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Abstract

The aim of this research is a better understanding of the quantiza-
tion in physics. The true origin of the quantization is the existence
of the quantized kinetic momentum of electrons, neutrinos, protons

and neutrons with the h/2 value. It is a consequence of the extend-
ed relativistic invariance of the wave of fundamental particles with
spin 1/2. This logical link is due to properties of the quantum waves
of fermions, which are functions of space-time with value into the
Cl} = End(C?) and End(Cl3) Lie groups. Space-time is a manifold
forming the auto-adjoint part of Cl5. The Lagrangian densities are
the real parts of the waves. The equivalence between the invari-
ant form and the Dirac form of the wave equation takes the form
of Lagrange’s equations. The momentum-energy tensor linked by
Noether’s theorem to the invariance under space-time translation-
s has components which are directly linked to the electromagnetic
tensor. The invariance under Cl3 of the kinetic momentum tensor
gives eight vectors. One of these vectors has a time component with
value i/2. Resulting aspects of the standard model of quantum
physics and of the relativistic theory of gravitation are discussed.
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1. Extended Relativistic Invariance

When classical mechanics was replaced by quantum mechanics many
changes were necessary. The new theory was built in conformity with
Special Relativity by de Broglie [1] and Dirac [2]. The main change
brought by relativistic quantum mechanics is the replacement made by
Pauli and Dirac of the group of rotations and of the Lorentz group by
the multiplicative SU(2) and SL(2,C) Lie groups, respectively. This
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was made twice: in 1927 space was first put into the Pauli algebra:

3 )
- 1 2 3\ X Xm —1X
=it ) = (T L5 ). 1)
In the following year, the entire space-time was expressed in the
Pauli algebra:

0 3 1 :.2
: X° + X X' —1X
X = (Xoa Xl, X27 XS) = <X1 +ix2 %O —x3>' (2)

The full significance of this change was not truly seen. Dirac, for
his wave equation of the electron, doubled the number of components
of the Pauli spinors and used 4 x 4 complex matrices. During the
next forty years only the My(C) algebra was used. The Pauli alge-
bra was only an auxiliary algebra allowing us the study of the Dirac
matrices. Next D. Hestenes revisited the Dirac theory, using the Clif-
ford algebra Cly 3 (space-time algebra) built on space-time with sig-
nature +, —, —, —. This algebra is 16-dimensional on the real field,
while My(C) is 16-dimensional on the complex field, therefore 32-
dimensional on the real field. The Dirac wave, in Hestenes’s view,
is a function of space-time with value into leyg), the even sub-algebra
of Cly 3, 8-dimensional on R, like the Pauli algebra [3-7].

The departure of our work is the following observation: Equation
(2) and values of the Dirac wave use only the eight parameters of the
Pauli algebra. It should then be possible to write the entirety of the
Dirac theory using only the Pauli algebra. This was studied in [8-37].
Not only is the linear Dirac equation completely described in the Cl3
algebra (Pauli algebra), another major change is the simplification
operated by the replacement of the linear Dirac equation by our im-
proved wave equation. In its completely invariant form, the improved
equation of the electron [9,10,28] reads in Cls:

0= G(Vd)on + qpAd + mp, (3)
) (f% —77%> - S=2 (77% —f%) G =of (4)
o) ol g)eme

with:

V =0k8,; A=0"A; 0° =0 =1; det(p) = 26171 + £273), (5)

Uj = —0jy, J = 172a3; 021 = 0201; P = |det(¢)|a (6)
mocC e

= — = — 7

m="00 = 7

where mg is the proper mass of the electron, e is its charge, A is the
electromagnetic potential (a space-time vector), the ¢! column is the
right spinor wave of the electron and 7' is the left spinor. This wave
equation is invariant under the transformation R defined from any

M € SL(2,C) by:
x> x' = R(x) = MxM"; ¢ = ¢' = Mo, (8)
e & = Mgl gt ot = Myl )

If we do not restrict M to satisfy det(M) = 1 this condition defining
SL(2,C) becomes

det(M) = MM = MM =re'® #0. (10)
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The transformation R is then a similitude conserving both the ori-
entation of space and the time arrow (see [37] 1.1.2 and A.3):

