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Abstract 
In this manuscript, we first perform a complete Lie symmetry classification 
for a higher-dimensional shallow water wave equation and then construct the 
corresponding reduced equations with the obtained Lie symmetries. Moreo-
ver, with the extended F-expansion method, we obtain several new nonlinear 
wave solutions involving differentiable arbitrary functions, expressed by Ja-
cobi elliptic function, Weierstrass elliptic function, hyperbolic function and 
trigonometric function. 
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1. Introduction 

It is well-known that a lot of phenomena in many fields of science can be de-
scribed by nonlinear evolution equations (NLEEs). Therefore, the investigation 
of the exact solutions to NLEEs becomes more and more important in mathe-
matical physics. In order to better understand the working to the physical prob-
lem, many powerful and direct methods for finding travelling wave solutions of 
NLEEs have been proposed. However, the study on nonlinear wave solution is few 
and there is no unified approach. We know that Lie symmetry group [1] [2] is effi-
cient to study NLEEs. In decades, Lie symmetry group method has been applied in 
different fields and several physical models were studied. In this manuscript, a 
nonlinear wave solution of a higher-dimensional shallow water wave equation is 
discussed by Lie symmetry analysis combined with extending F-expansion method 
[3] [4]. 
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The following higher-dimensional shallow water wave equation is introduced 
by Wazwaz [5] 

( ) ( )2 4 0.xzt xxxyz xx yz y xxz x xyz xy xzu u u u u u u u u u+ − + − + =          (1) 

We find that Equation (1) can be reduced to the potential KdV equation when 
z y x= = . The generalized shallow water wave equations studied by Ablowitz 
[6] arise as reduction of this equation. 

In [5], Wazwaz investigated multiple soliton solutions and multiple singular 
soliton solutions of Equation (1) and pointed out that this equation is a com-
pletely integrable equation. In [7], Yiren Chen and Rui Liu obtained general 
multiple soliton solutions and some nonlinear wave solutions of Equation (1) by 
simplified Hirotas method [8] [9] and Dynamical system approach [10]. How-
ever, study on nonlinear wave solution is few and Lie symmetry analysis on this 
equation is not given in related literatures. 

Three goals are set for this work. Firstly, we aim to obtain geometric vector 
fields of Equation (1). Secondly, we tend to present the symmetry reductions. 
Finally, we want to get new nonlinear wave solutions of Equation (1) by investi-
gate the reduced equations using extended F-expansion method. 

2. Lie Symmetries for Equation (1) 

First of all, let us consider a one-parameter Lie group of infinitesimal transfor-
mation: 

( )
( )
( )
( )
( )

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , ,

x x x y z t u

y y x y z t u

z z x y z t u

t t x y z t u

u u x y z t u

ξ

η

τ

ξ

ξ

→ +

→ +

→ +

→ +

→ +











                     (2) 

with a small parameter 1 . The vector field associated with the above group 
of transformations can be written as 

( ) ( ) ( )

( ) ( )

, , , , , , , , , , , ,

, , , , , , , , .

V x y z t u x y z t u x y z t u
x y z

x y z t u x y z t u
t u

ξ η µ

τ φ

∂ ∂ ∂
= + +

∂ ∂ ∂
∂ ∂

+ +
∂ ∂

       (3) 

The symmetry group of Equation (1) will be generated by the vector field of 
the form (3). Applying the fourth prolongation ( )5pr V  to Equation (1), we find 
that the coefficient functions , , ,ξ η µ τ  and φ  must satisfy the symmetry con-
dition 

( )
( )

2

4 0

xzt xxxyz xx yz y xxz
yz xx xxz y

x xyz xy xz
xyz x xz xy

u u u u

u u u u

φ φ φ φ φ φ

φ φ φ φ

+ + + + +

+ + + + =
           (4) 

where , , , , , , , , ,x y xx xy xz yz xyz xxz xzt xxxyzφ φ φ φ φ φ φ φ φ φ  are the coefficients of ( )5pr V . 
Furthermore, we have 
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( )
( )

( )
( )

