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Abstract 
We obtain some theorems for real increasing functions showing that elemen-
tary fixed point theory can bring to astonishing results by assuming only a 
few properties, some of which intrinsically possessed from these functions. 
An application is given for a theorem of quasi-compactness and a known re-
sult in posets is also recalled and applied to real intervals. 
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1. Introduction 

Notwithstanding some words of the title, Elementary Fixed Point Theory [1] 
does not mean to establish “elementarily” fixed point theorems in the context of 
“structurally simple spaces” such as metric spaces or Banach spaces, but to de-
duce fixed point theorems from some intrinsic properties of the selfmaps in-
volved and thus we arrive at astonishing results, like in the case of this paper 
where we consider the set F(x0) of selfmaps functions f of R (the reals) having a 
given point 0x ∈R  as the fixed point of f, i.e. ( )0 0f x x= . Furthermore, we 
consider the subset G(x0) of F(x0) formed from functions f such that 

( )0x f x x≤ <  for any 0x x>                   (1.1) 

and 

( ) 0x f x x< ≤  for any 0x x<                   (1.2) 

Moreover, let H(x0) be the subset of F(x0) of functions f “attracting” R, which 
means the sequence ( ) 0

nf x x→  as n →∞  for any x∈R , being fn(x) the 
n-th iterate of f defined usually by ( ) ( )1f x f x= , ( )( )1n nf f f x+ =  for any 
integer positive n. In general, this term is transferred to a contractive function in 
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the sense of, historically speaking, a theorem of Banach-Caccioppoli [2] [3] and 
other famous authors (see, e.g., those cited in the good books [1] [4]), have a 
unique fixed point x0 “attracting the whole metric space”. Inspired from an old 
paper of Sgambati [5], we establish some results for a real increasing function 
(often considered as selfmap of a compact interval of R). 

We start with the following theorem. 
Theorem 1. Let ( )0f x∈G  be increasing. If  

for any x > x0, there exists a y > x such that ( )f t x≤  for ] [,t x y∈    (1.3) 

and 

for any x < x0, there exists a y < x such that ( )f t x≥  for ] [,t y x∈ ,  (1.4) 

then ( )0f x∈H . 
Proof. We limit to prove the theorem under (1.3) (the proof under (1.4) is 

similar). 
The thesis is obvious if ( ) 0

nf x x=  for some n since if f is increasing and 
( )0f x∈G , we have ( ) ( ) ( )0

n n px f x f x x f x+> > > = =  for 1,2,p =  . 
Then we can assume ( ) 0

nf x x>  for any integer positive n. By (1.1) and since f 
is increasing, we have that  

( ) ( ) ( )1
0 0

n nx f x f x f x+= < <  for any integer positive n and for any 0x x>  
(1.5) 

that is the sequence {fn(x)} is strictly decreasing and hence converges to the least 
upper bound r as n →∞ . Then for any 0ε > , there exists some integer posi-
tive s such that ( )nf x r ε< +  for any n s≥ . We deduce ( )nf x r>  for 

1,2,n =   from (1.5). Assume that r > x0. By (1.3), there exists y > r such that 
( )f t r≤  for ] [,t r y∈  and choose an y rε = − . So there exists some integer 

positive m such that ( )nf x y<  for any n m≥  and then we should have, in 
particular, ( )mr f x r< ≤  which is a contradiction. Therefore r = x0. 

Claim. The condition (1.3) or (1.4) is not necessary in order to have the 
belongness of a function ( )0f x∈F  to the set H(x0). Indeed, let any 0x ∈R  
and consider a strictly decreasing sequence {hn} of rationals convergent to some 
rational x1 > x0. Hence it is enough to define the function ( ) ( )1 1nnh h xf x⋅ − += π  
(irrational value) and ( ) 0f x x=  if nx h≠  for any positive integer n in order 
to obtain a function f which proves such assertion. 

