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Abstract 
In 1686, Newton discovered the laws of gravitation [1] and predicted the uni-

versal gravitational constant 11 3 1 27 10 m kg sG − − −≈ × ⋅ ⋅ . In 1798, with a tor-

sion balance, Cavendish [2] measured 11 3 1 26.754 10 m kg sG − − −≈ × ⋅ ⋅ . Due to 
the low intensity of gravitation, it is difficult to obtain reliable results because 
they are disturbed by surrounding masses and environmental phenomena. 
Modern physics is unable to link G with other constants. However, in a 2019 
article [3], with a new cosmological model, we showed that G seams related to 
other constants, and we obtained a theoretical value of  

( ) 11 3 1 26.673229809 86 10 m kg sG − − −≈ × ⋅ ⋅ . Here, we want to show that our theo- 
retical value of G is the right one by interpreting measurements of G with the 
help of a new technique using cubic splines. We make the hypothesis that 
most G measurements are affected by an unknown systematic error which 
creates two main groups of data. We obtain a measured value of  

( ) 11 3 1 26.673262 60 10 m kg sG − − −≈ × ⋅ ⋅ . Knowing that our theoretical value of 
G is in agreement with the measured value, we want to establish a direct link 
between G and as many other constants as possible to show, with 33 equations, 
that G is probably linked with most constants in the universe. These equations 
may be useful for astrophysicists who work in this domain. Since we have been 
able to link G with Hubble parameter H0 (which evolve since its reverse gives the 
apparent age of the universe), we deduce that G is likely not truly constant. It’s 
value probably slowly varies in time and space. However, at our location in the 
universe and for a relatively short period, this parameter may seem constant. 
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1. Introduction 

The universal gravitational constant G (also called Newton’s gravitational con-
stant) has a special character because it is considered to be one of the 3 most 
fundamental constants in physics since no model allows its value to be deduced 
from other known constants. Its value is used in Newton’s equation [1] and that of 
Einstein’s general relativity [4]. It is one of the least well-known constants de-
spite all current technological means. 

In Newton’s equation of gravity [1], the attractive force F between two masses 
m1 and m2, separated by a distance r, depends on G that acts as a coupling coef-
ficient.  

1 2
2

Gm mF
r

−
=                           (1) 

In Einstein’s equation of general relativity [4], Rμv is the Ricci curvature tensor, 
R is the scalar curvature, gμv is the metric tensor, Λ is the cosmological constant, 
G is Newton’s gravitational constant, c is the speed of light in a vacuum, and Tμv 
is the stress-energy tensor. 

4

1 8π
2v v v v

GR Rg g T
cµ µ µ µ− + Λ =                   (2) 

Several attempts to measure G have been made over time. Even if the recent 
measurements show small margins of error, they do not always overlap. As early 
as 1995, physicists suggested that certain measures of G may be tainted with sys-
tematic errors [5]. Our article will also show that G could evolve over time and 
not be a real constant. 

With a new cosmological model, G is obtained (see Equation (31) further) as a 
function of the speed of light in a vacuum c, the fine-structure constant α, and 
the parameters of the electron (mass me and classical radius re) [3]. To help the 
reader, we will summarize the theory that is behind this equation. 

To validate the theoretical value of G found in the past, we wish, in a first step, 
to list the results of all the recent experiments aimed at measuring it. Using ma-
thematical tools and software, the data will be processed to determine an esti-
mate of G. It will be shown that there is a slight difference between the CODATA 
(Committee on Data for Science and Technology) value and the theoretical value 
of G, and we will explain why. 

We will enumerate, in a second step, 33 different equations giving G. It is an 
exercise which is useful, among other things, to get certain equations which over-
come the difficulties to do experimental measurements as well as to show that G 
is intimately linked to the other parameters of the universe. 

In the third step, we will show that G is not constant and why it varies ac-
cording to time as well as to the location in the universe where it is measured. 

2. Values of the Physics Parameters Used 

We use the compact form of notation to display tolerances (i.e. 2.736(17) K means 
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2.736 ± 0.017 K). To compare the results of our new equations with the articles 
published in 2019, we will use the CODATA 2014 [6]. 

Speed of light in a vacuum 1299792458 m sc −≈ ⋅  

Universal gravitational constant ( ) 11 3 1 26.67408 31 10 m kg sG − − −≈ × ⋅ ⋅  

Electron rest mass ( ) 319.10938356 11 10 kgem −≈ ×  

Classical electron radius ( ) 152.8179403227 19 10 mer
−≈ ×  

Electron charge ( ) 191.6021766208 98 10 Ceq −≈ − ×  

Planck length ( ) 351.616229 38 10 mpL −≈ ×  

Planck time ( ) 445.39116 13 10 spt −≈ ×  

Planck mass ( ) 82.176470 51 10 kgpm −≈ ×  

Planck constant ( ) 346.626070040 81 10 J sh −≈ × ⋅  

Fine-structure constant ( ) 37.2973525664 17 10α −≈ ×  

Boltzmann constant ( ) 23 11.38064852 79 10 J Kbk − −≈ × ⋅  

Rydbergconstant ( ) 110973731.568508 65 mR −
∞ ≈  

3. Summary of Our Theory  

Our theory is based on a 2019 paper [3]. Our cosmological model is used to get 
all the equations. We will evocate some main milestones. 

3.1. Our Cosmological Model 

The universe is made of two 4-D expanding spheres, one imbricated in the other. 
The smallest one is the “material universe” and the largest is the “luminous un-
iverse”. At the big bang, there was only one sphere. After about 361,000 years, a 
lower density of the universe allowed the movements of the electrons. The un-
iverse became transparent and light appeared and began to travel through space, 
creating the sphere of the “luminous universe”. However, the matter cannot tra-
vel as fast as light and it created a smaller sphere, the “material universe” that is 
imbricated in the “luminous universe”.  

Einstein found that the speed of light is slower near massive objects [7]. With 
the general relativity, Schwarzschild calculated the speed of light in the context 
of a weak gravitational field ( 2cΦ � ) around a spherical mass [8]. With his 
equation, we obtain Equation (3) that gives the speed of light vL as a function of 
c and a local refractive index n0. The value of n0 is a function of the Newtonian 
gravitational potential Φ which is itself a function of G and the distance r from 
the center of a mass m. 

( )
2

0 2
0

1 2  where    and  0
1 2L

c c Gmv r n
n rc

− Φ −
= = Φ = ≤

+ Φ
          (3) 

For a distance r from the center of mass m, the speed of light c is reduced by 
the refractive index n0 caused by a gravitational field of potential Φ, which gives 
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a modified speed of light vL(r). Locally, in space and time, the speed of light 
seems constant and equal to c. However, Hubble found that the universe is ex-
panding. Its density is decreasing, the refractive index of the vacuum is decreas-
ing and all this causes light to be imperceptibly accelerated.  

In Equation (3), c is the local speed limit for light in a vacuum. Admitting that 
light may slowly accelerate in a context of an expanding universe, it will even-
tually tend towards an asymptotical speed limit called k that is affected by a local 
refractive index n. With Equation (3) we build the analog Equation (4). We are 
currently at a distance ru from the center of the apparent mass mu of the universe. 
The actual speed of light c is the result of Equation (4). 

2

2

1 2  where    and  0
1 2

u

u

Gmk kc n
n rk

−− Θ
= = Θ = ≤

+ Θ
           (4) 

The apparent radius of the curvature of the luminous universe is Ru. It is “ap-
parent” because the equation of Ru assumes a constant speed of light c over time, 
for a time equal to the apparent age of the universe. However, in our model, the 
speed of light is not constant over time. It is c in the present moment, but since 
the universe is expanding, its value was lower in the past.  

According to Carvalho [9], mass mu is given by Equation (5). 
3

0
u

cm
G H

=
⋅

                          (5) 

Hubble constant H0 represents the relative rate of expansion in km·s−1·MParsec−1 
of the visible universe [10]. It is equivalent to locally measuring the derivative of 
the velocity of matter vm with respect to distance r. Matter moves locally at a rate 
β times slower than the speed of light c by moving away radially from the center 
of mass of the universe. Locally, at our location in the universe, H0 is evaluated at 
a distance r = ru (which represents a fraction β of Ru). The value of β will be cal-
culated further at Equation (11). 

0
0

d
d

u

m
u

u ur r

v c c cH R
r r R H

β β
β=

= = = ⇒ =              (6) 

The apparent radius of curvature Ru of the universe [3] [11] (also called Hub-
ble radius [12]) can be determined as a function of c and H0. For now, we are at 
a distance ru from the center of mass mu of the universe. 

0
u u

cr R
H
ββ= =                         (7) 

For a distance ru, our local universe parcel travels at speed vm. 
2

2

1 2  where    and  
1 2

u
m

u

Gmk kv n
n rk
β −− Θ

= = Θ =
+ Θ

        (8) 

The measurement of H0 is made by observing the global displacement of ga-
laxies at our location ru. Each galaxy has its own movement. Due to the expan-
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sion of the universe, the galaxies are moving away from each other. The value of 
H0 represents the derivative of the speed of the material universe vm with respect 
to the element of distance dr, evaluated at r = ru. 

( )
0 22

d 21   where  
d 1 1u

m u

ur r u

v Gmk yH y
r r k ry y

β

=

 
 = = =
 + − 

       (9) 

Solving Equations (4), (6), (7), and (9) leads to Equations (10) to (14). For the 
detailed calculation, see the Annex in reference [3]. 