,

,

,

,

x
x x y z t xx xy xz xt

y
y x y z t xy yy yz yt

xx
x x x y z t xxx xxy xxz xxt

xy
y x x y z t xxy xyy xyz xyt

xz
z x x

D u u u u u u u u

D u u u u u u u u

D D u u u u u u u u

D D u u u u u u u u

D D u

φ φ ξ η µ τ ξ η µ τ

φ φ ξ η µ τ ξ η µ τ

φ φ ξ η µ τ ξ η µ τ

φ φ ξ η µ τ ξ η µ τ

φ φ ξ

= − − − − + + + +

= − − − − + + + +

= − − − − + + + +

= − − − − + + + +

= − −( ) ,y z t xxz xyz xzz xztu u u u u u uη µ τ ξ η µ τ− − + + + +
 

( )
( )
( )
( )

2

,

,

,

yz
z y x y z t xyz yyz yzz yzt

xyz
z y x x y z t xxyz xyyz xyzz xyzt

xxz
z x x y z t xxxz xxyz xxzz xxzt

xzt
t z x x y z t xxzt

D D u u u u u u u u

D D D u u u u u u u u

D DD u u u u u u u u

D D D u u u u u

φ φ ξ η µ τ ξ η µ τ

φ φ ξ η µ τ ξ η µ τ

φ φ ξ η µ τ ξ η µ τ

φ φ ξ η µ τ ξ

= − − − − + + + +

= − − − − + + + +

= − − − − + + + +

= − − − − + +

( )3

,

,

xyzt xzzt xztt

xxxyz
z y x x y z t xxxxyz xxxyyz xxxyzz

xxxyzt

u u u

D D D u u u u u u u

u

η µ τ

φ φ ξ η µ τ ξ η µ

τ

+ +

= − − − − + + +

+

 (5) 

where 3 2,x x x x x x xD D D D D D D= = , , ,x y zD D D  and tD  are the total derivatives 
with respect to , ,x y z  and t respectively. 

Substituting (5) into (4), combined with Equation (1), we can find the deter-
mining equations for the symmetry group of Equation (1), then standard sym-
metry group calculations lead to the following forms of the coefficient functions: 

( )( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( ) ( )

1 1 5 1 1 3

4 1

1
1 1 3 5 2

1 12 , ,
4 2

, ,

1 1 2 , .
4 2 8 2

F t c x F t F t c y F t

F z F t

c yF t u F t y F t x F t F z t

ξ η

µ τ

φ

 ′ ′= − + = + + 
 

= =

 ′ ′′ ′ ′= − + − + − + 
 

     (6) 

where ( ) ( ) ( ) ( )1 2 3 4, , , ,F t F t F z t F z  and ( )5F t  are arbitrary functions on their 
variables, 1c  is an arbitrary constants. 

Thus, according to the Lie symmetry analysis method, the geometric vector 
fields of Equation (1) can be obtained as follows 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1 1

2 2 2 3 3 3 3 4 4 4

5 5 5 5 6

,
4 2 4 8

, , , ,
4

, ,
2 2

x y u xyV F F t F t F t F t F t
x y t u

xV F F z t V F F t F t V F F z
u y u z

y xV F F t F t V y u
x u x y u

∂ ∂ ∂ ∂ ′ ′ ′ ′′= + + − + ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂′= = − =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂′= − = − + +
∂ ∂ ∂ ∂ ∂

  (7) 

the symmetry of Equation (3) can be written as 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4 5 5 6 .V V F V F V F V F V F V= + + + + +          (8) 

3. Symmetry Reductions 

In terms of the infinitesimals (5), the similarity variables can be obtained by 
solving the corresponding characteristic equations 
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d d d d d ,x y z t u
ξ η µ τ φ

= = = =                      (9) 

or the invariant surface conditions 

( ) ( ) ( )

( )

, , , , , , , , ,

, , , .

u x y z t u x y z t u x y z t
x y z

u x y z t
t

ξ η µ

τ φ

∂ ∂ ∂
Φ = + +

∂ ∂ ∂
∂

+ −
∂

       (10) 