Remark 1. Let ( )0f x∈F  and f be increasing. Then it is immediate to verify 
(1.3) and (1.4) are equivalent, respectively, to the following:  

x > x0 implies either ( )lim
y x

f y x+→
<  or there exists a y > x 

such that f(t) = x for ] [,t x y∈  
(1.6) 

and 

x < x0 implies either ( )lim
y x

f y x+→
>  or there exists a y < x 

such that f(t) = x for ] [,t y x∈  
(1.7) 
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Since an increasing function which has the property ( )lim
y x

f y x+→
<  

(resp., ( )lim
y x

f y x+→
> ) implies having the property f(x) < x (resp., f(x) > x), 

then we can enunciate the following theorem and its corollary due to the author 
of [5] without proof: 

Theorem 2. An increasing function ( )0f x∈F  belongs to H(x0) iff (x > x0 
implies f(x) < x and the second member of (1.6) holds) and (x < x0 implies f(x) > 
x and the second member of (1.7) holds). 

Corollary 3. A strictly increasing function ( )0f x∈F  belongs to H(x0) iff 

( )lim
y x

f y x+→
<  for any x > x0 and ( )lim

y x
f y x+→

>  for any x < x0. 

The following theorem and its corollary, due to the author of [5], are also eas-
ily proved: 

Theorem 4. In order to have the belongness of a function ( )0f x∈F  to the 
set H(x0), it is enough that f is right upper semicontinuous in every x > x0 and 
left lower semicontinuous in every x < x0. 

Proof. Indeed a function ( )0f x∈F  which is right upper (resp., left lower) 
semicontinuous verifies (1.3) (resp., (1.4)). 

Corollary 5. In order to have the belongness of a continuous function 
( )0f x∈F  to the set H(x0), it is enough to satisfy (1.1) and (1.2). 

2. Other Results 

The following lemma is useful for the successive Theorems 7 and 8. 
Lemma 6. Let a > 0 and f be an increasing selfmap of the compact interval [0, 

a] having zero as unique fixed point. Then ( )f x x<  for any ( ]0,x a∈ . 
Proof. We have that ( )f a a< . If ( )f x x>  for some ( )0,x a∈ , we should 

have that there striction g of f to the compact interval [x,a] is an increasing selfmap 
of [x, a] itself because ( ) ( ) ( ) ( ) ( ) ( )x g x f x g t f t g a f a a< = ≤ = ≤ = <  for any 

( ),t x a∈  holds. Then, e.g., by applying a famous theorem of Tarski [6] to an 
increasing selfmap g of the compact interval [x, a], minimum and maximum 
fixed points of g should exist in [x, a], which should be also fixed points of f in 
[0, a], a contradiction to the hypothesis. 

Theorem 7. Let a > 0 and f be an increasing selfmap of the compact interval 
[0, a] having zero as unique fixed point and ( )0,x a∈  implies either 

( )lim
y x

f y x+→
<  or there exists an y x>  such that ( )f t x=  for ] [,t x y∈ . 

Then we have that ( ) 0nf x →  as n →∞  for any [ ]0,x a∈ . 

Proof. Lemma 6 assures that ( )f x x<  for any ( ]0,x a∈ , so we can ex-
tend the function f from [0, a] to an increasing selfmap g of R in the follow-
ing way: ( ) 0g x =  if 0x ≤ , ( ) ( )g x f x=  if ( )0,x a∈ , ( ) ( )g x f a=  if 
a x≤  which satisfies (1.1) and (1.2) for 0 0x = . By invoking Theorem 2, we 
have ( ) ( ) 0n ng x f x= →  for any [ ]0,x a∈ . 

Theorem 8. Let a > 0 and f be an increasing selfmap of the compact interval 
[0, a] having zero as unique fixed point and right continuous in any ( )0,x a∈ . 
Then we have that ( ) 0nf x →  as n →∞  for any [ ]0,x a∈ . 
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Proof. By Lemma 6, we have that ( )f x x<  for any ( ]0,x a∈ . Since f is 
right continuous, we also have that ( )lim

y x
f y x+→

<  for any ( )0,x a∈ . So the 
thesis comes from Theorem 7. 

As application of above Theorem 7, we give a generalization of a theorem of 
“quasi compactness” due to J. Einsenfeld and V. Lakshmikantham [7]. We recall 
that a selfmap ψ of a bounded metric space A0 is defined quasi compact if the 
sequence of measures of non-compactness {γ(An)} of the closed subsets of A0 
recursively given by ( )( )1n nA cl Aψ+ =  for 0,1,2,n =   converges to zero as 
n →∞ . 

