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Abstract 
This paper has studied the output feedback regulation problem for 1-D an-
ti-stable wave equation with distributed disturbance and a given reference 
signal generated by a finite-dimensional exosystem. We first design an ob-
server for both exosystem and auxiliary PDE system to recover the state. 
Then we show the well-posedness of the regulator equations and propose an 
observer-based feedback control law to regulate the tracking error to zero 
exponentially and keep all the states bounded. 
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1. Introduction 

Output feedback regulation is a classical topic of control theory and engineering 
practice. A feedback regulator is designed for the controlled system, so that the 
signal to be regulated can track the target reference signal and the system keeps 
stable. Many practical problems such as aircraft landing, missile tracking and 
robot control all depend on output regulation. The wave equation with an-
ti-damping term can simulate many engineering problems like pipeline combus-
tion, acoustic instability or stick slip instability during drilling, which is of great 
significance to study the output regulation of anti-stable wave model. 

In the last few years, a quiet great progress has been made both in the output 
feedback stabilization [1]-[7] and the output feedback regulation [8]-[13]. [13] 
realizes the output tracking and disturbance rejection of a 1-D anti-stable wave 
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system with general boundary disturbance collocated with control by propor-
tional control, in which the external disturbance of the controlled system is at 
the same end as the control input. Output regulation of 1-D wave equation with 
both internal and external uncertainties is considered in [12] and finally achieves 
exponential tracking. In [9], the tracking problem of coupled wave equations 
with external disturbance is solved through the backstepping method. F.F. Jin 
and B.Z. Guo studies the output tracking problem of 1-D anti-stable wave equa-
tion with disturbance generated by external system in [11] via the reversible 
backstepping transformation. In [1] [2], a transport equation is introduced to 
deal with the anti-damping term on the boundary. Inspired by this, we further 
study the output feedback regulation problem of anti-stable wave equation by 
this method. 

In this paper, we focus on the output tracking for 1-D anti-stable wave system 
with in-domain disturbance generated by an exosystem described by 
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where ( )0,w t  is the output to be regulated, the displacement ( )0,w t  and its 
derivative ( ) [ ]0, , 0,1tw t τ τ− ∈  with time-delay are the measured output. 
( )U t  represents the input (control), ( )0 1q > ≠  an unknown constant para-

meter ( 1q ≠  is to avoid the real part of the plant eigenvalues tending to positive 
infinity). ( ) ( )( )0 1,w x w x  is initial condition, ( )r t  is a given reference signal, 
( ) [ ]0,1f x C∈  represents the unknown intensity of the distributed external 

disturbance ( )d t . ( ) ( ),d t r t  are generated by following exosystem 
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where S is a diagonalizable matrix with all eigenvalues on the imaginary axis. For 
design purpose, we suppose that the initial value 0v  is unknown and so do the 
state ( )v t . Rewrite S as ( )1 2,S S  and ( ) ( ),d t r t  can be written as  
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                 (1.3) 

Here ( )r t  is known but ( )d t  is unknown due to the uncertainty of 10v . 
We have 1 2n n n+ =  and ( )1 2v v v

ΤΤ Τ= , and assume that the eigenvalues of 
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matrix 1S  are distinct and ( )2 2,Q SΤ∑  is observable. The objective of this pa-
per is to design an observer-based output feedback regulator for system (1.1) to 
regulate the tracking error ( ) ( ) ( )0,e t w t r t= −  to zero and simultaneously 
keep all the states bounded. The advanced nature of our result lies in that the 
measured output is at the left end and may admit time-delay, which makes the 
regulation problem of (1.1) challenging. 

The rest of the paper is organized as follows. In Section 2, an auxiliary stable 
system is constructed by introducing a transport equation and a regulator equa-
tion, and its observer is derived. We propose the output feedback control law for 
the auxiliary system and obtain the closed-loop system in Section 3. The main 
results are presented in Section 4 and Section 5 concludes this paper. 