While solving the above invariant surface conditions, one has to distinguish 
between cases in which some of the functions ( ) ( ) ( ) ( ) ( )1 2 3 4 5, , , , ,F t F z t F t F z F t  
and 1c  are identical to zero and cases where they are not. This leads to different 
relations between the similarity variables ( ), , ,X Y Z U  and the original va-
riables ( ), , , ,x y z t u . As a result, we obtain the following cases: 

Case 1. Let ( ) ( ) ( ) ( ) ( )1 1 2 3 4 51, , 0c F t F z t F t F z F t= = = = = = , then 

.
2 2x y
x uu yuΦ = − + −                      (11) 

Solving the differential equation 0Φ =  one can get 

( ) 2, ,
, .

U Y z t
u Y x y

x
= =                     (12) 

Substituting (12) into Equation (1), we can reduce it to 

( )
( ) 2 3

8 8 9 2

24 24 24 8 0.
tz YYz Y Yz YY z YYz

YYz Y YY Yz YYYz YYYz

U UU U U U U U Y

U U U U U Y U Y

+ − + +

+ − − + + =
        (13) 

Case 2. Let ( ) ( ) ( )1 1 4 51, 0c F t F z F t= = = = , then 

( ) ( ) ( )2 3 3, .
4t y
xu F z t F t u F t′Φ = − + +                (14) 

Solving the differential equation 0Φ =  one can get 

( ) ( ) ( ) ( )2 3 3, , , d , d .
4
xu U x Y z F z t t F t Y y F t t= + − = −∫ ∫        (15) 

Substituting (15) into Equation (1), we can reduce it to 

( ) ( )2 4 0.xxxYz xx Yz Y xxz Yx xz x xYzU U U U U U U U U− + − + =         (16) 

Case 3. Let ( ) ( ) ( ) ( )1 1 2 3 50, , 1, 0c F t F z t F t F t= = = = = , then 

( )4 1.t y zu u F z uΦ = + + −                    (17) 

Solving the differential equation 0Φ =  one can get 

( ) ( ) ( ) ( )4 4 4

1 1 1, , d , d , d .u U x Y Z z Y y z Z t z
F z F z F z

= + = − = −∫ ∫ ∫     (18) 

Substituting (18) into Equation (1), we can reduce it to 

( ) ( )
( ) ( )

2 2

4 4 0.
xYZ xxxZZ xxxYZ xx ZZ YZ xxZ z y

x xZZ xYZ xz xZ xY

U U U U U U U U U

U U U U U U

− − + + + +

+ + + + =
      (19) 

Case 4. Let ( ) ( ) ( ) ( )1 1 2 4 5, , 0, 1c F t F z t F z t F t= = = = = , then 
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( ) ( )3 3 .
4x y
xu F t u F t′Φ = + +                   (20) 

Solving the differential equation 0Φ =  one can get 

( ) ( ) ( )
2

3 3, , , .
8
xu U z t Y F t Y y xF t′= − = −              (21) 

Substituting (21) into Equation (1), we can reduce it to 

( ) ( ) ( ) ( ) ( )3 2
3 3 3 3

16 0.
2YYYYz Y YYz YZ YY tYz YzF t U F t U U U U F t U F t U′− − + − − =   (22) 

Case 5. Let ( ) ( ) ( )1 1 3 50, 1c F t F t F t= = = = , then 

( ) ( )4 2 , .zF z u F z tΦ = −                     (23) 

Solving the differential equation 0Φ =  one can get 

( ) ( )
( )

2

4

,
, , d .

F z t
u U x y t z

F z
= + ∫                   (24) 

Substituting (24) into Equation (1), we find that ( ), ,U x y t  is an arbitrary 
function. That is, the solution of Equation (1) can be expressed as (24). 