The following theorem holds: 
Theorem 9. Let be a selfmap ψ of a bounded metric space A0. Suppose that 

( )0a Aγ>  and there exists an f be an increasing selfmap of the compact in-

terval [0, a] having zero as unique fixed point. Further ( )0,x a∈  implies ei-

ther ( )lim
y x

f y x+→
<  or there exists a y > x such that ( )f t x=  for ] [,t x y∈ . 

Then ψ is quasi compact provided that for any subset A of A0, we have that 

( )( ) ( )( )A f Aγ ψ γ≤                       (2.1) 

Proof. From (2.1), it follows that ( ) ( )( )0
n

nA f Aγ γ≤  for any  
( )( )1n nA cl Aψ+ = , 0,1,2,n =  . By Theorem 7, we have that ( )( )0 0nf Aγ →  

as n →∞  and hence the thesis. 
Remark 2. J. Einsenfeld and V. Lakshmikantham [7] assume all the 

hypothesis of Theorem 9 except that f is considered right continuous in any 
( )0,x a∈ . Thus our Theorem 9 is an extension of that result since a right conti-

nuous function satisfies the hypothesis contained in Theorem 9.  

3. Upper Broad Sequentially Semicontinuity on the Right 

The following theorem is widely known (e.g., [6]. We give a short proof. 
Theorem 10. Let f be an increasing and right continuous selfmap of a com-

pact interval X of R and there exists a point 0x X∈  such that ( )0 0f x x≤ . 
Then the limit z of the sequence {fn(x0)} is the greatest fixed point of f in 

( ) { }0 0_ :S x x X x x= ∈ ≤ . 
Proof. z is a fixed point of f in S_(x0) since f is right continuous. If ( )w f w=  

is another fixed point of f in S_(x0), being f increasing, we have that 
( ) ( )0

n nf w w f x= ≤  for any integer positive n and then w z≤  as n →∞ . 
We provide a generalization of Theorem 10 starting with the following defini-

tion: 
Definition 11. Let f be a selfmap of subset X of R. We say that f is upper 

broad sequentially semicontinuous on the right at the point x X∈  if for any 
decreasing sequence {xn} converging to x and such that is convergent the se-
quence {f(xn)} to the limit l, there exists a non-negative integer ( )k k x=  for 
which we have that ( ) ( )1k kf l f x+≤ . We say that f is upper broad sequentially 
semicontinuous on the right on X if f is upper broad sequentially semiconti-
nuous on the right at any point x X∈ . 
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Remark 3. Any right continuous selfmap f of an interval X of R is upper 
broad sequentially semicontinuous on the right on X because ( ) 0k x =  for any 
x X∈  (we naturally understand that ( )0f x x= ). 

Definition 12. Let f be a selfmap of interval X of R and let f be an upper broad 
sequentially semicontinuous on the right at the point x X∈ . We define upper 
broad sequentially semicontinuity on the right parameter of a decreasing se-
quence {xn} converging to x and such that is convergent the sequence {f(xn)} to 
the limit l, denoted by { } ( ){ }( ), ,n nk k x x f x=  for abuse of notation, the mini-
mum of the set {p non-negative integer: ( ) ( )1p pf l f x+≤ }. 

Theorem 13. Let f be a selfmap of a compact interval X of R and f be an 
increasing and upper broad sequentially semicontinuous on the right over X. 
Moreover there exists in X a point x0 such that ( )0 0f x x≤  and let  

( ){ } ( ){ }( )1
0 0 0, ,n nk k x f x f x+=  be the upper broad sequentially semiconti-

nuity on the right parameter of the decreasing sequence {fn(x0)}. Then, if z is 
the limit of the sequence {fn(x0)}, fk(z) is the greatest fixed point of f in 

( ) { }0 0_ :  S x x X x x= ∈ ≤ . 
Proof. For brevity, let ( )0

n
nx f x=  for any non-negative integer, we have 

( ) ( )1k kf z f z+≤  by definition 12. On the other hand, nz x≤  because {xn} 
converges to its least upper bound, from which ( ) ( ) 1n nf z f x x +≤ =  because f 
is increasing and hence ( )f z z≤ , from it follows that ( ) ( )1k kf z f z+ ≤ . 
Therefore ( )( ) ( )k kf f z f z= . If ( )w f w=  is another fixed point of f in 
S_(x0), we have that ( ) ( )0

n n
nf w w f x x= ≤ =  and then w z≤  as n →∞ . 