8 12 5 6.17 10 m sk c −= + ≈ × ⋅                   (10) 

3 5 0.764β = − ≈                        (11) 

261.28 10 muR ≈ ×                         (12) 

259.80 10 mur ≈ ×                         (13) 

531.73 10 kgum ≈ ×                        (14) 

The asymptotic value for the speed of light in a vacuum is represented by k 
when the apparent radius of curvature Ru of the luminous universe tends to-
wards infinity. The ratio between the speed of expansion of the material universe 
and the speed of expansion of the luminous universe (which is the speed of light) 
is the geometric value β. It can also represent the ratio of the apparent radius of 
curvature ru of the material universe (evaluated at our location in the universe 
with respect to the center of mass of the universe) and the apparent radius of 
curvature Ru of the luminous universe. The value of mu represents the apparent 
mass of the universe. The value of β is unique to our cosmological model, but it 
is essential for making multiple connections between physics’ constants. It al-
lows making several links between the infinitely large and the infinitely small in 
Dirac’s large numbers hypothesis [13] [14]. 

The precisions of mu, ru, and Ru are directly dependent on the precision of H0. 
According to different sources, H0 is between 67.8(9) [15] and 4.8

4.377.6+
−  km 

s−1MParsec−1 [16]. Uncertainties do not always overlap. We must find a method 
that will give a minimum of unequivocal precision. 

As the average temperature T of the CMB (Cosmological Microwave Back-
ground) can be precisely measured, an exploitable link may be made between T 
and H0. It suffices to theoretically calculate T as a function of H0. Its accuracy 
will now depend on G. For more details, please, see reference [3].  

We obtain Equation (15) which gives the average CMB temperature T. 

1 42 3 5 2
0

6

15
8πb

h c H
T

k G
αβ  

=  
 

                    (15) 

We force Equation (15) to equal T ≈ 2.736(17) K (from Cobra Probe [17]) and 
we get an H0 similar to Salvatelli ( 3.2 1 1

0 2.372.1 km s MParsecH + − −
− ⋅ ⋅≈  [18]).  
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( ) ( )
3 2 2

1 1
0 2 5 3

π 8 72.06 90 km s MParsec
15

bT k GH T
c hβ α

− −⋅ ⋅= ≈         (16) 

3.2. Dirac’s Large Number Hypothesis 

Dirac found that with ratios of quantities having the same dimensions, we get 
large numbers separated into a few distinct orders of magnitude. However, he 
could not calculate them precisely [13] [14]. All ratios that we found may, by 
adding certain factors, come from a single number N [3] that represents the 
maximum number of photons of lowest energy (of 2πRu wavelength) [3]. To get 
N, we calculate the mass mph associated with a 2πRu wavelength photon by mak-
ing its corpuscular and wave energy equal. 

2 69    2.74 10 kg
2π 2πph ph

u u

hc hm c m
R R c

−= ⇒ = ≈ ×          (17) 

The large number N is obtained by dividing mu (from equation (5)) by the 
mass mph associated with photons of 2πRu wavelength (Equation (17)).  

5
121

2
0

2π 6.3 10u

ph

m cN
m hGH

= = ≈ ×                  (18) 

If we try to make a precise calculation of N by using the Equations (5), (7), 
(16), and (17), we get Equation (19) which is mainly dependent on T. We eva-
luate the result by using the CODATA 2014 [6] and the CMB temperature from 
Cobra probe [17]. We note that N is dimensionless as α. 

( )
2 2 4 10

121
5 2 4 4

15 6.31 15 10
4π b

h cN
G k T
α β

= ≈ ×                (19) 

Assuming that α can be used as a scale factor applied a certain number of 
times, we postulate Equation (20). For now, it is impossible to get this equation 
from other equations of the standard physics.  

( )57 121POSTULATE 1:    1 6.303419702 84 10N α= ≈ ×        (20) 

In the following equations, Planck temperature is about Tp ≈ 1.42 × 1032 K. 
This is the highest temperature that can be reached in the universe if we con-
densate the mass mu in a point-like sphere of radius equal to Planck length Lp. 
We also think this was the initial temperature of the universe at the Big Bang. 
The value of qp is the Planck charge which is about qp ≈ 1.88 × 10−18 C.  

“Large” numbers are of type N exponent a fractional number, such as N1/2, 
N1/3, N1/4, …, N1/57 or N2/3, N3/4, etc. These are obtained in different ways by using 
different parameters of the universe [3]. Some come from Dirac’s assumption on 
large numbers [13] [14]. Some links (used later) are recalled here [3]. 

1 2 60

0 0 0

2π 4π1 1 7.94 10p p bu u u

ph p p e

m T kR m R
N

m L t H hH q
α

µ
−

= = = = = ≈ ×    (21) 

2
1 3 40

2
0

3.99 10
4π

e uu e e

e u ph e e

m Rm r q
N

m R m r G m
β βα α

β α ε β
= = = = ≈ ×      (22) 
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4 42 2
2 3 81

1 2 2 4 2 2 2 1.58 10pu u e

e e e ph

mm R m
N

m r m m
αα β β

β β α
= = = = ≈ ×           (23) 

1 4 1 44 2 3
1 4 30

3 2 4 2

15 π 2.82 10
π 15

p b

ph

T k T
N

T m c
β α

β α
   

= = ≈ ×   
   

        (24) 

3
1 6 202π

1.99 10
4π

p e b pe

p e p

m r k Tr
N

L m R L hc

α α
β β β β∞

= = = = ≈ ×       (25) 

57 256 1 4 1 162
1 16 7

3
0

4π 15 4.10 10
π

pTcR
N

H T
ββ α∞

     
= = ≈ ×          

       (26) 

1 12
2

1 19 2 2 6
2

1 16π 2.57 10
4π

e
p u

e ph

m
N L R R

R r m
β

β α∞
∞

 
= = = ≈ ×  

 
       (27) 

1 21 1 202 2 2
1 57

2 2 2
0

1 137
4π

p p e

e e e

q m q
N

q m Gm αβ βε

   
= = = = ≈       

          (28) 

3.3. Precise Calculations of G, H0, and T 

To precisely calculate G, we need an equation that is independent of H0 and T 
since we do not know them with sufficient precision. Most of the time G inter-
vene in the calculations of gravitational energy and gravitational force.  

We will not show all details (refer to [3]), but let us consider an experiment 
where we evaluate the electrical energy Ee between two electrons separated by a 
distance equal to the classical electron radius re. The electrical energy Ee is inde-
pendent of the distance since we get Ee = mec2. We make another experiment to 
evaluate the gravitational energy for the same conditions and we find  

2
g e eE Gm r= . If we make these experiments at the periphery of the luminous 

universe, we get an electrical energy e eE E′ =  and a gravitational energy  

g gE E β′ = . Making the ratio between eE′  and gE′  we get Equation (29). 
2 2

42
2

5.45 10e e e

g ee

e

E m c c r
E GmGm

r
ββ

′
= = ≈ ×

′  
 
 

                (29) 

As in Equation (20), we found that the fine-structure constant α plays a role in 
determining orders of magnitude. By an adjustment of the exponent of the 
fine-structure constant α, we obtain a result identical to that of Equation (29). 

42
20

1 5.45 10
α

≈ ×                          (30) 

We conclude that Equations (29) and (30) are equal. By isolating G, we obtain 
an equation that we elevate to the rank of postulate #2. This equation cannot be 
deduced from any other known equation of current physics. 

( )
2 20

11 3 1 2POSTULATE #2:   6.673229809 86 10 m kg s

                                where 3 5

e

e

c r
G

m
α
β

β

− − −= ≈ × ⋅ ⋅

= −

 (31) 
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This result agrees with the Taylor-Parker-Langenberg [19] value which is  
( ) 11 3 1 26.6732 31 10 m kg sG − − −≈ × ⋅ ⋅ . It does not perfectly fit with the CODATA 

2014 value of ( ) 11 3 1 26.67408 31 10 m kg sG − − −≈ × ⋅ ⋅ , but Qing [20] showed that 
the tolerances of many measurements of G do not overlap with each other.  

We associate the energy of the electron mass me with the wave energy. 

2

2πe
e

hcm c
r
α

=                            (32) 

With Equations (20), (31), and (32), we obtain Equation (33). 

( )
19

1 1
0 72.09548580 32 km s MParsec

e

c
H

r
α β − −⋅ ⋅= ≈          (33) 

The result is similar to Equation (16) obtained with the Cobra probe [17] and 
confirms Salvatelli’s value [18] of 3.2 1 1

0 2.372.1 km s MParsecH + − −
− ⋅ ⋅≈ . 

With Equations (16), (33), and (32), we get the CMB temperature T. 

( )
1 42 6 17

3

15 2.7367958 16 K
π

e

b

m c
T

k
β α 

= ≈ 
 

              (34) 

It is in agreement with the value Cobra probe [17] with T ≈ 2.736(17) K. 
With a cosmological model and 2 postulates, we found theoretical equations 

that give G, H0, T, and N. With standard equations of physics, other equations 
may be found, such as Equations (21) to (28). 

4. Experimental Measurements of the Universal  
Gravitational Constant G 

In 1798, G was measured by Cavendish using a torsion balance [2]. During the 
following centuries, several different methods were used with ever more refine-
ments to try to circumscribe the value of G. Despite recent technological ad-
vances and the precision achieved, the different results do not always overlap. 
Our goal is to bring out a better value to estimate G. 

The main purpose of this document is to show that the calculated theoretical 
value [3] of G (Equation (31)) can be validated by an adequate interpretation of 
the measured values thanks to a graph using cubic splines. The theoretical value 
of G is described as a function of the characteristics of the electron (the classical 
electron radius re and mass me), the fine-structure constant α, the speed of light c 
as well as a constant β from a cosmological model. 

The value of G in Equation (31) becomes interesting for scientists if it can be 
verified by concrete measurements. A theoretical value obtained as a function of 
other more precise parameters makes it possible to overcome the difficulties in-
herent in the measurements of G. Despite all the efforts made, even the recent 
values of the measurements of G do not all agree with each other and have rela-
tively high margins of error. So, we have to find a trick. 