¢'(V'¢)) = ¢ MV'M¢ = 3V, (11)
¢'qAY) = ¢ Mg A Mo = dqAs, (12)
p' = det(¢')| = | det(M) det(¢)| = r[det(¢)| =rp.  (13)

The main hypothesis of this section is [37]: Suppressing det(M) =1
the group SL(2, C) is extended to the GL(2, C) = CI} Lie group, which
may be considered as the true invariance group of any law in physics.
The extended relativistic invariance of the wave Equation (3) results
from (proof in [37] A.4.4)

V =MV'M;V = o"d,. (14)
The electric gauge invariance means:
qgA=MqAM; A = oA, (15)

Then the wave equation is invariant if and only if the mass term
satisfies:

m'p =m'rp=mp; m=m'r. (16)

¢(x) being invertible everywhere in all interesting solutions (plane
waves, the hydrogen atom), the invariant wave equation is then equiv-
alent to the improved equation:

0= Voo + qAp +me P ¢; pe'? = det(¢), (17)

where 3 is the Yvon-Takabayasi angle. The relativistic invariants
m and p were already long known in the Dirac theory. The Yvon-
Takabayasi angle was enigmatic until G. Lochak used the chiral gauge
(with angle ) to build his wave equation of a leptonic magnetic
monopole [38-45]. Since p is similar to r, which is a scale factor (as
ratio of an homothety), the interpretation of p as a statistical param-
eter was wrong. The occupation number of any fermion wave being
necessarily 0 or 1, any statistics from such a lone object is necessary
irrelevant. We shall encounter as soon as in the next paragraph the
true probability density.

Now in all cases where 3 is null or very small, the improved Equation
(17) is reduced to the linear Dirac equation, which reads in Cl3 (the
equivalence with the usual form of the Dirac equation is detailed in [37]
1.3):

0 = Voo + qAd + mo. (18)

The resolution of the improved Equation (17) in the case of the
hydrogen atom uses a method of separation of variables found by H.
Kriiger [46]. This gives new solutions to the wave equation, with the
same set of quantum numbers and the same energy levels [37]. The
wave is then with value everywhere in Cl3. Therefore p is like r a ratio
of homothety and since p # 0 the two forms of the wave equation, the
invariant one (3) and the usual one (17), are equivalent, each may
be deduced from the other. The path from the usual form (17) to
the invariant form simply uses a multiplication by ¢ on the left side.
Moreover the Lagrangian density is simply the real part, which is one
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of the eight numeric equations equivalent to (17) (this is detailed in [37]

B.1.4):
L=0=—-w3+gA-Dyg+mp=< $(v$)021 + qucg—i- mp >, (19)
0:%V-D2+QA-D17 (20)
0= —%V-Dl +qA Dy, (21)
0 =wo +qA-Ds, (22)
0= %V'Dg, (23)
0= —wa, (24)
0=uw, (25)
0= %V-DO. (26)

where (Dg, Dy, Dy, D3) is a mobile orthogonal basis in space-time
and w satisfies:

D, = ¢o.d; ¢ = 6'; 6(Vo) — (¢V)¢ = 2iw = 2iw,o.  (27)

As it is the real part of an invariant equation, the Lagrangian density
is also invariant under Cl35. The current J = Dy is the probability
current linked by Noether’s theorem to the electric gauge invariance.
The probability density of quantum theory is in the case of the Dirac
wave the time component J° = D§ of the probability current. The
form of the implication from the Lagrangian density (19) into the (17)
wave equation is the Lagrange equations as described in 2.3.4 of [37].
Therefore the Lagrangian mechanism does not come as a principle; it
is a mere consequence of the non commutative multiplication in C13.
Consequently the Lagrangian mechanism is necessary for any solution
of the wave equation and the momentum-energy is the Tetrode tensor
linked to the invariance of the Lagrangian density under space-time
translations.

