Aλ λ≤ ≤ =            (113) 

24. Triangular Membrane, Shifted Power Method 

Next we turn our attention to the lowest eigenvalue ( )1 Aλ  of global stiffness 
matrix A of the triangular membrane. For this we apply the power method again, 
but this time to the shifted matrix  

[ ]8B R x I A= −                       (114) 

in which [ ]8R x  is the rayleigh quotient for 8x  obtained by the power method 
in the previous section. 

We start with an arbitrary 0x  and continue with the shifted power method 
to have  

{ }0 1, 2, 2,1, 4,5,4,7,7,10x =  

[ ]0 0.633962R x =  

{ }1 0 2.10,3.71,3.71,2.10,7.17,8.27,7.17,12.48,12.48,17.8x Bx= =  

[ ]1 0.619807R x =  

{ }2 1 3.12,4.99,4.99,3.12,9.58,11.0,9.58,16.63,16.63,23.83x Bx= =  

[ ]2 0.616615R x =  

{ }3 2 3.27,4.96,4.96,3.27,9.46,10.82,9.46,16.34,16.34,23.5x Bx= =  

[ ] [ ]3 30.615228, 0.0722R x G x= =  

{ }4 3 3.36,4.94,4.94,3.36,9.37,10.69,9.37,16.1,16.1,23.3x Bx= =  

[ ] [ ]4 40.614575, 0.2632R x G x= =  

{ }5 4 3.41,4.94,4.94,3.41,9.32,10.6,9.32,15.9,15.9,23.1x Bx= =  

[ ] [ ]5 50.614248, 0.3782R x G x= =  

{ }6 5 3.45,4.94,4.94,3.45,9.29,10.6,9.29,15.9,15.9,23.0x Bx= =  

[ ] [ ]6 60.614075, 0.4505R x G x= =  

{ }7 6 3.48,4.94,4.94,3.48,9.29,10.54,9.29,15.8,15.8,22.9x Bx= =  

[ ] [ ]7 70.613978, 0.4976R x G x= =  

{ }8 7 3.51,4.95,4.95,3.51,9.29,10.53,9.29,15.8,15.8,22.9x Bx= =  

[ ] [ ]8 80.61392, 0.5291R x G x= =                (115) 

and  
( ) ( )1 10.5291 0.61392, 0.613799.A Aλ λ≤ ≤ =          (116) 

25. Conclusions 

In this note we have considered the common case of the positive definite and 
symmetric global finite element stiffness matrices having non positive off-diagonal 
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entries. The finite element global stiffness matrix readily becomes very large with 
an ever smaller least eigenvalue. 

We have shown here how optimal similarity transformations of this matrix, 
requiring only matrix-vector multiplication, lead to eminently practical and re-
liable numerical iterative algorithms for tight realistic Rayleigh and Gershgorin 
bounds on the least eigenvalue of this large finite-elements global stiffness ma-
trix. 
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