In Table 1, we have identified 32 relatively recent results (since 1930). Some 
of these values are statistical results of other measurements. We kept them to 
compare their value with the real measurements. 

https://doi.org/10.4236/jmp.2020.119089


C. Mercier 
 

 

DOI: 10.4236/jmp.2020.119089 1436 Journal of Modern Physics 
 

Table 1. List of measurements of the universal gravitational constant G. 

Source Identification Method 
Value 
G/10−11 m3s−2kg−1 

ppm 
** 

Ref. 

1-Qing Li et al. Q-AAF-2018 AAF 6.674484(78) 11.61 [20] 

2-Qing Li et al. Q-TS-2018 TS 6.674184(78) 11.64 [20] 

3-Tiesinga E et al. CODATA 2018 STAT 6.67430(15) 22 [21] 

4-Newman et al. N-TB-2014 TB 6.67435(13) 19 [22] 

5-Rosi et al R-AI-2014 AI 6.67191(99) 150 [23] 

6-Quinn et al. Q-FDEC-2014 FDEC 6.67554(16) 24 [24] 

7-Mohr PJ et al. CODATA 2014 STAT 6.67408(31) 46 [6] 

8-Mohr PJ et al. CODATA 2010 STAT 6.67384(80) 120 [25] 

9-Parks & Faller PF-FPC-2010 FPC 6.67234(14) 21 [26] 

10-Tu et al. T-TS-2010 TS 6.67349(18) 27 [27] 

11-Luo et al. L-TS-2009 TS 6.67349(18) 27 [28] 

12-Mohr PJ et al. CODATA 2006 STAT 6.67428(67) 100 [29] 

13-Schlamminger et al. S-BB-2006 BB 6.67425(12) 19 [30] 

14-Hu et al. H-TS-2005 TS 6.67222(87) 130 [31] 

15-Armstrong et al. A-EC-2003 EC 6.67387(27) 40 [32] 

16-Mohr PJ et al. CODATA 2002 STAT 6.6742(10) 150 [33] 

17-Kleinevoβ K-FPC-2002 FPC 6.67422(98) 150 [34] 

18-Quinn et al. Q-FDEC-2001 FDEC 6.67559(27) 40 [35] 

19-Gundlach & Merkowitz GM-AAF-2000 AAF 6.674215(92) 14 [36] 

20-Fitzgerald & Armstrong FA-TB-1999a TB 6.6742(7) 105 [37] 

21-Fitzgerald & Armstrong FA-TB-1999b TB 6.6746(10) 150 [37] 

22-Mohr PJ et al. CODATA 1998 STAT 6.673(10) 1499 [38] 

23-Bagley & Luther BL-TS-1997 TS 6.67398(70) 100 [39] 

24-Karagioz & Izmailov KI-TS-1996 TS 6.6729(5) 75 [40] 

25-Standish. ST-STAT-1995 STAT 6.67259(30) 45 [41] 

26-Cohen ER et al. CODATA 1986 STAT 6.67259(85) 127 [42] 

27-Luther & Towler LT-TS-1982 TS 6.6726(5) 75 [43] 

28-Sagitov S-TS-1979 TS 6.674485(800) * 120 [44] 

29-Cohen ER et al. CODATA 1973 STAT 6.6720(41) 615 [45] 

30-Pontiskis et al. P-TS-1972 TS 6.6714(6) 90 [46] 

31-Taylor BN et al. CODATA 1969 STAT 6.6732(31) 465 [19] 

32-Heyl PR H-TB-1930 TB 6.670(5) 750 [47] 

List of Methods Used: STAT = Statistical results from various sources; TS = Time-of-swing; AAF = An-
gular acceleration feedback; BB = Beam balance; FDEC = Free deflection and electrostatic compensation 
(Servo); FPC = Fabry–Perot cavity with pendulums; AI = Atom interferometry; EC = Electrostatic 
compensation; TB = Torsion balance; *The values of 6.745 ± 0.005 × 10−13 m3kg−1s−2 (should be 10−11) 
of the abstract and 6.745 ± 0.0008×10−11 m3kg−1s−2 from the Sagitov’s text are erroneous [44] because 
the numbers after the dot and the tolerance are wrong. They may be corrected by averaging the table 
values from its original Russian article. After correction, 11 3 1 26.674485 0.00080 10 m kg sG − − −≈ ± × ⋅ ⋅ ; 
**ppm = Parts per million. 
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To reduce the uncertainties, results from Table 1 inevitably comes from sta-
tistics (medians, averages, weighted averages, etc.) on several repeated experi-
ments. Unfortunately, if the data is biased, an average of several measurements 
will only increase the repeatability of the measured means, always with the same 
bias. When the data are biased without knowing it and when several researchers 
display very small tolerances that do not overlap, they probably display their 
good repeatability, but not the actual tolerances. 

We are well aware that in Table 1 some results are sometimes the results of 
measurements mixed with results from authors who preceded them. We confess 
that it was not always easy to keep only the real results of each author since they 
were sometimes “incorporated” in statistics that imply other measurements from 
other searchers. We did not want either to remove these values since they may 
harbor important information. We count on the fact that in some ways if these 
values are averages with other mixed data, they will not change the global aver-
age. Likewise, they should not have a noticeable effect on the position of the two 
peaks that we will look for. They may change the height of these peaks, but this 
information is not what we look for. Another effect of these statistics is the cal-
culation of the tolerance value of G in Equation (37). However, it is easy to re-
move their effect by omitting them when we calculate the square root of the 
number of data at the denominator. If we remove all data which comes from sta-
tistics (10 in total), it remains 22 usable measurements for the calculation of the 
final tolerance. 

If all the environmental variables had always been taken into account, the 
various experiments would probably all have led to the same result. Without 
doubting the incredible efforts that scientific teams have made to obtain the best 
possible results by reducing the different sources of error, it can be seen that sever-
al margins of error from different results do not overlap. This is an embarrassing 
situation which shows that some people may be wrong and some disturbing para-
meters are not always taken into account. Since the results come from completely 
different experiments, it is possible to believe that the parameters that were not 
taken into account are probably different from one experiment to another. 

Of course, we may reduce the measurement error by averaging all the results, 
hoping that the systematic errors made in positive are equally compensated by 
systematic errors made in negative. By averaging the 32 data in Table 1, we cal-
culate the following mean value Gm: 

23 1116.673512 10 m s kgmG − − −⋅ ⋅≈ ×                (35) 

The median Gmd value is: 
1 2 11 310 m6.673 5 s g92 kmdG −− −⋅ ⋅≈ ×               (36) 

On a very large number of samples, the median is assumed to equal the mean. 
Here, the difference is sufficiently marked between the mean and the median for 
us to suspect that the spreading of the data is not simply Gaussian. Consequently, 
we consider that despite the precisions displayed for certain values, it seems that 
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these are tainted with errors. When thoroughness and precision are the order of 
the day, there are multiple sources of error, and some systematic causes can 
sneakily intrude on experiments and be overlooked. Some of these sources have 
been eliminated over time. For example, G measurements were once done in the 
air while they are now done in a vacuum to eliminate the effects of air agitation. 

Mathematical tools do not always highlight the possibility that certain types of 
systematic errors can be committed, sometimes in positive, sometimes in nega-
tive. An attempt to highlight the systematic errors can be made by scanning the 
abscissa of Figure 1. For each value of the abscissa, we look at the number of to-
lerance ranges which can be intercepted by a line perpendicular to this last. We 
thus construct a graph (see the graph at the top of Figure 1). This graph gives a 
tool to tell how many measurements overlap with certain values of G. The higher 
is the number on the ordinate, the higher are the chances to get overlaps with 
other measurements of G. In an ideal world, we would like to overlap with all the 
32 measurements. However, we already know that it’s not all measurements that 
are overlapping. 

From a mathematic point of view, we have no control over where the node 
will be placed by the software. They are supposed to be placed in such a way it 
reduces the sum of squares of errors. Also, the shape of the spline is like a flexi-
ble ruler that we force to pass by 5 nodes chosen by the software. It is supposed 
to reconstruct a curve that minimizes the tension in the ruler.  

This graph highlights that there are two predominant groups of data. There 
may be more, but visually, there seem to be two main ones.  

The first group (Ga) seems to have fewer followers. The latest CODATA val-
ues (2014 and 2018) seem to be in the second group (Gb). However, 32 different 
experiments do not represent a very large sample. Having more data orbiting 
around the second group does not necessarily mean that the average value of the 
first group is not as valid, but it moves the mean value of G towards the second 
group Gb.  

We make the hypothesis that the second group Gb is maybe biased by the fact 
that there are important publications of the G value every 4 years in the CODATA 
since its creation in 1966. Many measurement trials may have been abandoned 
or remade till experimenters get results that yield in the same ball game than the 
“official” values posted in the different versions of the CODATA. Since the same 
unknown systematic source of error may apply in + or in – on data, it seems 
reasonable to us to give as much importance to Ga and Gb.  

A data set made of 32 experiments is not huge. We think that considering a 
larger unbiased sample, we could very well have as much data around the first 
group as around the second group. Of course, we can assume that rare expe-
riences do to make any systematic error and their value would lie between the 
two predominant groups. 

The graph at the top of Figure 1 is made up of rough “jumps”. To smooth this 
graph, we pass a cubic spline function through the data set.  
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Figure 1. List of measurements of the universal gravitational constant G. 

 
Cubic splines have interesting properties. They are made of a set of control 

points that are called “nodes”. There can be as many nodes as desired as long as 
there are at least three nodes to get two segments. Between two nodes, the curve 
is made of 3-degree polynomial segments that allow flexible and polyvalent 
twists. The most complex and continuous curves may be approximated with 
splines if they are decomposed in enough segments of small size. To ensure the 
smoothness of the curves at each node, adjacent segments have the same first 
and second-degree derivatives. In Figure 1, if there were an infinite number of 
data, the curve would be continuous with no discontinuities. This is the main 
reason why we use cubic splines to reconstruct an ideal smooth curve. We men-
tion that other types of smoothing curves could have been used. A simple 
5-degree polynomial would also allow us to show 2 bumps. However, it would 
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tend to have uncontrolled behaviors at each end and would not fit well on the 
type of curve we have.  