1.1. Chiral Parts of the Wave
The ¢ = ¢! wave of the electron is the sum of a left part and a right

part:
R = Y1+ 03)/2 = Va(E' 0); € = (§> 7 (28)
L' = 31+ 0w)/2= V3l 0): nt = (Z) | (20)

All tensorial densities of the Dirac wave are built from these left and
right parts. The improved wave equation is equivalent to the system
(see [37] 1.5.1):

0= —iVL' 4+ qAL* + me P R!,
0= —iVR' + gAR" + me’L". (30)
And the probability current satisfies:
J=¢¢=Dr+Dy; Dp=R'R"; D = L'L,
pe " =¢p=L'R' + R'L"; pe' = ¢ = L'R' + R'T". (31)
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The local reduced velocity v is so defined:

1
v=Sk W= v =T (32)
This gives:
~ 1, it _ Loimis
vL'= —(R'"R'+ L'L")L' = —-R'R'L",
p o P
5171 _ o (€1 &\ (m O\ _ (fa 0\ s
RL_2(O 0)(7]2 0>—<0 0 ; a1 = per,
. 1
R'R'L' = R'a, 203 =a R,
me R = g RV = "RIR'D = mvLl. (33)
p p
~ 1, = FINAL_ L1715
vR'= (R'R' + L'LYR' = ~L'L'R! (34)
p p
SR lpg ol oG e
p P 2 P

Then the system (30) is equivalent to the system seeming uncrossed:
0= (—iV + g4 + mv)L',
0= (—iV 4 qA + mv)R", (35)
equivalent to:
0= (—iV + gA + mv)n*,
0= (—iV + gA + mv)el. (36)

These systems are not truly uncrossed, since v contains both right
and left currents. The Lagrangian density satisfies:

L=Ly+Lg, (37)
L = %[n”[(—iv + qA)n1 + me_wfl]],
L =RET(=iV + gA)e! + men']],
because right and left waves satisfy:
' tme el 4 € mePnl = me=iBpltel 4 meifeltp!
= me‘iﬁépe’ﬂ + mew%pe_w = mp. (38)
With the covariant derivative
d, = 0y +iqAy,, (39)
the Lagrangian density reads (see [37] 1.9):
L=R[- i(n*Tord,mt + f”&“duﬁl)] + mp. (40)
1.2. Normalization of the Wave

Since the wave equation is homogeneous the Lagrangian density is null
for any solution of the wave equation. The momentum-energy tensor
issued from the invariance of the Lagrangian density under space-time
translations (Tétrode’s tensorial densities) reads:

T" = Rlin*Totd,n* +ie1167d, 1)) — 61 L
= Rfin*Totd,nt +ic'erd, ). (41)
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For a wave with an energy E satisfying:

. . E
—idon* = —idot' = %517 (42)

El
%77,

the momentum-energy tensor satisfies:

19 = Rli(n*Tdon' + i€ doe")] = *%(n”nl +&Me)y = —pi—. (43)

The condition of normalization of the wave function:

// dvil—z =1, (44)
0:E+///dvT(§). (45)

The left term of this sum is the total energy E of the electron,
linked to the gravitational proper mass (gravitational redshift) while
the right term is the sum of the local density of energy of the wave.
This local density is linked to inertia in the form of the Lorentz force
(see [37] 1.9):

is then equivalent to

0=0,T"+ F,j'c"; TH =T\c". (46)
where F' is the electromagnetic tensor. With
F=VA=FE+iH;, j=q]=pc+] t=1y+T, (47)

where E is the electric field, H is the magnetic field, p. is the density
of charge, j'is the density of current and f is the density of force, (46)
gives: .
f=p.E+ixH; fo=E-j. (48)
The normalization of the electron wave is then exactly equivalent to
the equality between gravitational mass and inertial mass, the prin-
ciple at the basis of general relativity. This normalization is then a
necessary consequence of physical laws.

1.3. Electromagnetic Field

If the A potential is not exterior to the quantum wave, but linked to
the fermion wave by:
A=Dgr-Dy, (49)

the electromagnetic field:
F:VA\:E+iﬁ; E:Ejoj; ﬁ:Hij, (50)

satisfies the following relations with the Tetrode momentum energy
tensor (see [37] 1.10):

E'=2(T§ —T3); H' =2(T; + 1Y),
E? =2(T§ —T7); H? =2(T5 +179), (51)

This implies that the electromagnetic field has components that are
directly linear combinations of the densities of impulse-energy which
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are components of the Tetrode tensor. These equalities relieve quan-
tum field theory of the infinities coming from the electric field created
by electric charges. The energy of a charged fermion is the sum on all
space of the local energy of the Tetrode tensor, linked to the electric
and magnetic field, not to the square of these fields. These equali-
ties also mean that the components of the electromagnetic field are
mere densities of impulse-energy. This joins the beginning of quan-
tum physics, when Einstein discovered that light contained grains of
impulse-energy, nowadays called photons.