2. State Observer Design  

In order to deal with the anti-damping ( )0,tqw t−  in system (1.1), we introduce 
the following transport equation in [1] [2]  

( ) ( ) ( )
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                (2.1) 

where 0δ  is the initial value, 0 0c >  a tuning parameter. 
In the rest of this paper, we omit the obvious domain [ ]0,1x∈  and [ )0,t∈ +∞  

when there is no confusion. 
Let 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2, ,

, , , ,

v t v t v t v t

u x t w x t x tδ

= =


= +
                   (2.2) 

then ( ),u x t  is governed by 
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Notice that the parameter 0q− >  in system (1.1) becomes 0 0c >  in system 
(2.3). Moreover, we have 

( ) ( )
0

10, 0, .
1

qu t w t
c

−
=

+
 

To recover the state of (2.3), we now design an observer for (2.3) using the 
known signal ( )0,w t  and ( ) [ ]0, , 0,1tw t τ τ− ∈  as 

https://doi.org/10.4236/eng.2020.129046


Z. Y. Li 
 

 

DOI: 10.4236/eng.2020.129046 655 Engineering 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1
0

2 2 2 2 2 2

1
0

1 1 2
0

0 1 0 1
0

1ˆ ˆ ˆ 0, 0, , 0,
1

ˆ ˆ ˆ , 0,

1ˆ ˆ ˆ( , ) , 0, 0,
1

1ˆ ˆ 0, 0, ,
1

1ˆ ˆ ˆ0, 0, 0, 0,
1

tt xx

t t

x t

qv t S v t K u t w t t
c

v t S v t K Q v t r t t

qu x t u x t r x u t w t
c

qf x Q v t r x u t w t
c

qu t c u t c c PK u t w t
c

 −
= + − > + 

= + − >  

 −
= + − + 

 −
+ + − + 

−
= + + −

+





( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

1 2

0

0

1 10 2 20

0 1

,

ˆ 1, 0, 1 ,
1

ˆ ˆ ˆ ˆ0 , 0 ,

ˆ ˆ ˆ ˆ,0 , ,0 ,

x t

n n

t

q c
u t U t w t

c

v v C v v C

u x u x u x u x















 
 
 

 + = + −
+


= ∈ = ∈


= =

     (2.4) 

where 1 0c >  is a constant, and ( ) ( ) [ ]1 2, 0,1r x r x C∈ , 1 2,K K  are row vectors 
where 2K  is designed to make the matrix 2 2 2S K Q+  Hurwitz and 1,P K  to 
be determined later. 

Let 1 1 1 2 2 2ˆ ˆ ˆ, ,u u u v v v v v v= − = − = −   , then we have 
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Construct the following transformation  
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then the observer error system is found to be 
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where ( )g x  satisfies the boundary value problem (regulator equation) as 
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We make ( ) ( ) ( ) ( ) ( )1 1 1 2 10 , ,P g r x g x S K r x g x K= = − = − . 
Lemma 2.1: Assume that 1S  is a diagonalizable matrix. Then the regulator 

equation (2.8) admits a unique solution. 
Considering our previous assumptions that the matrix 2 2 2S K Q+  is Hurwitz 

and 1 0c > , the PDE-part of system (2.7) is exponentially stable. (2.7) will be 
exponentially stable if we can show that ( )1 1 0S K g−  is also Hurwitz. 

Lemma 2.2: Define a function ( ) ( )( ) ( )1
1 0

cosh 1 dN s s y f y yΤ = − −∫  and iξ  
be the eigenvector of matrix 1S  corresponding to the eigenvalue iλ  of 1S . 
Then ( )( )10 ,g S  is observable if and only if ( ) ( )1 1 10, 1, 2, ,i iN Q i nλ ξΤ ≠ =  . 

Lemma 2.1 and 2.2 are similar to Lemma 3.1 and 3.2 in [11] respectively, and 
we omit the details of proof here. Suppose that ( )1, 1, 2, ,i i nµ =   satisfies the 
conditions of lemma 2.2, then ( )( )10 ,g S  is observable and consequently 1K  
can be identified to make the matrix ( )1 1 0S K g−  Hurwitz. 

