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Abstract 
First, a Lagrangian is presented and authenticated for a Relativistic Harmonic 
Oscillator in 1 + 1 dimensions. It yields a two-component set of equations of 
motion. The time-component is the missing piece in all previous discussions 
of this system! The second result is that this Oscillator Langrangian genera-
lizes to Langrangians for a class of particles in 1 + 1 dimensions subject to an 
arbitrary potential V which is space dependent only. 
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1. Introduction 
All relativistic particles treated in this paper are in 1 + 1 dimensions with the 

convention ( ) ( ) ( )1 1, ,ox x x ct xµ = = , where 
211 dd d 1

d
xt

c t
τ

 
= −  

 
, τ  is the 

proper time. 
We present for the first time a Langrangian for the Relativistic Harmonic Os-

cillator with potential energy ( ) ( )21 11
2

V x k x= . 

The Langrangian is presented in Section 2 and authenticated in Section 3 for a 
Relativistic Harmonic Oscillator in 1 + 1 dimensions. It yields a two-component 
set of equations of motion. The time-component is the missing piece in all pre-
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vious discussions of this system! Further, it sets the fundamental work of 
Goldstein [1] in the context of a complete theoretical treatment of this system. It 
also establishes the importance of MacColl [2] using the time-component of 
what is equivalent to the equations of motion in order to numerically solve for 
the trajectory of the Relativistic Oscillator.  

In Section 4 we parallel the development for the Relativistic Harmonic Oscil-
lator for a class of relativistic particles in 1 + 1 dimensions each described by 
potential energy which is only space dependent. 

2. A Relativistic Oscillator Lagrangian 
We now present for the first time a Langrangian for the Relativistic Harmonic 

Oscillator with potential energy ( ) ( )21 11
2

V x k x= : 

( ) ( )210 d d d 1 ,
2 d d d 2

om c x x xL g k x
µ ν

τ
µντ τ τ

= +               (1) 

where 
1 0
0 1

gµν
 

  =    − 
 and 

1 1d d d d d d
d d d d d d

o ox x x x x xg
µ ν

µντ τ τ τ τ τ
= − .   

It is noncovariant and holds only in the frame in which the oscillator is first 
set in motion consistent with Equation (4). 

3. Authentication of the Oscillator Lagrangian 

Lagrange’s two-component equation of motion follows from the variation of (1) 

( ) ( )d 0, 0,1.
d d

d

L L
x x

τ τ

µ µ
µ

τ
τ

∂ ∂
− = =

∂  
∂  
 

                 (2) 

This implies the following two equations of motion 

( ) ( )
021

0
d 1 d d0 0,

d 2 d d
xk x m cµ

τ τ τ
  = + =  

   
            (3a) 

( ) ( )
1

1
0

d d d1 0.
d d d

ox xkx m cµ
τ τ τ

 
= + = 

 
              (3b) 

Equation (3a) is the time-component of the equations of motion which was 
missing from all prior discussions of the Relativistic Harmonic Oscillator System! 
We now proceed to derive its content and explore its consequences. 

Equation (3a) yields  

( )
221 0

21

1 0,
2 1 d1

d

m c
E k x

x
c t

− − =
 

−  
 

 

where E is a constant, or rearranging 
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( )
2 210

21

1 .
21 d1

d

m c
E k x

x
c t

= +
 

−  
 

                  (4) 

The term 
2

0

211 d1
d

m c

x
c t

 
−  
 

 is the rest energy 2
0m c  scaled by the motion and 

( )211
2

k x  is the potential energy. Thus, E is the total energy of the Harmonic 

Oscillator. Hence, the content of the oµ =  equation of motion is the conserva-
tion of energy. See MacColl [2] Equation (1.2). 