1.4. Quantized Kinetic Momentum

Since the Lagrangian density is a sum of two chiral parts, a second
Lagrangian density exists as difference of these parts. Then a second
momentum-energy tensor, first noted by O. Costa de Beauregard [47],
satisfies:

L™ =Ly~ Lg, (52)
Vi =R[—ilntTordnt — €757 d\¢M]. (53)
The invariance of these demnsities under the Cl§ group (inducing

rotations, boosts and similitudes) introduces the general transforma-
tion [48]:

1 , ,
M =1+ (0w’ + 0wloj + 0w i + ow'i) (54)
where the eight dw™ are infinitely small. We have:
1 , .
Mt =1+ i(dwo +owo; — éw?’ﬁiaj - 5w7i)
¥ = X/“O'M — MXMT =x4+ 5X#0M; oxt = XZH(;wi (55)
This gives:
0xY = x96w0 + x'ow! 4+ x%6w? + x36w3,
Sxt = x95w! —+ 10w + x26w8 — X35w57 (56)
0x? = x%w? — x1 0w’ 4+ x%6w’ + x3sw,
5x3 = x96w3 + xow® — x20w?* + x36wP.
The only non-null X! are then:

Xg :xo; X? :X1; XS :XQ; Xg :X37

Xo=x"; X{ =x" X] =% X{=x (57)
Xg = X2; X22 :XO; Xg = —xl; X42 =X3,
XS’ =x3; Xg’ =xY Xff = —x? Xg’ =x!,

Bailin [48] notes the following relation for the different fields ¢, and
their variations

§pa = PFow'. (58)

Since we may use the adjoint term to obtain the real part we can
consider only two spinor fields:

1 =1n" pa=¢". (59)
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And we have:

n' 460t = Mn'; €' + 66! = Mg,

1 . )
M=1+ 5(&»0 —dwloj + dwtiio; — swi). (60)
This gives:
206" = 6Lt + dwlo1€! + dwloat! + dwiose! (61)

+ dwhic1 € + dwPioat! + dwliogt! + dwTi?,
20mt = 6w'nt — dwloint — dw?oent — dwosnt (62)
+ dwhioint + dwlicont + dwliosnt — dwTint.

Through the relations (59) we arrive at

1 1 1 1
n n n n
625, d)izfg'l—; ¢%:70—2?; (15;13:70357
1 1
0} =i L5 6y =ioas ) =ioyhs @f =it (63)
¢ ¢! 51 ¢!
¢g:57 (b%:o'l*v ¢2 27 ¢3_U32
1 1 1 1
d)i—zolf—, ¢5—2 2%7 ¢6_i 36 ; ¢7 ﬁ (64)

Noether’s theorem associates with each of the eight parameters w™
a conservative current:
oL~ oL~
S v a
Ji = ( (OVWa))Xi — a5 % (65)
9(0upa) 9(Outpa)

The j; current is particular because i belongs to the center of CI3.
Quantum theory previously used only the quantities ji to j§. These
six space-time vectors now join two other vectors and it is precisely
one of these new vectors, j7, that we will presently use. We have:

o ( OL” ) , 0L
# = (5,5 #0) X ~ 5,0
Now the only X} that are not null are listed in (57) and this list
contains none of X¥. This results from the following property: the
generator 4 of the chiral gauge U(1) belongs to the kernel of the ho-
momorphism f : M +— R from CI3 into the D* group of similitudes.
We then have:

¢7- (66)

oL~
o a
=g, 67)
T 00 (
Using the equalities (63) and since the adjoint of a real is the real
itself we obtain:

, 1 - 1
ol 1t ou AT olert &
# =2knton (- 2l (an S (69)

This implies:

1 1
Jr= §(D1L +Djy) = §J7 (69)

///dv%j?z%///dwozg (70)
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Therefore the quantization of the kinetic momentum of the electron
with the value /2 is a necessary consequence of the equality between
gravitational and inertial mass and of the enlarged relativistic invari-
ance under CI3.