Theorem 2.1: Define a function ( ) ( )( ) ( )1
1 0

cosh 1 dN s s y f y yΤ = − −∫  satisfies 
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are constants, ( )g x  is the unique solution to (2.8). We make ( )0P g=  and 
( ) ( ) ( ) ( )1 1 1 2 11,r x g x S K r x g x K= − = − , matrix ( )1 1 0S K g−  is Hurwitz. Then 

system (2.7) is well-posed and exponentially stable. 
Proof: 
We divide system (2.7) into PDE-part and ODE-part, and consider the stabil-

ity of the solution respectively. 
The PDE-part of (2.7) is 
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which implies that 
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There are some positive constants ( ), 0, 1, 2,3j jM w j> =  such that the solu-
tion ( ) ( )1 2,v t v t   of (2.11) has the estimation as 
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Then there exists 0M >  which is independent of initial value such that  
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3. Output Regulator Design 
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where ( )h x  satisfies the BVP as follows 
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according to the second boundary condition in (3.3). 
Lemma 3.1: Assume that S is a diagonalizable matrix, then the regulator equ-

ation (3.3) admits a unique solution. 
Proof: 
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Here ( ) ( ) 1 1 2 2, ,i i i ih x h x P P P Pξ ξ ξ∗ ∗ ∗= = = . 
Case 1: When 0iλ = , the BVP (3.5) becomes 

( ) ( )

( )

( )

2

12

0

0
2

d
,

d
d

0,
d

1
0 .

1

i

i

x

i

h x
f x P

x
h x

x

c
h P

q

∗
∗

∗

=

∗ ∗


=


 =

 + =
 −

                       (3.6) 

A formal simple computation shows that the solution of (3.6) is 

( ) ( ) ( ) ( ) ( )

( ) ( )

10
0

2 10
0

d
0 d ,

d

1 d .
1

xi
i i

x

x

h x
h x h x x y f y yP

x

q P x y f y yP
c

∗
∗ ∗ ∗

=

∗ ∗

= + + −

−
= + −

+

∫

∫
 

Case 2: When 0iλ ≠ , the BVP (3.5) has a general solution as 

( ) ( ) ( ) ( )( ) ( )1 2 10

1sinh cosh sinh d .
x

i i i i i i
i

h x m x m x x y f y yPλ λ λ
λ

∗ ∗= + + −∫  (3.7) 
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The last two boundary equations in (3.5) conclude that 

( )1 0 0 2

0
2 2

0 ,
1

.
1

i i i i i i

i

m c h c m
c

m P
q

λ λ λ∗

∗

 = =

+

= −

                 (3.8) 

Then 1 2,i im m  are determined by solving (3.8) as  

( )

2 2
0

0
1 0 2 2

0

1 ,
1

1
.

1

i

i i

qm P
c

c q
m c m P

c

∗

∗

− = +
 − = = +

 

Thus the unique solution to the regulator Equation (3.3) is obtained and 

( ) ( ) ( ) ( )1 2, , , .nh x h x h x h x
Τ

=                     

Now we design the output feedback controller for (3.2) as  

( ) ( ) ( )

( ) ( ) ( ) ( )( )

0
2

0

2 1 2
1

ˆ0, 1 1,
1

d
ˆ ˆ1 ,

d

t

x

q c
U t w t c u t

c

h x
c h v t v t

x
ΤΤ Τ

=

+
= − − −

+

 
− + 
  

         (3.9) 

where 2 0c >  is a constant. Under (3.9), the closed-loop becomes 

 

( ) ( )( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ) ( )

1 2

1 1 1 1 1

2 2 2 2 2

0

2 2 2 1 2
1

1 10 2 20

0 1

0 0, , 0,

, 0,

, , ,

0, 0, ,

d
1, 1, 1, 1 ,

d

0 , 0 ,

,0 , ,0 .