We will force the cubic splines curve to reveal only two bumps, whatever their 
heights and wherever they are. To achieve this goal, we set only 5 nodes (2 for 
the ends, 2 for the peaks, and one for the hallow between peaks). The position of 
the nodes will be free to move to reduce the least-square error. 

To eliminate any subjectivity on the position of the nodes, we rely on a curve 
generated automatically by the software. Such software in Delphi 3.0 (advance 
Pascal) is available at Annex A.  

In this software, a list is made from the 32 values of G and their corresponding 
tolerances in Table 1. The software then generates a table of 64 values (these 
values are numbered by the index i = 0 to 63) corresponding to the ends of the 
ranges of values of G. The data are sorted in order of increasing values. Next, we 
associate a number ni corresponding to the number of crossing points with the 
error ranges. To determine the values ni, an imaginary line perpendicular to the 
abscissa is drawn for all the 64 values of G kept. The values ni correspond to the 
numbers of crossings with error ranges in Figure 1. Of course, these numbers 
are integer values ≥ 0. 

The nodes on the cubic spline curve can have any ± real values. Negative val-
ues may be required to construct the cubic splines curve at its ends. They have 
no converse in the physical world. However, when a value is negative, the prob-
abilities of crossing an error range are almost zero. 

By iterating to find the best positions for the 5 nodes, the software will reduce 
the sum Σe of the least-squares of the errors between the values ni and the values 
from the cubic splines curve.  

When it seems no longer possible to iterate, the value of G is obtained by 
finding the ideal value for the measurement of G which is right between Ga and 
Gb since we assumed that the systematic error is the same in + or in -. This cor-
responds to averaging Ga and Gb. These values correspond to the values of G for 
the two cubic spline curve peaks and should give the following emax tolerance. 

max

2 111 31
max

max

max

 0.000060 10 m s kg

where  32 data  and  22 real measurements

i

i
i

e
e

i n
i n

− − −=≈ ± ≈ ± ×

= =

⋅ ⋅
∑

         (37) 

The values ei correspond to the tolerances associated with the data in Table 1. 
The number of data in Table 1 corresponds to imax = 32. From these data, we 
remove all statistical results to get a total of n = 22 real measurements. Because 
of the square root, removing all statistical results do not have a huge impact on 
the final tolerance (60 ppm instead of 50 ppm). 

The precision of measurements may be partially mixed up with the repeatabil-
ity. The 5 points resulting from the iterations on the cubic spline curve are 
shown in Equations (38). 
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×

≈ × −

  (38) 

The sum of the least-squares found with these values is as follows. 

202.827574eΣ ≈                        (39) 

Once the 5 points are found and it is no longer possible to iterate to reduce the 
error, we find the 2 values of G which correspond to the two peak values Ga and 
Gb of the cubic spline curve (see Figure 1). 

23 1116.672449 10 m s kgaG − − −⋅ ⋅≈ ×                 (40) 

23 1116.674076 10 m s kgbG − − −⋅ ⋅≈ ×                 (41) 

Since we want to give as much weight to the first group (corresponding to the 
peak reached in Ga) as to the second (corresponding to the peak reached in Gb), 
we average the values of G between the two peaks. By averaging these 2 values, 
we get the following value of G (round up on the sixth decimal): 

( ) 1 2 11 310 m6.6732 s2 g6 50 kG −− −⋅ ⋅≈ ×               (42) 

The tolerance of ±0.000050 × 10−11 m3·s−2·kg−1 comes from Equation (37). 
However, the measured value of G in Equation (42) is now well centered on the 
theoretical value of G (Equation (31)) within ±5 ppm (parts per million).  

We would like to draw attention to the fact that the second peak value Gb of 
the cubic spline curve is close to the value presented by CODATA 2018, but es-
pecially to the value presented by CODATA 2014 (referring to Table 1). The 
process using the cubic spline curve seems to show that the measurements from 
recent years tend to be around the second peak value (Gb) of the cubic spline 
curve. A lot of experiences probably commit a systematic error. Even if it seems 
likely that there is a systematic error, it is not possible, for the moment, to know 
what this error is. 

Since we want to give as much importance to the first group as to the second, 
we average the two peak values (Ga and Gb). This value that comes from mea-
surements is roughly the same as the theoretical G in Equation (31). 

Although our sample of 32 data stemming from different experiences is quite 
limited, it seems that this allows us to highlight the possible existence of a syste-
matic error. Unless there are major advances, the source of this error may re-
main unknown since it differs from one experience to the next. However, we 
think that the value of the error is sometimes imputed to the data in positive and 
sometimes negative. The values then vary around an average value which should 
be the theoretical value of G of Equation (31). 

The experiments mentioned in Table 1 were carried out using different me-
thods. Some involve different materials, masses of different values, and involve 
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different distances. At a very short distance, the Casimir effect, electrostatic, and 
magnetic forces may come into play and distort the results if they are not taken 
into account. Most of the experiments are now carried out under vacuum and at 
a controlled temperature to avoid disturbances due to the agitation of the air. 
When trying to get very high accuracy, even vehicles on the street, tides, the 
moon, and the sun may affect the results. 

It is really difficult to subtract laboratories from all perturbating sources. Not 
knowing all the details of the montages and environments used for each of the 
experiments and knowing that each montage has different sources of error, it is 
very difficult to point to a specific source of systematic error. It may never be 
possible to find it. However, the difference between the value of one of the two 
peak values of the cubic spline curve and the central value gives a good idea of 
the magnitude of the systematic error. This value could help a research team to 
find the source of this error. 

For now, G appears to be constant. But is it? We will analyze this point in de-
tail once we will have stated the different equations of G. 

5. A Reminder of Different Useful Identities 

Currently, our metrology system considers G as one of the 3 fundamental con-
stants of physics. Based on modern physics, no model makes it possible to obtain 
G as a function of the other constants. However, recently [3], thanks to a new 
cosmological model, we have shown that G can be obtained as a function of the 
speed of light in a vacuum c, the fine-structure constant α, and the parameters of 
the electron (mass me and classic radius re). 

To avoid repeating everything unnecessarily, we wish here to recall different 
identities which will be used later to determine several equations of G. 

Let’s start by listing the different Planck units that will be useful to us. 
Planck mass mp is determined, as a standard, as a function of Planck constant 

h, G, and the speed of light in a vacuum c. 

82.18 10 kg
2πp
hcm

G
−= ≈ ×                   (43) 

Planck time tp is determined, as a standard, as a function of Planck constant h, 
the universal gravitational constant G and the speed of light in a vacuum c. It 
can also be determined according to Planck length Lp. 

44
5 5.91 10 s

2π
p

p

LhGt
cc

−= = ≈ ×                  (44) 

Planck length Lp is determined, in a standard way, from the same parameters 
or from Planck time tp with the following equations. 

35
3 1.61 10 m

2πp p
hGL ct

c
−= = = ×                 (45) 

Planck charge qp is determined, in a standard way, as a function of the pre-
ceding parameters, the fine-structure constant α and the vacuum permeability μ0. 
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It can also be determined as a function of the vacuum permittivity ε0 or from the 
electrical charge qe of the electron. 

( ) 18
0

0 0

4π 2 2 1.875546023 11 10 Cp p e
p

m L qhq ch
c

ε
µ µ α

−−
= = = = ≈ ×   (46) 

Note that unlike most Planck units, Planck charge is not defined, in a standard 
way, using G and h. However, using Equations (31), (46), (50), and (51), we can 
establish a relation of Planck charge qp as a function of G and h. 

2

2 4 19
0πp

e

Ghq
r c
β

µ α
=                        (47) 

The fine-structure constant α is linked to the Rydberg constant R∞ and to the 
mass of the electron me by the following equation: 

2

2
ecm

R
h
α

∞ =                          (48) 

The charge of the electron is determined based on the mass of the electron me, 
the classical electron radius re, and the permeability of the vacuum μ0. 

19

0

4π
1.60 10 Ce e

e
m r

q
µ

−= = − ×                  (49) 

Thanks to the wave-particle duality, it is possible to link the energy of the 
mass me of an electron (left part of Equation (50)) to the energy of the wave as-
sociated with it (right part from Equation (50)). 

2

2πe
e

hcm c
r
α

=                         (50) 

The speed of light c in a vacuum is given as a function of the vacuum permea-
bility μ0 as well as the vacuum permittivity ε0. 

0 0

1c
µ ε

=                         (51) 

6. Different Equations for Calculating the Universal  
Gravitational Constant G 

To show the interdependence of G with the other parameters of the universe, we 
will make an enumeration of equations using different “constants”. Some of these 
equations will offer the advantage of overcoming the difficulties inherent in mea-
suring the value of G and will present a roundabout way of obtaining a precise 
value of it. The use of different parameters could highlight that the universal 
gravitational “constant” G may not be that constant. 

Equation (31) defines G as a function of the speed of light c, the fine-structure 
constant α, the parameters of the electron (mass me and its classical radius re) as 
well as the constant β defined in Equation (31). This last constant comes from a 
cosmological model that shows the existence of a material and luminous un-
iverse. These two spherical universes evolve one in the other in a β relationship. 
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Without this constant, the equations which make it possible to define G only 
based on parameters with good precision (8 to 11 digits after the point) would 
not be possible. Most of the equations that follow will use some of the constants 
used in Equation (31). We will, therefore, focus on the other constants that will 
appear in the different equations. 

From Equations (31) as well as from Equation (48), G can be defined as a 
function of Planck constant h and the Rydberg constant R∞. 

