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Abstract 
A new Modified Discrete Wavelets Packets Transform (MDWPT) based me-
thod for the compression of Surface EMG signal (s-EMG) data is presented. 
A Modified Discrete Wavelets Packets Transform (MDWPT) is applied to the 
digitized s-EMG signal. A Discrete Cosine Transforms (DCT) is applied to the 
MDWPT coefficients (only on detail coefficients). The MDWPT+ DCT coeffi-
cients are quantized with a Uniform Scalar Dead-Zone Quantizer (USDZQ). 
An arithmetic coder is employed for the entropy coding of symbol streams. 
The proposed approach was tested on more than 35 actuals S-EMG signals di-
vided into three categories. The proposed approach was evaluated by the fol-
lowing parameters: Compression Factor (CF), Signal to Noise Ratio (SNR), 
Percent Root mean square Difference (PRD), Mean Frequency Distortion 
(MFD) and the Mean Square Error (MSE). Simulation results show that the 
proposed coding algorithm outperforms some recently developed s-EMG 
compression algorithms. 
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1. Background 

Electromyographic signal compression is a recurrent topic in telemedicine. Digi-
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tized s-EMGs are most commonly used in applications such as monitoring and 
patient databases. Furthermore, long-term records are widely used to extract im-
portant information from the muscles signals or to detect such information. 
Therefore, the purpose of s-EMG signal compression is to reduce by as much as 
possible the number of bits of digitized s-EMG data that need to be transmitted 
or stored, with reasonable complexity of the implementation, while maintaining 
clinically acceptable signal quality. During the past few decades, many schemes for 
s-EMG compression have been proposed. As most of them do not reconstruct ex-
actly the original signal when decoded, they are called lossy-compression tech-
niques. Some authors [1] [2] have classified compression techniques of biomed-
ical signals into two categories, namely direct methods and transform methods. 
However, some other publications, such as [3], have proposed a third category, 
“other methods”, for those methods that cannot be included in the first two cat-
egories. We will not dwell on the details of the different categories here but we 
situate our compression approach in the second category, namely the transform 
methods. The state of the art of S-EMG signal compression, which we are going 
to present here, will be essentially based on transform methods. Waveform trans-
formation-based encoders have shown better performance evaluation based on 
objective metrics versus Signal-to-Noise Ratio (SNR) and data compression ratio 
[4]. The Discrete Wavelet Transform (DWT) and the Discrete Cosine Transform 
(DCT) known for their energy concentration advantages, regularity in the trans-
formed domain have been applied to S-EMG compression [5] [6] [7]. Wavelet 
transforms (associated with another transform) provide better results when ap-
plied to S-EMG encoders. The built-in EZW (Embedded Zero-tree Wavelets) 
compression algorithm is an example. It has a high compression ratio with low 
distortion of the EMG waveform [8] [9] [10]. Increasingly, studies are looking at 
optimizing basic functions to better decorrelate the S-EMG signal in the trans-
form domain [11] [12] [13] [14]. Some researchers, in the interest of improving 
S-EMG compression techniques, have invested in a hybrid approach, thus mod-
ifying standard transform-based coders. For example, vector quantization has 
been applied to the transformed wavelet coefficient vector [15]. Another approach 
used mathematical models or neural networks [16] [17] [18] to approximate the 
shape of spectral amplitude in the wavelet domain. Another approach has mod-
ified the JPEG 2000 standard into 1D (one dimension) [6] to compress S-EMG. 
Using JPEG2000 [19] [20] [21] [6] [22]; H.264/AVC [12] [16]; HEVC [22]; 
2D-DCT [7]; 2D-DWT [7]; and 2D-fractal [23] have also been reported in the 
literature. The standard JPEG compression algorithm approach for high density 
electromyography (HD EMG) was found in [24], and recurring patterns [25] for 
S-EMG 1D [26] and 2D S-EMG signals [22] were found in Literature. In addi-
tion, research involving compressed detection has also been found in the litera-
ture [27] [28] [29] [30]. The MDWPT (without the DCT) was applied for the 
first time for S-EMG signal compression in 2015 and was presented at an inter-
national conference (IUT-Entreprises 2015 from the University of Douala, Ca-
meroon). It was clear from this work that the MDWPT is suitable for compress-
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ing the surface EMG signal with promising results. This first experiment resulted 
in a conference paper and was published in 2016 [31]. In the literature, we also 
find the work of Oyobe et al. [32]. Oyobe et al. compress surface EMG signals by 
combining the Wavelet Packet Transform (WPT) with the Discrete Cosine Trans-
form (DCT). They did a comparative study between the combinations: WPT + 
DCT and DCT + WPT. It appears from their work that the best combination is 
the first one (WPT + DCT). This work is also appropriate as a reference for 
comparing the expected results under this Article. Although all this work has in-
teresting solutions, the parameters of calculation complexity, compression fac-
tor, distortion rate and reconstruction fidelity still need to be improved to meet 
ideal specifications. It is therefore undoubtedly that the search for new tech-
niques for s-EMG signal compression is still ongoing. The major contribution 
we make through this article is the improvement of PRD and acceptable data 
quality as well as the conservation of considerable information after reconstruc-
tion (PRD and visual observation). The efficiency of our approach will be eva-
luated with respect to the wavelet packet transform [32] and this evaluation will 
be extended with respect to the literature. The rest of the paper is organized as 
follows: Section 2 presents the method, Section 3 presents the results and discus-
sion, and Section 4 contains the conclusion. 