tt xx

x t

x
x

n n

t

v t S K g v t K e t t

v t S K Q v t t

z x t z x t

z t c z t

h x
z t c z t c u t c h v t v t

x

v v C v v C

z x z x z x z x

ΤΤ Τ

=

 = − + >


= + >


=
 =


 
= − + + + 

  
 = ∈ = ∈
 = =



 



 

  

   

 (3.10) 

Theorem 3.1: For any initial data ( )0 1 0,z z H∈ , ,µ α  are positive constants, 
there exists a unique (weak) solution to the PDE-part of (3.10) such that 

( ) ( )( ) ( )0, , , 0, ;tz t z t C H⋅ ⋅ ∈ ∞ . Besides, this solution is exponentially stable in the 
sense that 

( ) ( )( ) ( ) ( )( )
0 0

0 1, , , e , , 0.t
t

H H
z t z t z z tαµ

Τ Τ−⋅ ⋅ ≤ ⋅ ⋅ >       (3.11) 

and 

( ) ( )2
1

lim 0, 0, lim 0, d 0.
t

ttt t
z t z s s

−→∞ →∞
= =∫                (3.12) 

Proof: 
Define an operator ( )1 1 0: D HΑ Α →  for the PDE-part of system (3.10) by 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

1 1

1 0 1 0 0 2

, , , , ,

, | , , 0 0 , 1 1 .

f g g f f g D

D f g H f g H f c g f c f

Τ Τ Τ

Τ Τ

 ′′Α = ∀ ∈ Α


′ ′Α = ∈ Α ∈ = = −
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Then the PDE-part of (3.10) can be written as an abstract evolutionary equation 
in 0H  as follows 

( ) ( )( ) ( ) ( )( ) ( )1
d , , , , , , ,
d t tz t z t z t z t t
t

φ
Τ Τ

⋅ ⋅ = Α ⋅ ⋅ + Β         (3.13) 

where 

( )( )

( ) ( ) ( ) ( ) ( ) ( )( )2 2 1 2
1

0, 1

d
1, 1

d
x

x

h x
t c u t c h v t v t

x

δ

φ

Τ

ΤΤ Τ

=

Β = −


 
= + + 

   
  

      (3.14) 

( )tφ  decays to zero exponentially from Theorem 2.1 and the transformation 
(2.6). It’s well known that 1Α  can generate an exponentially stable 0C -semigroup 
by [14]. In other words, there exist two constants 1 1, 0µ α > , such that  

1 1
1e et tαµΑ −≤ . It is a routine exercise that the operator B is admissible for 1e tΑ

 
by [15].  

It concludes that for any initial value ( )0 1 0,z z H∈ , there exists a unique solu-
tion ( ) ( )0, 0, ;tz z C H∈ ∞  to the PDE-part of system (3.10), which has the form 
of 

( ) ( )( ) ( ) ( )( ) ( ) ( )11
0 1 0

, , , e , e d .
t t st

tz t z t z z s sφ
Τ Τ Α −Α⋅ ⋅ = ⋅ ⋅ + Β∫       (3.15) 

The first term on the right side of (3.15) can be estimated as 

( ) ( )( ) ( ) ( )( )

( ) ( )( )

1 1

0 0

1

0
1 0 1

e ,0 , ,0 e ,0 , ,0

e , 0, .

t t
t t

H H

t

H

z z z z

z z tαµ

Τ ΤΑ Α

Τ−

⋅ ⋅ ≤ ⋅ ⋅ ⋅

≤ ⋅ ⋅ → →∞
   (3.16) 

The second term on the right side of (3.15) tends to zero exponentially because 
of the admissibility of B to 1e tΑ  and the exponential stability of ( )tφ . From 
Poincare’s inequality we have 

( ) ( ) ( )12 2 2

0
0, 2 1, 2 , d ,xz t z t z x t x≤ + ∫  

Hence ( )lim 0, 0
t

z t
→∞

=  holds. Next we show that ( )2
1

lim 0, d 0
t

ttt
z s s

−→∞
=∫ . 