3 22

2
er c

G
hR
α

β ∞

=                         (52) 

Equations (31), and (50) make it possible to define G as a function of h. 
2 3 192π er c

G
h
α

β
=                        (53) 

Using Equations (31), and (48) in Equation (53), G is defined as a function of 
Planck constant h and Rydberg constant R∞. 

3 25

28π
cG

hR
α
β ∞

=                         (54) 

Using Equations (2) and (16) in Equation (35), G is defined by another equa-
tion as a function of Rydberg constant R∞. 

2 23

4π e

cG
m R
α

β ∞

=                        (55) 

Using Equations (31), (46), and (51), G is obtained as a function of the va-
cuum permeability μ0 as well as the electron charge qe. 

2 2 20

2
0

4π e

e

c r
G

q
α

βµ
=                       (56) 

With the same parameters, we get G using Equations (31), (46), and (51). 
2 20

2 2
0 0

4π e

e

r
G

q
α

βε µ
=                       (57) 

Using Equations (31), (48), and (51) in Equation (39), G is defined as a func-
tion of μ0, qe, and the constant by Rydberg R∞. 

2 26

2 2
04π e

cG
q R

α
βµ ∞

=                      (58) 

Using Equations (31) and (51) in Equation (58), G is defined as a function of 
the vacuum permittivity ε0 and the same parameters as Equation (58). 

26

2 2 2
0 04π e

G
q R
α

βε µ∞
=                      (59) 

Using Equations (20) and (22), we obtain an equation of G defined according 
to the charge of the electron qe to the numerator as well as according to the per-
mittivity of the vacuum ε0 and the mass me of the electron. This equation can al-
so be taken from Equation (28). 
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2 20

2
04π

e

e

q
G

m
α
βε

=                         (60) 

Using Equation (51) in Equation (60), we obtain a similar equation, but as a 
function of the speed c and the vacuum permeability μ0. 

2 2 20
0

24π
e

e

q c
G

m
µ α

β
=                        (61) 

We emphasize that Equations (31), and (52) to (61) make it possible to obtain 
a precise value of the gravitational constant G by overcoming the difficulties in-
herent in the measurements of this parameter of physics. 

Using Equations (46) and (60), we get G as a function of Planck charge qp. 
2 21

2
04π

p

e

q
G

m
α
βε

=                        (62) 

Using Equation (51) in Equation (62), we obtain a similar equation, but as a 
function of the speed of light c and the permeability of vacuum μ0. 

2 2 21
0

24π
p

e

q c
G

m
µ α

β
=                       (63) 

Using Equations (46) and (48) in Equation (58), we obtain G as a function of 
the vacuum permeability μ0 and Planck charge qp. 

2 2 19

2
0

4π e

p

c r
G

q
α

βµ
=                       (64) 

Using Equation (51) in Equation (64), we obtain G as a function of the va-
cuum permeability μ0, the vacuum permittivity ε0, and Planck charge qp. 

2 19

2 2
0 0

4π e

p

r
G

q
α

βε µ
=                       (65) 

Using Equation (51) in Equation (65), we obtain an equation as a function of 
μ0, ε0, qp, and Rydberg constant R∞. 

2 25

2 2
04π p

cG
q R

α
βµ ∞

=                     (66) 

Using Equation (51) in Equation (66), we obtain the following equation as a 
function of μ0, ε0, qp, and R∞. 

25

2 2 2
0 04π p

G
q R

α
βε µ ∞

=                    (67) 

Using Equations (31), (50), (34), and (33), it is possible to determine G as a 
function of the measurement of the average CMB temperature T. Because of the 
uncertainty currently hanging over this parameter, the result of this equation is 
much less precise. However, using the value of T presented in Equation (34), we 
obtain a result almost as precise as those from Equations (31) and (52) to (59). 
The difference in precision then comes from the Boltzmann constant kb which is 
slightly less precise than most of the other constants used. 
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1 43 63

2 10

π
15

b e

e

Tk r
G

m
α
β

 
=  

 
                      (68) 

Using Equation (50) in Equation (68), we obtain another equation giving G as 
a function of T, kb as well as Planck constant h. 

1 467

3 10240π
b

e

hTk
G

m c
α

β
 

=  
 

                     (69) 

Using Equation (49) in Equation (68), we obtain an equation giving G as a 
function of the mean temperature of the cosmic microwave background of the 
universe T, Boltzmann constant kb, and the electron charge qe. 

1 43 11 63

2 4 10
0

16 π
15

b e

e

Tk r
G

q
α

µ β
 

=  
 

                    (70) 

By raising Equation (34) to power 4, by isolating from this equation the para-
meters required to equal Equation (31), and by replacing these parameters by G, 
we obtain an equation of G as a function of the mean temperature T of the cos-
mic microwave background and Boltzmann constant kb. 

3 3 4 4

5 6 7

π
15

e b

e

r k T
G

m c
α

β
=                         (71) 

The following equations cannot be used as tools to calculate G with precision. 
Using Equation (5), G can be defined as a function of the apparent mass of the 

mu universe and Hubble constant H0. 
3

0u

cG
m H

=                           (72) 

Using Equation (7) in Equation (72), we get G as a function of the apparent 
radius of curvature Ru of the universe as well as mu. 

2
u

u

R c
G

m
=                            (73) 

Using Equations (31), (33), and (73), G may be defined as a function of Ru. 
2 39

u

e

R c
G

m
α
β

=                           (74) 

Using Equations (7) and (74), we get G as a function of Hubble constant H0. It 
can also be obtained using Equations (5), (20), and (23). 

3 39

0e

cG
m H

α
β

=                          (75) 

Using Equations (5) and (26), it is possible to obtain G as a function of Ryd-
berg constant R∞ and the apparent mass mu of the universe. 

2

164π u

cG
m R α β∞

=                       (76) 

Using Equations (5), (7), and (27), we obtain G as a function of Planck length 
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Lp, the apparent mass mu of the universe, and Rydberg constant R∞. 
2

2 2 7 216π p u

cG
L m Rβ α∞

=                      (77) 

Using Equations (43), (44), and (45), G can be defined according to the 3 main 
Planck units, i.e. Planck length Lp, Planck mass mp and Planck time tp. 

3

2
p

p p

L
G

m t
=                           (78) 

Using Equations (43), (45), (5), and (7), the value of G can be obtained ac-
cording to Ru, mu, Planck length Lp and Planck time tp. 

2

2
u p

u p

R L
G

m t
=                           (79) 

Using Equations (5), (18), and (21), we get an equation with the mass mph as-
sociated with the photon having the lowest energy level as well as H0. 

3 57

0 ph

cG
H m
α

=                          (80) 

Using Equations (5) and (24), it is possible to obtain G as a function of the 
mean temperature T of the cosmological microwave background, of Boltzmann 
constant kb, of the mass associated with the least energetic photon mph, the ap-
parent mass mu of the universe and Hubble constant H0. 

1 43 57
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                  (81) 

Using Equations (5), (20), and (25) we obtain an equation of G which involves 
the Planck temperature Tp, the Boltzmann constant kb, the Planck constant h, 
the apparent mass mu of the universe and the Hubble constant H0. 

2 57 6

0

2π e b p

u

r k T c
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hm H

α

β
=                      (82) 

Using Equations (20), (21), and (80), we obtain an equation of G which in-
volves the mass mph and Planck time tp. 

3 57 2
p

ph

t c
G

m
α

=                         (83) 

We have presented several different Equations (33 in total including equation 
(31)) that can define the gravitational constant G as a function of different pa-
rameters of the universe. Several other equations could probably be found by 
making other combinations of equations. 

The idea conveyed in the CODATA 2014 [6] was that G “is independent from 
other constants”. We aimed to show that it may not the case. The proper links 
are not commonly part of the standard physics yet. With all the equations of G 
present in this article, we suggest that some of the most important parameters of 
the universe are intimately linked, as much in the infinitely large as in the infi-
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nitely small and the gravitational constant G is probably part of them. 

7. Why Is G Not a Real Constant? 

We want to explain why G cannot be constant over time. At the same time, we 
will show why, apart from the fine-structure constant α, most of the parameters 
of the universe are probably not constant. 

Equation (75) shows a direct link between G and H0. Since 1/H0 gives the ap-
parent age of the universe, H0 is not constant even if it may look to observers for 
a short period. This shows that G is probably also evolving over time.  

The constant α is one of the rare parameters in physics to be truly constant. 
This is because it’s a ratio of two numbers having the same units. For example, α 
can be defined as the ratio between the classical electron radius re and Compton 
radius rc of the electron. It can also be defined as a function of the electron 
charge qe and Planck charge qp. 

( )
2

3
2 7.2973525664 17 10e e

c p

r q
r q

α −= = ≈ ×                (84) 

Several other ratios involving parameters with different unities could define α. 
Take, for example, the ratio of re by rc. If any phenomenon influences the nume-
rator value by an infinitely small factor δ, the same phenomenon will also influ-
ence the denominator in the same proportions with a factor δ. 

( )
( )
1
1

e

c

r
r

δ
α

δ
+

=
+

                          (85) 

But what happens when we consider c constant without it being? Let us ex-
amine another equation that defines α as a function of c. 

2

02
eq
hc

α
ε

=                            (86) 

Now suppose that the speed of light increases over a year to be c(1 + δ). Equa-
tion (86) would then become the Equation (87). 

( )
2

02 1
eq

hc
α

ε δ
=

+
                        (87) 

If for metrological reasons, the value of c is kept constant with its current val-
ue, the value of α will then seem to be divided by the factor (1 + δ). However, 
assuming that the speed of light is indeed increasing over time, (1 + δ) > 1. There-
fore, the value of α would seem to decrease over time. It is moreover at this con-
clusion that Wilczynska’s research team [48] arrived. His team made 4 direct 
measurements of what should be α at universe’s creation, about 13 billion years 
ago. According to this team, Δα/α ≈−2.18 ± 7.27 × 10−5. 