2. Methods 
2.1. Discrete Wavelet Packet Transform (DWPT) 

Discrete Wavelet Packet Transform (DWPT) (sometimes known as just wavelet 
packets) is a wavelet transform where the signal is passed through more filters 
than the Discrete Wavelet Transform (DWT). Wavelet packets are the particular 
linear combination of wavelets. They form bases which retain many of the or-
thogonality, smoothness, and localization properties of their parent wavelets. 
The coefficients in the linear combinations are computed by a recursive algo-
rithm making each newly computed wavelet packet coefficient sequence the root 
of its own analysis tree. 

In the DWT, each level is calculated by passing the previous approximation 
coefficients though a high and low pass filters. However, in the DWPT, both the 
detail and approximation coefficients are decomposed. Figure 1 shows decom-
position into wavelet packets at level 3. 

The coefficients of detail ( id ) are obtained by high-pass filtering (filter 1h ), 
and decimated by 2 [33] [34]. The coefficientsof approximations ( ia ) are ob-
tained in the same way by low-pass filtering (filter 1g ). 

The resolution at the output of each pair of filters is two times lower than the 
input resolution. This is the principle of dyadic multiresolution analysis. The 
Mallat S. algorithm for wavelet packets is a generalization of discrete wavelet 
decomposition that offers a rich range of possibilities for signal analysis [35]. 
For an n-level decomposition, there are (n + 1) possible ways to decompose or 
encode the signal [36]. The wavelet coefficients, the conjugate filters and the  

https://doi.org/10.4236/jsip.2020.113003


C. Welba et al. 
 

 

DOI: 10.4236/jsip.2020.113003 38 Journal of Signal and Information Processing 
 

 
Figure 1. Wavelet Packet Decomposition Tree (level 3). 

 
reconstruction of the signal are respectively determined by the Equations (1)-(5). 

[ ] [ ] [ ]1, 2 ,
n

a j k h n k a j n− = −∑                   (1) 

[ ] [ ] [ ]1, 2 ,
n

d j k g n k a j n− = −∑                   (2) 

[ ] [ ]e jk

k
H h k ωω −= ∑                       (3) 

[ ] [ ]e jk

k
G g k ωω −= ∑                       (4) 

with [ ]G ω  the low pass filter, [ ]H ω  the high pass filter, [ ]1,a j k−  the ap-
proximation coefficients, [ ]1,d j k−  the detail coefficients. 

The reconstruction of the signal is given by the equation 

[ ] [ ] [ ] [ ] [ ], 2 1, 2 1,
n n

a j k h n k a j k g n k a j k= − − + − −∑ ∑         (5) 

2.2. Modified Discrete Wavelet Packet Transform (MDWPT) 

The algorithm of the MDWPT consists of modifying the pyramidal algorithm of 
the wavelet packet transform shown in Figure 1. Its principle is shown in Figure 
2. 