Case 6. Let ( ) ( ) ( ) ( ) ( )1 1 2 3 4 50, , 1, 0c F t F z t F t F z F t= = = = = = , then 

1.yuΦ = −                          (25) 

Solving the differential equation 0Φ =  one can get 

( ), , .u U x z t y= +                        (26) 

Substituting (26) into Equation (1), we can reduce it to 

2 0,xtz xxzU U− =                        (27) 

whose solution is 

( ) ( ) ( ) ( )1 3 4, , , , , 2 ,U x z t r t z r t x r z t x= + + +              (28) 

where ( ) ( )1 3, , ,r t z r t x  and ( )4 , 2r z t x+  are arbitrary functions. So, Equation 
(1) owns the following solution 

( ) ( ) ( ) ( )1 3 4, , , , , , 2 ,u x y z t y r t z r t x r z t x= + + + +           (29) 

4. The New Nonlinear Wave Solutions 

Obviously, it is easier for us to seek the explicit solutions to the reduction equa-
tions than to solve Equation (1). For example, we will consider the exact solu-
tions of Equation (16) and Equation (19) by using the extended F-expansion 
method in this section. 

4.1. Solutions of Equation (16) 

Using a traveling wave variable of Equation (16) as 

( ) ( ), , , .U x Y t f kx bY czξ ξ= = + +                (30) 

where ( )3 dY y F t t= − ∫ , ,k b  and c are constants, Equation (16) can be re-
duced to the following ODE 
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( ) ( )25 6 6 0,kf f f f′′ ′ ′′′− − =                    (31) 

where 
2

2

d d, ,
d d

f ff f
ξ ξ

′ ′′= =  . If let ( ) ( )f ξ φ ξ′ = , then (31) becomes 

( ) ( )24 6 6 0,kφ φ φφ′ ′′− − =                    (32) 

Balancing ( )4φ  and 2φ′  in (32), we obtain ( )4 2 1n n+ = +  which gives 
2n = . Suppose that Equation (32) owns the solutions in the form 

( ) ( ) ( ) ( ) ( )
2 1 2

0 1 2 2 ,
B BA A F A F

F F
φ ξ ξ ξ

ξ ξ
= + + + +           (33) 

where ( )F ξ  satisfies the following equation 

( )( ) ( ) ( )2 2 4
0 2 4 ,F h h F h Fξ ξ ξ′ = + +                (34) 

where 0 2,h h  and 4h  are constant. 
Substituting (33) and (34) into Equation (32) and then setting all the coeffi-

cients of ( )6, ,6kF k = −   of the resulting system to zero, we can obtain the 
following results. 

0 2 1 2 1 2 0
2 , 0, 0, 0, 2 ,
3

A kh A A B B kh= = = = =             (35) 

0 2 1 2 4 1 2
2 , 0, 2 , 0, 0,
3

A kh A A kh B B= = = = =             (36) 

0 2 1 2 4 1 2 0
2 , 0, 2 , 0, 2 ,
3

A kh A A kh B B kh= = = = =            (37) 

where 0 2,h h  and 4h  are arbitrary constants, k is a nonzero constant. 
Substituting (35)-(37) into (33), we obtain respectively the following solutions 

of Equation (32) 

( )
( )

0
2 2

22 ,
3

kh
kh

F
φ ξ

ξ
= +                     (38) 

( ) ( )2
2 4

2 2 ,
3

kh kh Fφ ξ ξ= +                    (39) 

( )
( )

( )20
2 42

22= 2 ,
3

kh
kh kh F

F
φ ξ ξ

ξ
+ +                (40) 

where ( )( )3 dkx bY cz kx b y F t t ctξ = + + = + − +∫ . 

The solutions of Equation (34) are given in Table 1. Combining (38)-(40) 
with Table 1, many exact solutions of Equation (1) can be obtained. For sim-
plicity, we just give out the first case in Table 1; the other cases can be discussed 
similarly. 

When ( )2 2
0 2 41, 1 ,h h m h m= = − + = , the solution of Equation (33) is  

( ) ( )sn ,F mξ ξ=  or ( ) ( )cd ,F mξ ξ= . Substituting them into Equation (38)-(40), 
we can obtain the following Jacobi Elliptic function solutions of Equation (32). 