According to Einstein’s 1917 cosmology, the universe can be associated to a 
4-D sphere [49]. Contrary to the preconceived idea of a static universe he had at 
the time, Hubble showed in 1929 that the universe is also in expansion [10]. The 
apparent radius of curvature Ru continues to grow and we move away from the 
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center of mass of the universe [3]. By moving away from it, the density of the 
universe decreases over time, and the refractive index of the vacuum decreases, 
which allows a slight increase in the speed of light in a vacuum [3]. Currently, 
the latter is defined as c. But it increases very slowly over time. Its variation over 
a year is so small that it is currently not measurable by modern instruments, 
even over several decades. 

In 1905, in his theory of relativity, Einstein postulated that the speed of light c 
in a vacuum was constant [50]. This assumption was based on intuition, but not 
on facts. At the time, c was known with 5 or 6 significant digits [51], and the 
measured value at that time was different from year to year. 

Nowadays, the main instrument for measuring the speed of light is the laser. 
The ancestor of the laser, the maser (a kind of laser working in the mid-micro- 
wave), was invented in December 1953 by Charles H. Townes and demonstrated 
its operation in 1954 [52]. A few years later, in 1958 the concept of the first laser 
was created [52]. The laser was, for the first time, used as a measuring instru-
ment for the speed of light in 1972 by the Evenson team [53] which measured a 
speed c ≈ 299792456.2 ± 1.1 m·s−1. In 1973, the International Bureau of Weights 
and Measures recommended the use of c ≈ 299792458 ± 1 m·s−1 as value for the 
speed of light in a vacuum, then, in 1975, a resolution was adopted so that the val-
ue of the speed of light is considered exact with a value of c = 299792458 m·s−1 [54]. 
This crucial step defines the speed of light as an immutable standard. The re-
searchers’ task then summed to try to use this standard to define the most possi-
ble constants. In 1983, the meter was redefined by the International Bureau of 
Weights and Measures as the distance traveled by light for 1/299792458 second, 
which implies that the value of c is now considered to be exact [54]. 

In metrology, the constancy of the speed of light c is now an essential tool for 
calibration, because this speed is used as a reference for several other parameters 
of the universe. By deliberately keeping c “constant”, even if it increases over 
time, this has the effect of giving the impression that most of the parameters in 
physics are constant. This is especially true for parameters that have units of 
measurement. One has to realize that this whole concept is a device put in place 
to facilitate metrology. 

Metrology with a speed of light c which increases overtime is not practical and 
is rather undesirable. When the desire is to understand the evolution of the un-
iverse, physicists should not allow themselves to impose the constancy of the 
speed of light as it is done in metrology, otherwise, it risks creating inexplicable 
phenomena. In the days of Ptolemy’s anthropocentric beliefs, mankind believed 
that the Earth was the immobile center of the universe and that all stars revolve 
around it. It was an impossible mission to create universal mathematical equa-
tions to correctly describe the movement of all-stars in the universe. However, 
the understanding of our universe has been greatly simplified following Coper-
nicus’ discoveries of heliocentrism from 1511 to 1513 when he wrote: “De Hy-
pothesibus Motuum Coelestium a se Contitutis Commentariolus” (known as 
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“Commentariolus”) [55]. Similarly, the imposition of the constancy of the speed 
of light in a vacuum could deprive humanity of a cosmological model that is 
easier to understand. 

Many would argue that the speed of light c, the classic electron radius re, Ryd-
berg constant R∞, and several other parameters are “constant”. However, know-
ing that the universe is expanding [10], no one will doubt that the temperature 
of the CMB decreases over time. In an expanding universe, the energy density is 
necessarily decreasing, which requires a reduction of the temperature T over time. 
At the time of its formation, due to the ionization of gases, the average tempera-
ture of the universe did not follow the curve of a black body [56]. However, be-
cause the universe, as a whole, is homogeneous and isotropic and that its global 
cooling has led its average temperature to around 2.736(17) K [17], the universe 
can now be seen as a black body [57] which radiates its energy and cools. Equa-
tions (68) to (71), and (81) to (82) clearly show a direct link between G and the 
CMB temperature, which necessarily implies that G is not a constant over time. 
Indirectly, this also shows that several other parameters of the universe are not 
constant since G was defined using these same parameters in the other equations. 
For G to vary over time, some of these other parameters must also evolve at the 
same time. 

For now, the total energy Eu contained in the universe is a function of c2. 
2

u uE m c=                            (88) 

However, as stated at the beginning of this article, meanwhile the universe is 
expanding, the light slowly accelerates. As there must be conservation of the ener-
gy Eu, the apparent mass mu of the universe slowly decreases. Because of Equa-
tion (18), we know that there is a maximum number of photons of wavelength 2πRu 
in the universe. Of course, the universe is full of other photons with other wave-
lengths, but if they were all of the same with a 2πRu wavelength, there would be N ≈ 
6.3 × 10121 photons. With Equations (7), (18), and (21), we get Equation (89). 

2 2 20

2π 2π 2π 2πu ph p
u p p

NhHNhc hc hm c Nm c m c N
R L t

= = = = = =       (89) 

With Equation (89), we see that when light is accelerating the apparent radius 
Ru of curvature of the universe is increasing, Planck mass mp is decreasing and 
Planck length Lp is increasing, Hubble constant H0 is decreasing, and Planck 
time tp is increasing. Since mass, length and time are the basic dimensions of 
most constants, we conclude that probably most constants that have dimensions 
evolve over time. Since all these events happen at the same time, there are no no-
ticeable impacts on our life. Again, if for metrology purpose, we force the speed 
of light to be constant and equal to c, we would continuously slyly redefine all 
dimensions and the fine-structure constant α would look like changing over time 
even if it is really constant. 

8. Conclusions 

This article had 3 goals. The first one was to show that the theoretical value of G 

https://doi.org/10.4236/jmp.2020.119089


C. Mercier 
 

 

DOI: 10.4236/jmp.2020.119089 1451 Journal of Modern Physics 
 

from Equation (31) is the right one, even though in recent years, CODATA has 
shown a slightly higher result. The second goal was to get other equations that 
give G as a function of the different parameters of the universe and thus demon-
strate that G is intimately linked to them. Third, using these equations, we wanted 
to show that G is not constant in time and space. 

To begin with, a graph was constructed by analyzing the number of ranges of 
G measurements intercepted (using 32 measurements collected since 1930) for 
each potential value of this parameter. The use of cubic splines made it possible 
to highlight two groups of data. By trying to reduce the least-squares differences 
between the cubic spline curve and the measured values of the graph, it is possi-
ble to precisely establish the center of the two measurement groups. A very good 
estimate of the theoretical value of G is obtained by averaging the values of G 
corresponding to the two peaks, which corresponds approximately to the pro-
posed theoretical value of Equation (31). 

As CODATA regularly presents values of the second group, recent measure-
ments of G may be biased. Some researchers may have thought it prudent to set 
aside different results that stray too far from the official value of G. 

Analysis of the different measured values of G suggests that a systematic error 
is made on most measurements. By knowing the magnitude of this error, re-
searchers will now be able to track down the source of this error. 

Even if certain experiences of measuring G display accuracy higher than the 
value of CODATA, it must be noted that each method and assembly used to 
measure G are biased differently. Thus, the discrepancy in the G measurement 
suggests the presence of an unknown error. The CODATA value is the result of 
a statistical average of several methods which themselves are the results of mul-
tiple repeated tests. By using different methods, the accuracy improves according 
to the equation 1/n1/2 where n represents the number of experiments. This equa-
tion shows that even by carrying out a greater number of experiments, the square 
root very quickly limits the potentially achievable precision. Knowing that only 2 
or 3 new experiments are carried out each decade, the hope of seeing a clear im-
provement in the precision of G is not great, because, if the value of CODATA is 
the average result of about thirty experiments using different methods, the error 
will be multiplied at most by a factor of about 0.95 in the next decade. Also, us-
ing a simple average to improve the accuracy of G by repeating the same expe-
riments over and over again will not improve the accuracy much, as the same 
systematic errors are repeated every time. By using statistical means, only new 
experiments with new methods may reduce the uncertainty weighing on the 
value of G. 

The idea of using cubic splines to bring out more precisely two groups of 
measures instead of using statistical means could be reused in the same way with 
Hubble constant H0 because there seem to be two groups of data [58] and the 
theoretical value published in Journal of Modern Physics [3] (see Equation (33)) 
lies somewhere between these two groups. 
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To show the interdependence of G with the other parameters of the universe, 
we have listed several equations that make it possible to calculate G. Certain eq-
uations make it possible to calculate G in a purely theoretical way using parame-
ters considered precise. These equations perhaps represent tools that will allow 
us to track down the different sources of errors in the measurements of G. The 
different parameters used in these equations also allow us to question the con-
stancy of G since the average temperature T of the CMB, and H0 are not constant 
because of the expanding universe. 