First define the Lyapunov function as 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 2 2 22
0

1

0

1 , , d 1, ,
2 2

1 , , d .

z t x

z t x

cE t z x t z x t x z t

t x z x t z x t xρ

= + +

= −

∫

∫
 

Notice the fact that ( ) ( ) ( )( )
0

2
2 , , ,z t H

E t z t z t= ⋅ ⋅  decays exponentially and  

( ) ( )z zt E tρ ≤ .  

Then differentiate ( )z tρ  along the solution to system (3.2) to give 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1
12 2 2 2
0

0

12 2 2 2
0

1 1( ) , , , , d
2 2

1 10, 0, , , d .
2 2

z t x t x

t x t x

xt z x t z x t z x t z x t x

z t z t z x t z x t x

ρ −
= + − +

= + − +

∫

∫



  (3.17) 
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Finally integrating (3.17) from 1t −  to t with respect to t and obtain 

( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

2 2
1

1 2 2
1 0

1

1 0, 0, d
2

11 , , d d
2

1 d ,

t
t xt

t
z z t xt

t
z z zt

z s z s s

t t z x s z x s x s

E t E t E s s

ρ ρ

−

−

−

+

= − − + +

≤ + − +

∫

∫ ∫

∫

      (3.18) 

which decays exponentially from the exponential stability of ( )zE t .  

Hence ( )2
1

lim 0, d 0
t

ttt
z s s

−→∞
=∫  holds.                    

The closed-loop of system (1.1) corresponding to (1.3), (2.1), (2.4) and (3.9) in 
the state space ( )1 0,1H H HΧ = × ×  yields to 

( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 1

2 2 2

1 1

0

0

0

0

1 1 1 1
0

2 2 2 2 2 2

, 0,

, 0,

, , , 0,1 , 0,

0, 0, ,

ˆ1, 1, 0, 1 ,
1

, , ,

0, 0, ,
1

1ˆ ˆ ˆ 0, 0, , 0,
1

ˆ ˆ ˆ

tt xx

x t

x x t

t x

v t S v t t

v t S v t t

w x t w x t f x Q v t x t

w t qw t

q c
w t u t w t

c

x t x t

q c
t w t

c

qv t S v t K u t w t t
c

v t S v t K Q v

δ δ

δ

= >

= >

= + ∈ >

= −

+
= − −

+

= −

+
= −

+

 −
= + − > + 

= +







 ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 1
0

1 1 1
0

0 1 0 1
0

2 2 1 2
1

10

, 0,

1ˆ ˆ ˆ, , 0, 0,
1

1ˆ ˆ 0, 0, ,
1

1ˆ ˆ ˆ0, 0, 0 0, 0, ,
1

d
ˆ ˆ ˆ ˆ1, 1, 1 ,

d

ˆ,

tt xx

t t

x t

x
x

t r t t

qu x t u x t g x S K u t w t
c

qf x Q v t g x K u t w t
c

qu t c u t c c g K u t w t
c

h x
u t c u t c h v t v t

x

v v

ΤΤ Τ

=

− >  

 −
= − − + 

 −
+ − − + 

 −
= + + − + 

 
= − − + 

 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
10 20 20 0

0 1

0 1

ˆ, , , ,0 ,

,0 , ,0 ,

ˆ ˆ ˆ ˆ,0 , ,0 .

n n

t

t

C v v C x x

w x w x w x w x

u x u x u x u x

δ δ






































 ∈ ∈ =
 = =
 = =

  (3.19) 

4. Main Results 

Considering the closed-loop (3.19) in the state space X and define an operator 

2Α  for (3.19) which satisfies 
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( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