From (38), one has 
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Table 1. Solutions of ( )F ξ  in 2 2 4
0 2 4F h h F h F′ = + + . 

case 0h  2h  4h  ( )F ξ  

1 1 ( )2 1m− +
 

2m  ( ) ( )sn ,cdξ ξ  

2 21 m−  
2 1m −  

2m−  ( )cn ξ  

3 2 1m −  
22 m−  −1 ( )dn ξ  

4 2m  ( )2 1m− +
 

1 ( ) ( )ns ,dcξ ξ  

5 2m−  
22 1m −  

21 m−  ( )nc ξ  

6 −1 22 m−  
2 1m −  ( )nd ξ  

7 1 22 m−  
21 m−  ( )sc ξ  

8 1 22 1m −  ( )2 21m m− −
 ( )sd ξ  

9 21 m−  
22 m−  1 ( )cs ξ  

10 ( )2 21m m− −
 

22 1m −  1 ( )sd ξ  

11 1
4  

21 2
2

m−

 

1
4  

( ) ( )ns csξ ξ±  

12 
21

4
m−

 

21
2
m+

 

21
4
m−

 
( ) ( )nc scξ ξ±  

13 
2

4
m

 

2 2
2

m −

 

1
4  

( ) ( )ns dsξ ξ±  

14 
2

4
m

 

2 2
2

m −

 

2

4
m

 
( ) ( )sn cniξ ξ±  

 

( ) ( ) ( ) ( )2 22 1 2 ns , ,
3

f k m k mξ φ ξ ξ′ = = − + +            (41) 

( ) ( ) ( ) ( )2 22 1 2 dc , .
3

f k m k mξ φ ξ ξ′ = = − + +            (42) 

Therefore, solutions of Equation (1) can be expressed as 

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

( ) ( ) ( )

2 3

2

2 3

, , , , d
4

2 1 2 EllipticE sn , ,
3

ds , cs ,
2 , d .

ns , 4

xu x y z t f F z t t F t

k m k m m

m m xk F z t t F t
m

ξ

ξ ξ

ξ ξ
ξ

= + −

= − + −

− + −

∫

∫

      (43) 

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

( ) ( ) ( )

2 3

2

2 3

, , , , d
4

2 1 2 EllipticE sn , ,
3

dc , sc ,
2 , d .

nc , 4

xu x y z t f F z t t F t

k m k m m

m m xk F z t t F t
m

ξ

ξ ξ

ξ ξ
ξ

= + −

= − + −

+ + −

∫

∫

      (44) 

when 1m → , ( ) ( )ns , cothmξ ξ→ , solution (41) becomes 
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( ) ( ) ( )24 2 coth .
3
kf kξ φ ξ ξ′ = = − +                (45) 

Thus, one has 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

2 3

2 3

, , , , d
4

1 coth4 2coth ln
3 1 coth

, d .
4

xu x y z t f F z t t F t

k k

xF z t t F t

ξ

ξ
ξ ξ

ξ

= + −

 +
= − − −  − 

+ −

∫

∫

         (46) 

when 0m → , ( ) ( )ns , cscmξ ξ→ , solution (41) becomes 

( ) ( ) ( )24 2 csc .
3
kf kξ φ ξ ξ′ = = − +                 (47) 

Thus, one has 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 3

2 3

, , , , d
4

4 2 cot , d .
3 4

xu x y z t f F z t t F t

k xk F z t t F t

ξ

ξ ξ

= + −

= − − + −

∫

∫
       (48) 

when 0m → , ( ) ( )dc , secmξ ξ→ , solution (42) becomes 

( ) ( ) ( )24 2 sec .
3
kf kξ φ ξ ξ′ = = − +                 (49) 

Thus, one has 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 3

2 3

, , , , d
4

4 2 tan , d .
3 4

xu x y z t f F z t t F t

k xk F z t t F t

ξ

ξ ξ

= + −

= − − + −

∫

∫
       (50) 

when 1m → , ( )dc , 1mξ → , solution (42) becomes 

( ) ( ) 4 .
3
kf ξ φ ξ′ = = −                      (51) 

Thus, one has 

( ) ( ) ( ) ( ) ( ) ( )2 3 2 3
4, , , , d , d .