This article highlights the fact that there are two ways to use the speed of light 
c. In metrology, this parameter is deliberately imposed as being constant to be 
used as a reproducible standard. But this point of view does not seem useful 
when the goal is to understand the evolution of the universe. Imposing the con-
stancy of c could lead some to conclude that there are inconsistencies in the 
evolution of certain parameters. On the scale of the universe, a few tens or hun-
dreds of years of metrology represent no more than an instant photograph of the 
universe parameters taken during a scene that takes place over several billion 
years. 
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Annex A (Delphi 3.0 Software) 

// This software tries to find a value of G from 32 measured values that 
// minimizes least-square sum. 
// It must be compiled on a Delphi 3.0 compiler (16-bit) which may be 
// revived to work on a 64-bit computer thanks to LongBow Software  
// available at https://www.longbowsoftware.com/Reviver.php 
unit Unit1; 
interface 
uses 
  Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, 
  StdCtrls, OleCtrls, graphsv3; 
 
type 
  TForm1 = class(TForm) 
    LabelBestValueOfG: TLabel;   //Label written "Best Value of G =" 
    BestValueOfG: TLabel;       //Label to write the result 
    LabelLeastSquareSum: TLabel;  //Label written "Least-Square Sum" 
    LeastSquareSum: TLabel;   //Label to write the result 
    LabelGa: TLabel;   //Label written "Ga =" 
    Ga: TLabel;    //Label to write the result 
    LabelGb: TLabel;   //Label written "Gb =" 
    Gb: TLabel;    //Label to write the result 
    LabelG0: TLabel;   //Label written "G[0] =" 
    G0: TLabel;    //Label to write the result 
    LabelnbInt0: TLabel;  //Label written "Number of Interceptions[0] =" 
    nbInt0: TLabel;   //Label to write the result 
    LabelG1: TLabel;   //Label written "G[1] =" 
    G1: TLabel;    //Label to write the result 
    LabelnbInt1: TLabel;  //Label written "Number of Interceptions[1] =" 
    nbInt1: TLabel;   //Label to write the result 
    LabelG2: TLabel;   //Label written "G[2] =" 
    G2: TLabel;    //Label to write the result 
    LabelnbInt2: TLabel;  //Label written "Number of Interceptions[2] =" 
    nbInt2: TLabel;   //Label to write the result 
    LabelG3: TLabel;   //Label written "G[3] =" 
    G3: TLabel;    //Label to write the result 
    LabelnbInt3: TLabel;  //Label written "Number of Interceptions[3] =" 
    nbInt3: TLabel;   //Label to write the result 
    LabelG4: TLabel;   //Label written "G[4] =" 
    G4: TLabel;    //Label to write the result 
    LabelnbInt4: TLabel;  //Label written "Number of Interceptions[4] =" 
    nbInt4: TLabel;   //Label to write the result 
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  procedure FormCreate(Sender: TObject); 
 
  private { Private declarations } 
  public { Public declarations } 
  end; 
 
const 
  n = 5;  //Number of nodes 
  nbG =32; //Number of measurements of G 
 
type 
  vector = array[0..n-1] of extended; 
 
var 
  Form1: TForm1; 
  x, y: vector;  //Vectors containing the coordinates of each node 
  a, b, c, d: vector; //Vectors containing coefficients a to d of each segment 
  G, T: array[0..2*nbG] of extended; 
  nbInt: array[0..2*nbG] of extended; //Vector of number of interceptions 
  Sgn: array[1..2*nbG] of integer; //Table of signs 
  LS: extended = 0; //Least mean square value 
  m: array[0..n-1,0..n-1] of extended; 
  h, f, s: vector; 
  TopSplineCurve1,TopSplineCurve2: extended; 
  StartIncrement_x, StartIncrement_y, StopPPM: extended; 
  Range: integer; //Range of research in BestEstimateOfG procedure 
 
implementation 
{$R *.DFM} 
 
{******************************************************************** 
Create a spline curve from all given nodes x[i],y[i] where i:=0 to n-1. 
This procedure returns the coefficients a[i], b[i], c[i], d[i] for 
all i=0 to n-2 third degree polynomial segments. 
*********************************************************************} 
procedure CreateSplineCurve; 
  var 
    i, j: integer; 
    k: extended; 
  begin 
  for i:=n-1 downto 1 do 
    begin 
    if (x[i]<>x[i-1]) then f[i]:=(y[i]-y[i-1])/(x[i]-x[i-1]) else f[i]:=1E99; 
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    h[i-1]:=x[i]-x[i-1]; 
    end; 
  //*********** Formation of h, s , f matrix **************// 
  for i:=1 to n-2 do 
    begin 
    m[i,i]:=2*(h[i-1]+h[i]); 
    if(i<>1)then 
      begin 
      m[i,i-1]:=h[i-1]; 
      m[i-1,i]:=h[i-1]; 
      end; 
    m[i,n-1]:=6*(f[i+1]-f[i]); 
    end; 
  //*********** Forward elimination **************// 
  for i:=1 to n-3 do 
    begin 
    if m[i,i]<>0 then k:=(m[i+1,i]/m[i,i]) else k:=1E99; 
    for j:=1 to n-1 do m[i+1,j]:=m[i+1,j]-k*m[i,j]; 
    end; 
  //*********** Backward substitution *********// 
  for i:=0 to n-1 do s[i]:=0; 
  for i:=n-2 downto 1 do 
    begin 
    k:=0; 
    for j:=i to n-2 do k:=k+m[i,j]*s[j]; 
    if m[i,i]<>0 then s[i]:=(m[i,n-1]-k)/m[i,i] else s[i]:=1E99; 
    end; 
  //******* Finds a,b,c,d coefficient for each segment ******// 
  for i:=0 to n-2 do 
    begin 
    if h[i]<>0 then a[i]:=(s[i+1]-s[i])/(6*h[i])else a[i]:=1E99; 
    b[i]:=s[i]/2; 
    if h[i]<>0 then 
      c[i]:=(y[i+1]-y[i])/h[i]-(2*h[i]*s[i]+s[i+1]*h[i])/6 
    else 
      c[i]:=1E99; 
    d[i]:=y[i]; 
    end; 
  end;  //End of CreateSplineCurve procedure 
 
 
{******************************************************************** 
This procedure begins by creating a table of 2*nbG increasing values 
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of G[i] with the tolerances T[i] and the signs +/- sgn[i]. 
The ultimate result is that it builds with the previous vectors a table 
of the number of intersections nbInt[i] of G value ranges. 
In all cases i:=1 to 2*nbG. 
*********************************************************************} 
procedure CreateTableOfIntGRanges; 
  var 
    i, j, Dsgn: integer; 
    DG, DT: extended; //Dummy G and T used to put G in increasing order 
  begin 
  CreateSplineCurve; 
  G[1]:=6.674484;  T[1]:=0.000078; //Qing Li et al. (Q-AAF-2018) 
  G[2]:=6.674184;  T[2]:=0.000078; //Qing Li et al. (Q-TS-2018) 
  G[3]:=6.6743;  T[3]:=0.00015;  //Tiesinga et al. (CODATA 2018) 
  G[4]:=6.67435;  T[4]:=0.00013;  //Newman et al. (N-TB-2014) 
  G[5]:=6.67191;  T[5]:=0.00099;  //Rosi et al (R-AI-2014) 
  G[6]:=6.67554;   T[6]:=0.00016;     //Quinn et al. (Q-FDEC-2014) 
  G[7]:=6.67408;  T[7]:=0.00031;     //Mohr PJ et al. (CODATA 2014) 
  G[8]:=6.67384;   T[8]:=0.0008;      //Mohr PJ et al. (CODATA 2010) 
  G[9]:=6.67234;   T[9]:=0.00014;     //Parks et Faller (PF-FPC-2010) 
  G[10]:=6.67349;  T[10]:=0.00018;  //Tu et al. (T-TS-2010) 
  G[11]:=6.67349;  T[11]:=0.00018; //Luo et al. (L-TS-2009) 
  G[12]:=6.67428;  T[12]:=0.00067; //Mohr PJ et al. (CODATA 2006) 
  G[13]:=6.67425;  T[13]:=0.00012; //Schlamminger (S-BB-2006) 
  G[14]:=6.67222;   T[14]:=0.00087; //Hu et al. (H-TS-2005) 
  G[15]:=6.67387;   T[15]:=0.00027;  //Armstrong et al. (A-EC-2003) 
  G[16]:=6.6742;    T[16]:=0.001;    //Mohr PJ et al. (CODATA 2002) 
  G[17]:=6.67422;   T[17]:=0.00098;  //Kleinevoß (K-FPC-2002) 
  G[18]:=6.67559;  T[18]:=0.00027; //Quinn et al. (Q-FDEC-2001) 
  G[19]:=6.674215; T[19]:=0.000092; //Gundlach/Mer. (GM-AAF-2000) 
  G[20]:=6.6742;  T[20]:=0.0007;     //Fitzgerald/Arm.(FA-TB-1999a) 
  G[21]:=6.6746;  T[21]:=0.001;  //Fitzgerald/Arm.(FA-TB-1999b) 
  G[22]:=6.673;  T[22]:=0.01;   //Mohr PJ et al. (CODATA 1998) 
  G[23]:=6.67398;  T[23]:=0.0007;  //Bagley & Luther (BL-TS-1997) 
  G[24]:=6.6729;  T[24]:=0.0005;  //Karagioz/Iz. (KI-TS-1996) 
  G[25]:=6.67259;  T[25]:=0.0003;  //Standish (ST-STAT-1995) 
  G[26]:=6.67259;  T[26]:=0.00085; //Cohen ER et al. (CODATA 1986) 
  G[27]:=6.6726;  T[27]:=0.0005;     //Luther/Towler (LT-TS-1982) 
  G[28]:=6.674485; T[28]:=0.0008;     //Sagitov (S-TS-1979) 
  G[29]:=6.672;   T[29]:=0.0041;     //Cohen ER et al. (CODATA 1973) 
  G[30]:=6.6714;  T[30]:=0.0006;  //Pontiskis et al (P-TS-1972) 
  G[31]:=6.6732;   T[31]:=0.0031;     //Taylor BN et al.(CODATA 1969) 
  G[32]:=6.67;  T[32]:=0.005;  //Hayl PR (H-TB-1930) 
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  for i:=nbG+1 to 2*nbG do 
    begin 
    G[i]:=G[i-nbG]; 
    T[i]:=T[i-nbG]; 
    sgn[i-nbG]:=1; 
    sgn[i]:=-1; 
    end; 
  for j:=1 to 2*nbG-1 do 
    begin 
    for i:=j+1 to 2*nbG do 
      begin 
      if G[i]+sgn[i]*T[i]<G[j]+sgn[j]*T[j] then 
        begin 
        DG:=G[j]; 
        DT:=T[j]; 
        Dsgn:=sgn[j]; 
        G[j]:=G[i]; 
        T[j]:=T[i]; 
        sgn[j]:=sgn[i]; 
        G[i]:=DG; 
        T[i]:=DT; 
        sgn[i]:=Dsgn; 
        end; 
      end; 
    if j=1 then nbInt[j]:=1 else nbInt[j]:=nbInt[j-1]-sgn[j]; 
    end; 
  end;  //End of CreateTableOfIntGRanges 
 