2 1 2 1 1 1 1 2 2 2 1 1 2 2 1 1 1 1

1 1 1 1 2 1 2 2 2 2 2 2 2
0

2 1 2 1 2 2 1 1 1
0 0

1 2 1 1 1 1 2 2 2

, , , , , , , , , , , ,

1, 0 0 , , ,
1

1 10 0 0 0 ,
1

, , , , , , , ,

f g h f g S S g f fQ

qh S K f f S K Q g
c

q qf r f f r g h fQ
c q c

f g h f g

ϕ ϕ ψ ψ ϕ ϕ ϕ

ψ ψ ψ ϕ

ψ

ϕ ϕ ψ ψ

Τ

ΤΤ

Τ

 ′′Α = +


 −′− + − + − + 

   − − ′′ ′+ − + − +    + +    

∀ ( )

( ) ( ) (

) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 1 2 1 1 1 1 2 2 2 2 1 2 1 1

1 1 2 2 2 1 1

0
1 2 1 1 1

0

2 0 2 1 0 1 2 1
0

2 2 2 2 1 2
1

,

, , , , , , , , | , , , ,

, , , , , 0 0 ,

1 1 1 , 0 0 ,
1

10 0 0 0 0 ,
1

d
1 1 1

d
x

D

D f g h f g f g

h f g f qg

q c
f f h h f

c

qf c g c c g K f f
c

h x
f c f c h

x

ϕ ϕ ψ ψ ϕ ϕ

ψ ψ

ψ ψ

Τ

Τ

ΤΤ Τ

=

∈ Α


Α = ∈Χ Α



′∈Χ = −

+′ ′ ′= − = −
+

 −′ = + + − + 

 
′ = − − +  

  
.





























 

 

Then (3.19) can be written as an abstract evolutionary equation in X as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 2 1 2

2 1 2 1 2

d ˆ ˆ ˆ ˆ, , , , , , , , , , , , ,
d

ˆ ˆ ˆ ˆ, , , , , , , , , , , , , ,

t t

t t

v t v t w t w t t v t v t u t u t
t

v t v t w t w t t v t v t u t u t

δ

δ

Τ

Τ

⋅ ⋅ ⋅ ⋅ ⋅

= Α ⋅ ⋅ ⋅ ⋅ ⋅
  (4.1) 

Now we discuss the closed-loop system (4.1) in X. 
Theorem 4.1: Define a function ( ) ( )( ) ( )1

1 0
cosh 1 dN s s y f y yΤ = − −∫  satisfies 

( ) ( )1 1 10, 1, 2, ,i iN Q i nλ ξΤ ≠ =   for all eigen-pairs ( ),i iλ ξ  of 1S . 0 1, 0c c >  are 
constants, ( )g x  is the unique solution to BVP (2.8). We make ( )0P g=  and 
( ) ( ) ( ) ( )1 1 1 2 11,r x g x S K r x g x K= − = − , matrix ( )1 1 0S K g−  is Hurwitz. Then 

for any ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2 0 1 0 1 2 0 1ˆ ˆ ˆ ˆ0 , 0 , , , , 0 , 0 , ,v v w w v v u uδ⋅ ⋅ ⋅ ⋅ ⋅ ∈Χ , system 
(4.1) admits a unique bounded solution ( ) ( )1 2 1 2ˆ ˆ ˆ ˆ, , , , , , , , 0, ;t tv v w w v v u u Cδ ∈ ∞ Χ . 
Moreover, the tracking error ( ) 0e t →  exponentially when t tends to infinity. 

Proof: 
Define an invertible bounded operator 3 :Α Χ→ Χ  by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ))
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

3 1 2 1 2

1 2

1 1 2 2

1 2 1 2

ˆ ˆ ˆ ˆ, , , , , , , , , , , , ,

, , , , , , ,

ˆ ˆ, , , , ,

ˆ ˆ, , , , ,

, , , , , , , , , , , , ,

t t

t t

t t

t t

v t v t w t w t t v t v t u t u t

v t v t w t t h x v t w t t

h x v t t v t v t v t v t

u t u t u t u t

v t v t z t z t t v t v t u t u t

δ

δ δ

δ

δ

Τ

Τ

Τ

Α ⋅ ⋅ ⋅ ⋅ ⋅

= ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ − −

⋅ − ⋅ ⋅ − ⋅

= ⋅ ⋅ ⋅ ⋅ ⋅



   