Since f is increasing, we have ( ) ( )k kf w w f z= ≤ .  
By Remark 3, Theorem 13 is an effective extension of Theorem 10. In fact 

Theorem 13 holds in the following example where Theorem 10 is not applicable: 
Example 14. Let f be a selfmap of [0, 1] be defined as ( )f x x=  if 
[ ]0,x a∈ , 1 2 0a> > , ( )f x a=  if [ ],1 2x a∈ , ( ) 2 1 4f x x= +  if 
( ]1 2,1x∈ . It is easily seen that f is right continuous in [0, 1] - {1/2}, and 

hence upper broad sequentially semicontinuous on the right because of Re-
mark 3 and also at 1/2 because ( ){ } ( ){ }( )11 2, 1 2 , 1 2 1n nk f f + = . Indeed f is 
not right continuous at 1/2 and hence Theorem 10 is not applicable but it can 
easily see that ( )1 2pf a=  is the greatest fixed point in S_(1/2) for any posi-
tive integer p with 1 ≤ p. 

4. A Simple Result in Posets 

The next result holds in a partially ordered set (poset) but it can hold in subsets 
of R as we show in a suitable example. This result can be deduced also from our 
previous works [8] [9] but we prefer to give a proof for making self-contained 
the present paper. 

Theorem 15. Let (X, ≤) be a poset and f be an increasing selfmap of X. As-
sume the existence of a point x0 such that ( )0 0x f x≤  and the following condi-
tion holds: 

(C1) if C is a chain which has not a supremum in X, there exists a positive in-
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teger 1 ≤ n such that there exists the supremum of the chain fn(C), denoted by 
sup fn(C). 

Then f has a fixed point z in ( ) { }0 0:S x x X x x+ = ∈ ≤ . 
Proof. Consider the subset of X defined by ( ){ }0:Y x X x x f x= ∈ ≤ ≤ . Y is 

no empty because there at least 0x Y∈  by hypothesis. Let C be a chain of Y and 
assume that there no exists its supremum in X, then there exists ( )sup ny f= C  
for some positive integer 1 ≤ n. 

So, from ( )0x c f c≤ ≤  for any c∈C , we deduce that  
( ) ( ) ( )2

0  nx c f c f c f c y≤ ≤ ≤ ≤ ≤ ≤  for any c∈C  since f is increasing, 
that is y is an upper bound of C in X. But we claim that y lives in Y. Indeed, 

( )1
0

nx c f c y−≤ ≤ ≤  for any c∈C , then ( ) ( )0
nx c f c f y≤ ≤ ≤  for any c∈C  

due to the increasingness of f, i.e. f(y) is an upper bound of the chain fn(C), 
which means ( )0x y f y≤ ≤ , i.e. y Y∈  and thus any chain C of Y has an up-
per bound in Y. By Zorn lemma, Y has a maximal element z such that ( )z f z≤  
and therefore ( )z f z= , i.e. the thesis. 

We illustrate Theorem 15 with a suitable example: 
Example 16. Let [ ] { }1 20,2X = −  with usual ordering and f be defined as 
( ) ( )1 2f x x= +  if [ ] { }1 20,1x∈ −  and ( )f x x=  if [ ]1,2x∈ . Then f is in-

creasing and the unique chains of X not having supremum in X are the chains 
with supremum 1/2 which does not belong to X.  

Note that ( )x f x≤  for any x X∈  and ( )sup nf X∈C  for any integer n 
such that 1 ≤ n. Indeed, if C is a chain included in [0, 1/2), then f(C) is in-
cluded in (1/2, 1] and ( )f =C C  if included in [1, 2]. Note that z = 1 if 

[ ] { }0 0, 1 21x ∈ −  and 0z x=  if [ ]0 1, 2x ∈ . 

5. Conclusion 

We have proved various theorems for real increasing functions f giving the new 
concept of upper broad sequentially semicontinuity on the right at a point x and 
related parameter k of a decreasing sequence {xn} convergent to x and such that 
also converges the sequence {f(xn)}. Naturally, a dual concept like lower broad 
sequentially semicontinuity on the left and related parameter k of an increasing 
sequence {xn} at a point x, such that also converges the sequence {f(xn)}, holds as 
well, however it should be interesting to establish geometrical and topological 
properties of the parameter k, here not investigated for brevity. 
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