1.5. Pauli’s Principle

The Bohr atomic model fits Mendeleev’s classification trough two hy-
potheses: the quantification of the action and the Pauli principle. A
true theory of fields must account for this principle from the properties
of the field. The resolution of the improved wave equation in the case
of the hydrogen atom gives a set of quantum states which are not only
normalized, but orthogonal. This orthogonality was proved as early as
1934 by L. de Broglie [49] for Darwin’s solutions. This orthogonality,
first obtained for the Hermitian scalar product of the Dirac theory, is
equivalent to the orthogonality for the Euclidean product of the re-
al Clifford algebra [8]. This result remains for the new solutions of
the Dirac equation with a Yvon-Takabayasi angle everywhere defined
and small [8,37]. The Pauli principle may then be stated as: Two
electrons in an atom must have orthonormal states. This implies that
the chiral currents, the J current, and the electric current, are addi-
tive [37]. The origin of the orthonormalization is double: the necessity
of the normalization comes from the principle of equivalence between
gravitational and inertial mass. The use of two sets of Dirac matrices,
one for non-relativistic approximation, the other for chiral waves and
weak interactions, induces the existence of two families of solutions.
The normalization in one family is equivalent to the orthogonality in
the other family. If ¢; and ¢ are two solutions then ¢; + ¢ and
@1 — ¢ are approximations of the solutions corresponding to the wave
of two electrons. The wave of an electron in a system of electrons is
also a function of space-time with value in Cl3. Therefore the Dirac
wave does not need the configuration space of non-relativistic quan-
tum mechanics. Moreover the additivity of the chiral currents implies
both the additivity of the charges and of the mass-energy.

2. Gravitation

The full meaning of (1) is the inclusion of the space-time manifold in
Cl3, which is a Lie group, then also a 8-dimensional manifold. The
quantum wave of the electron allows us the definition of a mobile
orthogonal (but not orthonormal) basis (Dg, D1, D2, D3). Using:

S = dord; S| = dorg, (71)

Sy +iS(y) = d(:igg), (72)
Ay + 1Al = dgfé), (73)
r = S[VD)6! ~ 50,1, (74)

T +iT = m. (75)

The 7 tensor is the density of spin of Durand [10,47]. With the
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improved wave equation of the electron, this gives the following con-

nection (see [37] D.4) :
P?# =D, - [Say — 2¢A@2)] + 2mp§;2u (76)
I9, =D, [Se) + 2¢Ax)] — 2mpd),, (77)
5, =Dy~ Se), (78)
F%[L =—Dy- [Sél) - 2‘1AI(2)]» (79)
F?# =Dy [Sé2) + 2qu(1)]» (80)
T3, = =Dy - [S(s) + 2¢A] — 2mpdy, (81)
[0, = Dy~ [=2T + 2q.Af)], (82)

with 6§ =1, 67 = —1,j = 1,2,3 and 6 = 0, # v. CIj is not only

a manifold including space-time, it is also the invariance group of the
wave equations. Using:

M=1+ dx“(aﬂ + aioj + ai+j7;0'j + azi)v (83)

where the aj, for p = 1,2,3,4 and n = 0,1,...,7 are 32 numeric
functions of X bufﬁ(:lently smooth and the dx* are the increments of x
at this point-event in the local basis. The similitude R defined by M
which changes x into x’, such as X' = R(x) + a = MxMT + a where a
is the vector a = a*o, of a translation, gives:

/0

X :XO—I—dXO—FQ(agX —|—a x*! —I—a x? —|—a x)dxH,

= x! 4 dx! —|—2(aix —|—a x! —|—a x> —a X3)dX'u,

X = x> 4+ dx* 4+ 2(a2x’ — aSx' + alx® + a}x?)dx",

X* =x3 4+ dx® +2(a X +a5X1 a x? +a )x3)dx". (84)

Then the Christoffel symbols I'j, satisfy:

g, =Ty, =T, =T3, =2a), (85)
Iy, = 1“0 =2a,; T3, =T9, =2a, (86)
Iy, =T%, =2d; I, = -T5, =2a), (87)
I, =-T3, =2d; Ty, = 71“2 =245, (88)

The identity between inertia (I'3, symbols) and gravitation (I'g,
symbols) is equivalent to the identification between the two connec-
tions:

=TG5, (89)

There are actually only 28 independent equalities (28 = 8 x 7/2 is
the dimension of SO(8)). The quantum wave in a gravitational non-
null field follows exactly the same invariant wave equations as in a
null field, with only the change of the V operator into the invariant
derivation D (see [37] 4.1.2) such as:

a" = otay, (90)

DG = [V~ 5(VAI~)J5 (o1)

1 _ .
=[V - §(a0 —dlo; +d*io; — a"i)]p.