With (4) in hand, we first return to (3a) 
1

1 0
0

d d d 0,
d d d
xkx m cx
τ τ τ

 + = 
 

 

or  

0 1
1

0
d d d ,

d d d
x xm c kx

τ τ τ
 

= − 
 

 

or 

2 1
10

21

d d ,
d dd1

d

m c xkx
x

c t

τ τ

 
 
 

= − 
  
 −     

                 (5a) 

or 

2 1
10

21

d d .
d dd1

d

m c xkx
t tx

c t

 
 
 

= − 
  
 −     

                 (5b) 

(Compare with Goldstein’s [1] Equation (7.95). Note Goldstein uses the old no-
tation involving 1i = −  and we are only using (7.82) where V is the harmonic 
oscillator potential.) 

We now turn to Equation (3b) which we can now rewrite as  

1

10

2 2 21 1 1

d
1 d d

d1 d 1 d 1 d1 1 1
d d d

xm kxt
tx x x

c t c t c t

 
 
  −

= 
      
 − − −            

         (6a) 

or equivalently  
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1

0
1

21

d
d d
d 1 d1

d

xm
t kx

t x
c t

 
 
 

= − 
  
 −     

                   (6b) 

Equation (6a) is Equation (7.83) with Equation (7.87) in Goldstein [1]. (Re-
member, Goldstein did all this without a Lagrangian which could yield the two 
component Lagrangian equations of motion.) 

Equation (6b) follows the original Einsteinian prescription for a point particle 
in a potential ( )1V x . One takes the non-relativistic equation of motion and  

modifies it only by replacing the mass by 
21

0
d1
d
xm

c t
 

−  
 

 where 0m  is the 

rest mass. 
This was the equation of motion that MacColl assumed. He then multiplied it 

by 
1d

d
x
t

 and integrated to obtain the energy E (he used scaling). He solved this 

for 
1d

d
x
t

. Solving for dt  via a change of variables and setting initial conditions,  

he arrived at an expression for t in terms of incomplete elliptic integrals. This he 
solved numerically. Our summary of MacColl's approach in our notation is con-
tained in [3]. 

4. Lagrangians for a Class of Relativistic Particles 

Finally, we parallel the development for the Relativistic Harmonic Oscillator in 
an abbreviated form because the logic is the same for a class of relativistic par-
ticles in 1 + 1 dimensions described by a potential energy ( )1V y , where we re-
place ( ) ( )1,ox x xµ =  with ( ) ( )1,oy y yµ = . 

Then we have 

( ) ( )10 d d d .
2 d d d

v om c y y yL g V y
µ

τ
µντ τ τ

= +                (7) 

This is noncovariant and holds in the frame in which ( )1V y  is turned on con-
sistent with Equation (9). 

This implies  

( ) ( )
0

1
0

d d0 0,
d d

yV y m cµ
τ τ
 

= + = 
 

              (8a) 

( )
( )1 1

01

d d d1 0.
d d d

o V yy ym c
y

µ
τ τ τ

 ∂   = + =  ∂   
           (8b) 

(8a) implies conservation of energy E  

( )
2

10

21
.

1 d1
d

m c
E V y

y
c t

= +
 

−  
 

                    (9) 
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Equation (8a) can be rewritten as 

( )
2

10

21

d d .
d d1 d1

d

m c
V y

t ty
c t

 
 
 

= − 
  
 −     

                (10) 

Equation (8b) can be rewritten as  

( )
1

1
0

121

d
d d .
d 1 d1

d

ym V yt
t yy

c t

 
 
  ∂

= − 
∂  

 −     

                (11) 

which again fits the Einsteinian prescription. Thus the theoretical foundations 
are complete for all relativistic point particles governed by a potential energy 

( )1V y  in 1 + 1 dimensions. 
Examples are provided by the hierarchy described in [3] and [4] for which 

( ) ( )21 12
2

12
nn

n
n

k
V x x

n >

= − . The notation ( )1,oy y  is replaced by ( )1
2 2,o

n nx x   

for the nth member of the hierarchy. 1n =  is the Harmonic Oscillator dis-
cussed in the first part of this paper.  
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