 
{******************************************************************** 
Use this function to evaluate the Spline curve at the xx coordinate. 
The function will return the yy coordinate of the curve 
*********************************************************************} 
function Spline_yy(xx: extended): extended; 
  var 
    i: integer; 
  begin 
  Spline_yy:=0; 
  for i:=0 to n-2 do 
    begin 
    if (x[i]<=xx)and(xx<=x[i+1]) then  
      Spline_yy:=((a[i]*(xx-x[i])+b[i])*(xx-x[i])+c[i])*(xx-x[i])+d[i]; 
    end; 
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  end;  //End of Spline_yy function 
 
 
{******************************************************************** 
Use this function to find the two maximums of the spline curve. 
*********************************************************************} 
procedure FindSplineMax_xx; 
  var 
    i, j, sign, nb: integer; 
    SecondDerivative,  In_xx: extended; 
    Max_xx: array[0..n] of extended; 
  begin 
  nb:=0; 
  for i:=1 to n-1 do Max_xx[i]:=0; 
  for i:=0 to n-2 do 
    begin 
    sign:=1; 
    for j:=1 to 2 do 
      begin 
      //****** A maximum or minimum is found with the first derivative  
      if a[i]<>0 then 
        begin 
        if (b[i]*b[i]-3*a[i]*c[i]>0) then 
          In_xx:=((3*a[i]*x[i]-b[i]+sign*sqrt(b[i]*b[i]-3*a[i]*c[i]))/(3*a[i])) 
        else 
          In_xx:=0; 
        end 
      else 
        In_xx:=1E30; 
      //****** If the second derivative is negative, we have a maximum  
      SecondDerivative:=6*a[i]*(In_xx-x[i])+b[i]; 
      //****** We test if In_xx is in the range and if it is a maximum 
      if (x[i]<=In_xx)and(In_xx<=x[i+1])and(SecondDerivative<0) then 
        begin 
        nb:=nb+1; 
        Max_xx[nb]:=In_xx; 
        end; 
      sign:=-1; 
      end; 
    end; 
  TopSplineCurve1:=Max_xx[1]; 
  TopSplineCurve2:=Max_xx[2]; 
  end; //End of FindSplineMax_xx function 
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{******************************************************************** 
This function returns the summation of the squares of the difference 
between the Spline value and the number of interceptions of the G 
scales. 
*********************************************************************} 
function EvaluateLS: extended; 
  var 
    i: integer; 
    Error: extended; 
  begin 
  CreateSplineCurve; 
  Error:=0; 
  for i:=1 to 2*nbG do 
    Error:=Error+sqr(Spline_yy(G[i]+sgn[i]*T[i])-nbInt[i]); 
  EvaluateLS:=Error; 
  end;  //End of EvaluateLS 
 
 
{******************************************************************** 
This function seeks and returns the best estimate of G. 
*********************************************************************} 
function BestEstimateOfG:extended; 
  var 
    i, x1, x2, x3, y0, y1, y2, y3, y4: integer; 
    Max_xx: vector; //Vector containing the 2 maximum values 
    Modified: boolean; 
    NewG, InitialG, DLS, Valeur, Increment: extended; 
    Dx, ix, Dy, iy: array[0..n-1] of extended; 
  begin 
  Increment:=1; 
  FindSplineMax_xx; 
  NewG:=(TopSplineCurve1+TopSplineCurve2)/2; 
  LS:=EvaluateLS; 
  repeat 
    begin 
    Modified:=False; 
    FindSplineMax_xx; 
    InitialG:=(TopSplineCurve1+TopSplineCurve2)/2; 
    DLS:=LS; 
    for i:=0 to 4 do 
      begin 
      ix[i]:=x[i]; //Keeps initial value of x[i] 
      Dx[i]:=x[i]; 
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      iy[i]:=y[i];  //Keeps initial value of y[i] 
      Dy[i]:=y[i]; 
      end; 
    for x1:=-Range to Range do 
      begin 
      Valeur:=ix[1]+StartIncrement_x*Increment*x1; 
      if Valeur<=ix[0]+StartIncrement_x then 
        x[1]:=ix[0]+StartIncrement_x 
      else 
        if Valeur>=ix[4]-3*StartIncrement_x then 
          x[1]:=ix[4]-3*StartIncrement_x 
        else 
          x[1]:=Valeur; 
      for x2:=-Range to Range do 
        begin 
        Valeur:=ix[2]+StartIncrement_x*Increment*x2; 
        if Valeur<=ix[1]+StartIncrement_x then 
          x[2]:=ix[1]+StartIncrement_x 
        else 
          if Valeur>=ix[4]-2*StartIncrement_x then 
            x[2]:=ix[4]-2*StartIncrement_x 
          else 
            x[2]:=Valeur; 
        for x3:=-Range to Range do 
          begin 
          Valeur:=ix[3]+StartIncrement_x*Increment*x3; 
          if Valeur<=ix[2]+StartIncrement_x then 
            x[3]:=ix[2]+StartIncrement_x 
          else 
            if Valeur>=ix[4]-StartIncrement_x then 
              x[3]:=ix[4]-StartIncrement_x 
            else 
              x[3]:=Valeur; 
          for y0:=-Range to Range do 
            begin 
            y[0]:=iy[0]+StartIncrement_y*Increment*y0; 
            for y1:=-Range to Range do 
              begin 
              y[1]:=iy[1]+StartIncrement_y*Increment*y1; 
              for y2:=-Range to Range do 
                begin 
                y[2]:=iy[2]+StartIncrement_y*Increment*y2; 
                for y3:=-Range to Range do 
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                  begin 
                  y[3]:=iy[3]+StartIncrement_y*Increment*y3; 
                  for y4:=-Range to Range do 
                    begin 
                    y[4]:=iy[4]+StartIncrement_y*Increment*y4; 
                    LS:=EvaluateLS;  
                    //Keeps the best values of G[i] and nbInt[i] 
                    if LS<DLS then 
                      begin 
                      Modified:=true; 
                      DLS:=LS; 
                      for i:=1 to 3 do Dx[i]:=x[i]; 
                      for i:=0 to 4 do Dy[i]:=y[i]; 
                      end; 
                    end; 
                  end; 
                end; 
              end; 
            end; 
          end; 
        end; 
      end; 
    For i:=1 to 3 do 
      begin 
      x[i]:=Dx[i]; //Sets x[i] to the best value 
      y[i]:=Dy[i]; //Sets y[i] to the best value 
      end;  
    LS:=EvaluateLS;  
    FindSplineMax_xx; 
    NewG:=(TopSplineCurve1+TopSplineCurve2)/2; 
    if Not Modified then Increment:=Increment/Range; 
    end; 
    until ((NewG-InitialG)/NewG<StopPPM*1E-6);//Stop iterating condition 
  BestEstimateOfG:=NewG; 
  end; //End of BestEstimateOfG 
 
 
{******************************************************************** 
Main procedure 
*********************************************************************} 
procedure TForm1.FormCreate(Sender: TObject); 
  begin 
  //We need 5 starting coordinates for the nodes 
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  //Twicking these values may end up with different results 
  x[0]:=6.6700; y[0]:=3.2; //Do not iterate on x[0], but on y[0] value 
  x[1]:=6.6729; y[1]:=8.5; //Iterate on x[1] and y[1] values 
  x[2]:=6.6730; y[2]:=8.4; //Iterate on x[2] and y[2] values 
  x[3]:=6.6733; y[3]:=10.6; //Iterate on x[3] and y[3] values 
  x[4]:=6.6763; y[4]:=-3.1; //Do not iterate on x[4], but on y[4] value 
 
  //Iteration parameters. 
  //Twicking these values may end up with different results 
  Range:=8; 
  StartIncrement_x:=0.00001; 
  StartIncrement_y:=0.001; 
  StopPPM:=0.01; 
 
  //Builds a table of interceptions of the different ranges of G for 
  //each end of range values. 
  CreateTableOfIntGRanges;  
 
  //Shows calculation results in Form1 
  BestValueOfG.Caption:=FloatToStrF(BestEstimateOfG,ffFixed,15,15); 
  LeastSquareSum.Caption:=FloatToStrF(LS,ffFixed,15,15); 
  Ga.Caption:=FloatToStrF(TopSplineCurve1,ffFixed,15,15); 
  Gb.Caption:=FloatToStrF(TopSplineCurve2,ffFixed,15,15); 
  G0.Caption:=FloatToStrF(x[0],ffFixed,15,15); 
  nbInt0.Caption:=FloatToStrF(y[0],ffFixed,15,15); 
  G1.Caption:=FloatToStrF(x[1],ffFixed,15,15); 
  nbInt1.Caption:=FloatToStrF(y[1],ffFixed,15,15); 
  G2.Caption:=FloatToStrF(x[2],ffFixed,15,15); 
  nbInt2.Caption:=FloatToStrF(y[2],ffFixed,15,15); 
  G3.Caption:=FloatToStrF(x[3],ffFixed,15,15); 
  nbInt3.Caption:=FloatToStrF(y[3],ffFixed,15,15); 
  G4.Caption:=FloatToStrF(x[4],ffFixed,15,15); 
  nbInt4.Caption:=FloatToStrF(y[4],ffFixed,15,15); 
  end;  //End of TForm1.FormCreate 
 
end. 
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