4 3 4
x k xu x y z t f F z t t F t F z t t F tξ ξ= + − = − + −∫ ∫  (52) 

From (39), we have 

( ) ( ) ( ) ( )2 2 22= 1 2 sn , ,
3

f k m km mξ φ ξ ξ′ = − + +            (53) 

( ) ( ) ( ) ( )2 2 22 1 2 cd , .
3

f k m km mξ φ ξ ξ′ = = − + +           (54) 

Therefore, solutions of Equation (1) can be expressed as 

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )

2 3

2

2 3

, , , , d
4

2 2 2 EllipticE sn , ,
3

, d .
4

xu x y z t f F z t t F t

k m k m m

xF z t t F t

ξ

ξ ξ

= + −

= − − −

+ −

∫

∫

       (55) 
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( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

( ) ( ) ( )

2 3

2

2
2 3

, , , , d
4

2 2 2 EllipticE sn , ,
3

sd , cd ,
2 , d .

nd , 4

xu x y z t f F z t t F t

k m k m m

m m xkm F z t t F t
m

ξ

ξ ξ

ξ ξ
ξ

= + −

= − − −

+ + −

∫

∫

    (56) 

when 1m → , ( ) ( )sn , tanhmξ ξ→ , solution (53) becomes 

( ) ( ) ( )24 2 tanh ,
3
kf kξ φ ξ ξ′ = = − +                (57) 

Thus, one has 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

2 3

2 3

, , , , d
4

1 tanh4 2 tanh ln
3 1 tanh

, d .
4

xu x y z t f F z t t F t

k k

xF z t t F t

ξ

ξ
ξ ξ

ξ

= + −

 +
= − − −  − 

+ −

∫

∫

         (58) 

From (40), we have 

( ) ( ) ( ) ( ) ( )2 2 2 22 1 2 sn , 2 ns , ,
3

f k m km m k mξ φ ξ ξ ξ′ = = − + + +      (59) 

( ) ( ) ( ) ( ) ( )2 2 2 22 1 2 cd , 2 dc , .
3

f k m km m k mξ φ ξ ξ ξ′ = = − + + +      (60) 

Therefore, solutions of Equation (1) can be expressed as 

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

( ) ( ) ( )

2 3

2

2 3

, , , , d
4

2 5 4 EllipticE sn , ,
3

ds , cs ,
2 , d .

ns , 4

xu x y z t f F z t t F t

k m k m m

m m xk F z t t F t
m

ξ

ξ η

ξ ξ
ξ

= + −

= − − −

− + −

∫

∫

     (61) 

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )

( )
( ) ( )

( )

( ) ( )

2 3

2

2

2 3

, , , , d
4

2 5 4 EllipticE sn , ,
3

dc , sc , sd , cd ,
2 2

nd , nd ,

, d .
4

xu x y z t f F z t t F t

k m k m m

m m m m
k km

m m
xF z t t F t

ξ

ξ η

ξ ξ ξ ξ
ξ ξ

= + −

= − − −

+ +

+ −

∫

∫

     (62) 

when 1m → , ( ) ( )sn , tanhmξ ξ→ , solution (59) becomes 

( ) ( ) ( ) ( )2 24 2 tanh 2 coth ,
3
kf k kξ φ ξ ξ ξ′ = = − + +          (63) 

Thus, one has 
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( ) ( ) ( ) ( )

( ) ( )( )
( )( ) ( )( )
( )( ) ( )( ) ( ) ( )

2 3

2 3

, , , , d
4

4 2 tanh coth
3

1 tanh 1 coth
ln , d .

41 tanh 1 cot

xu x y z t f F z t t F t

k k

xk F z t t F t

ξ

ξ ξ ξ

ξ ξ

ξ ξ

= + −

= − − +

+ +
+ + −

− −

∫

∫

  (64) 

Remark 1. Let ( )F ξ  in (33) satisfies the following equation 

( )( ) ( ) ( )2 3
0 1 3 ,F h h F h Fξ ξ ξ′ = + +                 (65) 

where 0 1,h h  and 3h  are constant. In this situation, we have the following re-
sult. 