Here all 32 functions, including the four ones of a” that are not
implied in the calculation of the tensors of GR, must be considered.
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Einstein thought that something was lacking in the physical theory
for the integration of quantum physics into classical physics. The lack
was in classical physics.

When the gravitational field is weak the double link between the
invariant equation and the Lagrangian density is preserved, conserving
the probability current. With:

b
D=0'D,=D—i-, (92)
3 ao aj .a/3+j 7
D:a‘DHZV—Eﬁ-(?—Z?)Uﬁ V=V,o"
This gives:
1 . .y
D+iV=V+ [-a"+ (ol —ia®*)o;] +V (93)

_ ( 0o — 03 —01+102

1
Z ; mo g
-0 —i02 Oy + 03 ) * 2(X“ +Xy)ot +aV,

0o_ 1 _ .2 3 _ _,0_ 4, 5 3
Xo=—ag—ay; —a3 —az; X3 =—a3 —as+aj —ag,
4, .5, 6 2, .1 .6
Yo =a7 +a3+as; Y3 =—aj +as +ag,
0_ 1 _ .5, 6 0, .4 _ 2 6
X1 =—aj —ap —az +ay; Xo=—ay+az —aj—ay,

4 _ .2 3. vy, _ .3, 5_ 1
Y1 =ag—a3+ay; Yo =a]+ay —asz,

where V is a gauge vector proper to each spinor equation. For instance
the invariant wave equation of L! is equivalent to the system formed
by its real part (Lagrangian density) and by its imaginary part:

i i 1
0= —iT}”(Vﬁl) + §(V771)T771 + (§Yu + Vu)DlLﬂv (94)
0= L0, + XDl )

when X,, = 0 the probability current is conservative, Lagrange equa-
tions operate with conservative momentum-energy tensor and quan-
tized kinetic momentum %/2. On the contrary when X, # 0 (infla-
tion?) the gravitational field is dominated by the curvature of homo-
thety. The probability current is no longer conservative, there are no
Lagrange equations and no more conservation of momentum-energy
(see [37] 4.3).

The unification between gauge forces and gravitation relies on two
following potential vectors:

0=a’ +b; b:i?)B, (96)
where B is the potential term of the U(1) gauge group. This equality
simplifies the equations of the quark sector for electro-weak forces
(see [37] 4.2).

The principle of equivalence is also a consequence of the properties
of the quantum waves: for instance the L' wave has for the Lagrangian
density, in the case X, = 0:

0=L'=-L}+L], (97)
£} = 20 9n =t G + 3w — mavn, (99)

i 1. 1. .
E; = 5(8,177”)0“771 + an(EaZ + §Yu0/ + mpv)n1,

m=my—ma; Lj =L, (99)
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The mass term of the wave equation is then always a difference
between two mass-energy terms. The frequency of the de Broglie wave
is then also a difference between the frequency of the considered system
including a particle and the frequency of another system without this
particle. This also applies to the Mdssbauer effect.

3. Second Quantization and the Standard
Model

The first sections used the Dirac wave with its two chiral parts. The
perspective of second quantization considers a wave with value on a set
of linear operators (creation and annihilation operators), conserving
all results of the first quantization (for instance the results for the
hydrogen atom). Moreover the occupation number of the quantum
wave, in the case of a fermion, can be only 0 or 1. So we now let
us suppose that the set of the values of the fermion wave is enlarged
from C13 into End(Cl3). This large multiplicative group contains Cl3
since the Pauli algebra contains diagonal matrices (this allows us to
conserve the results of the first quantization). Moreover a function
with value in a Lie group of endomorphisms may be considered as
acting on itself, like creation and annihilation operators. The ¥ wave
of second quantization is then supposed to be a function of space-time
with value into End(Cls):