  (4.2)  

An equivalent system of (3.19) is found to be 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

( ) ( ) ( )
( )

1 1 1

2 2 2

1 1

2 2

0

2 2 2 1 2
1

0

0

1 1 1 1

2 2 2

, 0,

, 0,

,

,

, , ,

0, 0, ,

d
1, 1, 1, 1 ,

d

, , ,

0, 0, ,
1

0, , 0,

tt xx

x t

x
x

t x

v t S v t t

v t S v t t

d t Q v t

r t Q v t

z x t z x t

z t c z t

h x
z t c z t c w t c h v t v t

x

x t x t
q c

t w t
c

v t S v t K u t t

v t S K Q

δ δ

δ

ΤΤ Τ

=

= >

= >

=

=

=

=

 
= − + + + 

  
= −

+
= −

+

= + >

= +





  



  



 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2

2 2

1 1 1 1 1

0 1 0 1

10 10 20 20 0

0 1

0 1

, 0,

, , 0, 0, ,

0, 0, 0 0, ,

1, 0,

ˆ, , , , ,0 ,

,0 , ,0 ,

,0 , ,0 .

tt xx t

x t

x

n n

t

t

v t t

u x t u x t f x Q v t g x S K u t g x K u t

u t c u t c c g K u t

u t

v v C v v C x x

z x z x z x z x

u x u x u x u x

δ δ






















 >


= + − −

= + +

=

∈ ∈ =

= =

= =



    

  





   












  (4.3) 

We can obtain the solution to the transport system (2.1) explicitly as 

( )
( )

( ) ( ) ( )

0

0 0

,
,

0, 0 .
1 1

x t x t
x t q c q c

z t x h v t x t
q q

δ
δ

− ≥
= + +

− − < − −

        (4.4) 

Let ( ) ( )0
0

0
sup 0

1t

q c
h v t R

q
ε

>

+
= ∈

−
 being a designed parameter, then we have 

the estimation as 

( ) ( ) ( ) ( )( )
0

0 0
0 00, 0, , , , ,

1 1 t H

q c q c
t z t z t z t

q q
δ ε ε

+ +
≤ + ≤ ⋅ ⋅ +

− −
 

and 

( ) ( )( )

( ) ( )

( ) ( )

1 2 2
0

2
1 12 20 0

0 00 0

2
2 20 0

0 01 1

, , d

2 0, d 4 0, d 2
1 1

2 0, d 4 0, d 2 .
1 1

t x

t t

t t
t tt t

x t x t x

q c q c
z t x x z t x x

q q

q c q c
z s s z s s

q q

δ δ

ε ε

ε ε
− −

+

+ + 
≤ − + − + − − 

+ + 
= + + − − 

∫

∫ ∫

∫ ∫

 

Conclusion (3.12) together with ( ) ( )( )
0

, , ,t H
z t z t⋅ ⋅  exponentially, imply that 

the solution to (2.1) is bounded as t →∞ . 
According to Theorem 2.1 and the well-posedness and exponential stability of 

system (3.10), (4.3) admits a unique bounded solution in X and so does the 
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closed-loop (3.19) by the invertible transformation (4.2). As a result, the tracking 
error 

( ) ( ) ( ) ( )01
0, 0, 0

1
c

e t w t r t z t
q

+
= − = →

−
 

exponentially in the light of (3.12).                                     

5. Concluding Remarks 

In this paper, the output regulation problem for 1-D anti-stable wave equation is 
solved. The original system has the anti-damping at the position 0x =  which is 
anti-collocated with the control, and also subjects to the distributed disturbance 
with unknown intensity generated by an external system. By proposing an ob-
server-based feedback controller for (1.1), the following objectives are achieved: 
1) keep all the states of internal-loop bounded; 2) recover the system state from 
input and output; 3) regulate the output tracks the given reference signal expo-
nentially. 
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