0 1 3 2 1 2
10, , 0, 0, 0.
2

A A kh A B B= = = = =               (66) 

Substituting Equation (66) into (33), we obtain the following solution of Equ-
ation (32): 

( ) ( )3
1 .
2

kh Fφ ξ ξ=                       (67) 

where ( )( )3 dkx bY cz kx b y F t t ctξ = + + = + − +∫ . 
The solution of Equation (65) is the Weierstrass elliptic doubly periodic type 

solution: 

( ) 3
2 3 3WeierstrassP , , , 0.

2
h

F g g hξ ξ
 

= >  
 

            (68) 

where 1
2

3

4hg
h

= − , 0
3

3

4h
g

h
= −  and 3 0h > . Substituting Equation (68) into 

(67), the solution of Equation (32) is 

( ) ( ) 3
3 2 3

1 WeierstrassP , , .
2 2

h
f kh g gξ φ ξ ξ

 
′ = =   

 
         (69) 

Therefore, exact solutions of Equation (1) can be expressed 

( ) ( ) ( ) ( )

( ) ( )

2 3

3
3 2 3 2 3

, , , , d
4

WeierstrassZeta , , , d .
2 4

xu x y z t f F z t t F t

h xk h g g F z t t F t

ξ

ξ

= + −

 
= − + −  

 

∫

∫
 (70) 

4.2. Solutions of Equation (19) 

Using a traveling wave variable of Equation (19) as 

( ) ( ), , , .U x Y Z f kx bY cZξ ξ= = + +                (71) 

where 
( ) ( )4 4

1 1d , dY y z Z t z
F z F z

= − = −∫ ∫  and ,k b  and c are constants, Eq-

uation (19) can be reduced to the following ODE 
( )52 26 6 0,bk f c f bk f f bk f′′′ ′ ′′′ ′′+ − − =               (72) 
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where 
2

2

d d, ,
d d

f ff f
ξ ξ

′ ′′= =  . If let ( ) ( )f ξ φ ξ′ = , then (72) becomes 

( )42 26 6 0,bk c bk bkφ φ φφ φ′′ ′′ ′+ − − =                (73) 

Balancing ( )4φ  and 2φ′  in (73), we obtain ( )4 2 1n n+ = +  which gives 
2n = . Suppose that Equation (73) owns the solutions in the form 

( ) ( ) ( ) ( ) ( )
2 1 2

0 1 2 2 ,
B BA A F A F

F F
φ ξ ξ ξ

ξ ξ
= + + + +           (74) 

where ( )F ξ  satisfies the following equation 

( )( ) ( ) ( )2 2 4
0 2 4 ,F h h F h Fξ ξ ξ′ = + +                (75) 

where 0 2,h h  and 4h  are constant. 
Substituting (74) and (75) into Equation (73) and then setting all the coeffi-

cients of ( )6, ,6kF k = −   of the resulting system to zero, we can obtain the 
following results. 

2
2

0 1 2 1 2 0
4

, 0, 0, 0, 2 ,
6

bk h cA A A B B kh
bk

+
= = = = =           (76) 

2
2

0 1 2 4 1 2
4

, 0, 2 , 0, 0,
6

bk h cA A A kh B B
bk

+
= = = = =           (77) 

2
2

0 1 2 4 1 2 0
4

, 0, 2 , 0, 2 ,
6

bk h cA A A kh B B kh
bk

+
= = = = =          (78) 

where 0 2,h h  and 4h  are arbitrary constants, ,k b  and c are nonzero con-
stants. 

Substituting (76)-(78) into (74), we obtain respectively the following solutions 
of Equation (73) 

( )
( )

2
02

2

24
,

6
khbk h c

bk F
φ ξ

ξ
+

= +                   (79) 

( ) ( )
2

22
4

4
2 ,

6
bk h c kh F

bk
φ ξ ξ

+
= +                 (80) 

( )
( )

( )
2

202
42

24
2 ,

6
khbk h c kh F

bk F
φ ξ ξ

ξ
+

= + +              (81) 

where ( ) ( )4

1 dkx by b c z ct
F z

ξ = + − + +∫ . 