U de, P = V(p); ¥ € End(Cl3); x = ¢ey$e. (100)

where y belongs to the auto-adjoint part of Cl3. The set of the y
(numeric space-time) is included into the Cj Lie group, which is also
an 8-dimensional manifold. Since End(Cl3) = Cls3 = Mg(R), ¥
reads:

_ (Y i, UL+
U= U(x) = (\Ij e m) , (101)
. e 0 0 of
Uy =P1 —idy; 7’1=<¢:) $e>;11:<¢n (bon),
. r 0 0 1
o L) %)
U, =—1P3+1I3; P3= SN s I3 = |- ug )
g 153 3 3 <O ¢dg 3 ¢ug 0
, Pay 0) (0 d)T)
Uy, = —iPy + Ty; Py = Vo= (Y %w) . (102
=iz o= (0 D)= () ). am

The ¥ term is then composed of two different kinds of terms: ¥;
which is alone, ¥,., ¥, and ¥, which are three similar terms, different
from ;. This means that the difference between a lepton part ¥; and
a quark part (¥,, Wy, ¥;) directly proceeds from the definition of the
whole quantum wave. The lepton part contains a diagonal part which
is the wave of the electron, with its left and right parts and the wave
of the neutrino. This neutrino wave is equally the sum of a right and a
left part. The standard model previously used only the left part, while
the full wave describes the magnetic monopole of Lochak’s theory
[38—45]. The quark wave appears naturally in three parts named in the
standard model r, g,b. This implies the conservation of the baryonic
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quantum number. The lepton part of the wave is studied in [20,22,28,
31] [36,37]. The full wave is made of 16 chiral parts, eight left waves
1™ and eight right waves £". Each wave follows an equation similar to
the previous equations of the electron:

iVt = P Ve = paen, (103)

where the p] and p4 are space-time vectors containing gauge terms and
mass terms. These equations are form-invariant under the enlarged
relativistic group Cl3. The lepton part of the wave is gauge-invariant
under the U(1) x SU(2) gauge group of the electro-weak theory, with a
Weinberg-Salam angle equal to 30° [24,36,37]. The value of the electric
charges are calculated. The gauge invariance is both compatible with
the form invariance and with the presence of mass terms in the wave
equations. The full wave is gauge invariant under the U(1) x SU(2) x
SU (3) group of the standard model, the SU(3) part of the gauge group
acts only on the quark part of the full wave, explaining the fact that
leptons do not see strong interactions. The double link between the
wave equations and the Lagrangian density is similar to the electron
case. Therefore the existence of two kinds of tensorial densities for the
momentum energy, 1" for the sum and V for the difference between left
and right parts of the waves, is completely similar to the electron case
previously described. The extremal principle of Lagrangian physics
is then not a meta-physical principle; it is only a consequence of the
form of each wave equation and of the non commutative structure of
the GL(2,C) group.

As in the electron case, the J current is the sum of all chiral cur-
rents, p? is the scalar product J - J. The mass term of each Equation
(103) contains the unitary space-time vector v = J/p. The wave E-
quation (103) are then only partially uncrossed, v depending on all
chiral waves. The normalization of the wave and the quantization of
the kinetic momentum are obtained with the same method previous-
ly described in the first section (electron case). This quantization is
obtained only for the whole wave. This explains the confinement of
the quarks in the proton or in the neutron since the quarks do not
have a quantized kinetic momentum 7%/2. Only the whole proton or
the whole neutron have a quantized kinetic momentum #/2.

4. Concluding Remarks

The wave with value in End(Cl3) accounts for all particles of the first
generation. The wave equation contains a og; product that is only
one of six similar products: o921, 032, 013, 012, 023 and o3;. Charge
conjugation is the C = PT symmetry corresponding simply to the
change of o by or;. The passing from 21 to 032 and 013 may
account for the two other generations.

The wave equations of the gauge fields are obtained by using the
iterative process giving second order, third order, etc. wave equations.

The maximal violation of the parity in weak interactions, meaning
a preference for the left waves, is also a consequence of the properties
of material waves, (see [37] 3.8).

More generally, the laws and even the principles governing these
laws (principle of exclusion, extremal principle, principle of equiva-
lence, maximal violation of parity in weak interactions) are themselves
consequences of the properties of the material waves.
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