Substituting ( )F ξ  in Table 1, we can got ( )φ ξ . Then by solving 

( ) ( )f ξ φ ξ′ =  and using ( ) ( )4

1 du f z
F z

ξ= + ∫ , we can obtain solutions of 

Equation (1). The procedure is similar. We omit it for simplicity. 

5. Figures of Some Exact Solutions 

The obtained solutions include some arbitrary functions. Taking some special 
functions we can get different solutions and graphics. In order to better under-
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stand the solutions, some typical figures of the solutions are given as follows: 

In Figure 1, ( )( )( ) ( )3 ,kx b y F t t cz kx b y t czξ = + − + = + − +∫ , which is a 

travelling wave transformation and the figure is a classic periodic wave. 

In Figure 2, ( )( )( )
2

3 ,
2
tkx b y F t t cz kx b y t czξ

 
= + − + = + − − + 

 
∫ , which is 

not a travelling wave transformation and the figure is a unknown one. 

In Figure 3, ( )( )( )
2 3

3 ,
2 3
t tkx b y F t t cz kx b y t czξ

 
= + − + = + − − − + 

 
∫ , 

which is not a travelling wave transformation and the figure is unknown. 
 

 
Figure 1. Figure of solution (50) with ( ) ( )2 3, 1, 1, 1, 1, 1F z t F t k b c= = = = = . (a) 3D figure; (b) 2D figure. 

 

 
Figure 2. Figure of solution (50) with ( ) ( )2 3, 1, 1 , 1, 1, 1F z t F t t k b c= = + = = = . (a) 3D figure; (b) 2D figure. 
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In Figure 4, ( )( )( ) ( )3 ,kx b y F t t cz kx b y t czξ = + − + = + − +∫ , which is a 

travelling wave transformation and the figure is a plane. 

In Figure 5, ( )( )( )
2

3 ,
2
tkx b y F t t cz kx b y t czξ

 
= + − + = + − − + 

 
∫ , which is 

not a travelling wave transformation and the figure is a solitary wave. 

In Figure 6, ( )( )( )
2 3

3 ,
2 3
t tkx b y F t t cz kx b y t czξ

 
= + − + = + − − − + 

 
∫ , which  

 

 
Figure 3. Figure of solution (50) with ( ) ( ) 2

2 3, 1, 1 , 1, 1, 1F z t F t t t k b c= = + + = = = . (a) 3D figure; (b) 2D figure. 

 

 
Figure 4. Figure of solution (51) with ( ) ( )2 3, 1, 1, 1, 1, 1F z t F t k b c= = = = = .(a) 3D figure; (b) 2D figure. 
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Figure 5. Figure of solution (51) with ( ) ( )2 3, 1 , 1, 1, 1, 1F z t t F t k b c= + = = = = . (a) 3D figure; (b) 2D figure. 

 

 
Figure 6. Figure of solution (50) with ( ) ( )2 3, 1, 1 , 1, 1, 1F z t F t t k b c= = + = = = . (a) 3D figure; (b) 2D figure. 

 
is not a travelling wave transformation and the figure is a kink wave. 

6. Conclusions 

In this manuscript, a higher-dimensional shallow water wave Equation (1) is 
studied by Lie symmetry analysis method and extended F-expansion method 
and some new exact solutions are obtained. It is interesting that these solutions 
contain some arbitrary functions ( )3F t  and ( )4F z . Taking these functions as 
special ones, we can get nonlinear wave solutions and wave solutions of Equa-
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tion (1). The method is effective to high-dimensional differential equations, and 
can also be applied to other nonlinear evolution ones. Our main work list as fol-
lows: 
• All of the geometric vector fields of the equation are obtained. 
• The symmetry reductions are presented. 
• Some new linear and nonlinear wave solutions are obtained. 
• Some typical figures are given. 
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