Figure 2 takes as input an X signal. This input signal (X) is decomposed by 
the DWT into detail coefficients (DC) and approximation coefficients (AC). 

The approximation coefficients (AC) are then decomposed by a basic wavelet 
(lazy wavelet) into an even signal (even numbers) and an odd number (odd 
numbers 1). Lazy wavelet is a wavelet that separates a given signal into two 
sub-signals: a signal consisting of even index coefficients (even signal) and the  
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Figure 2. MDWPT. 

 
other consisting of odd index coefficients (odd signal). This step can be consi-
dered as a subsampling of the input signal. 

A subtraction is then made between the even signal and the odd signal (odd 
numbers 1) and the result is assigned to the odd signal 2 (odd numbers 2). The 
approximation coefficient (AC) is then reconstituted by concatenating the even 
number coefficients (even numbers) and the odd number (odd numbers 2) pre-
viously obtained. 

About the detail coefficients (DC), they are decomposed by the wavelet trans-
form, in detail coefficients (DC1) and in approximation coefficients (AC1). A 
subtraction is made between DC1 and AC1 and the result is assigned in AC2. 
Initials DC are reconstituted by concatenating AC2 and DC1. 

C: Concatenation. The term concatenation designates the act of putting end to 
end at least two strings of characters. 

The signal Y is the concatenation of the new representation of DC and AC. 

2.3. Discrete Cosine Transform 

The discrete cosine transform decomposes the S-EMG signal into real coeffi-
cients in the frequency space. The direct and inverse transform of a signal x(n) 
are carried out according to Equations (6) and (7) respectively and defined in 
[37]. 

( ) ( ) ( ) ( )1

0

2 1
cos , 0,1,2, , 1

2

N

n

n k
y k k x n k N

N
α

−

=

+ π 
= = − 

 
∑         (6) 

( ) ( ) ( ) ( )1

0

2 1
cos , 0,1,2, , 1

2

N

n

n k
x n k y k n N

N
α

−

=

+ π 
= = − 

 
∑         (7) 

the coefficient α takes the values according to Equation (8). 

( )

1 for 0

2 for 1,2, , 1

k
Nk

k N
N

α

 == 
 = −



                (8) 
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The advantage of this transform is that it is real, reversible and has a fast 
calculation algorithm. DCT has excellent power concentration and bleaching 
of highly correlated data. Thus, it is widely used in compression of the S-EMG 
signal. 

2.4. Compression Approach 

The compression and decompression schemes are shown in Figure 3 and Figure 
4 respectively. The method consists in decorrelating the original S-EMG signal 
by the MDWPT + DCT. The decorrelated signal is quantized with a uniform 
scalar dead-zone quantizer. An arithmetic coder is employed for the entropy 
coding of symbol streams. 

Figure 3 shows the compression scheme that we propose. 
The numbers 1 and 2 in front of the arrows, mean that during the concatena-

tion, the vector bearing the number 1 is placed in the first position and is fol-
lowed by the vector which is carried by the number 2 and so on; 

The signal reconstruction algorithm is shown in Figure 4. 
 

 
Figure 3. S-EMG signal compression diagram. 

 

 

Figure 4. S-EMG decompression diagram. 
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÷ 2: This symbol means that the input signal is divided into two signals of the 
same length. 

Choosing the position of the DCT 
During the experiment, we noticed that by applying the DCT on the approxi-

mation coefficients or on the detail coefficients. We applied our approach on the 
S-EMG signals of the different categories and the observation is almost the same. 

Table 1 below presents some results (results obtained on the signal denomi-
nated Kher1 of category 1). 

 
Table 1. Influence of the DCT on the coefficients of the MDWPT. 

quantization  
step (Δb) 

DCT on the coefficients of approximations DCT on the coefficients of details 

CF (%) PRD (%) CF (%) PRD (%) 

10−4 97.02 27.7 97.39 26.82 

10−5 92.76 0.29 93.72 2.75 

10−6 87.56 0.03 88.24 0.28 

10−7 86.67 27.05 87.03 0.03 

 
The results in terms of compression factor or PRD are presented. 
Although the difference between the two results is not too great, it is impor-

tant to note that the DCT on the detail coefficients is found to give slightly high-
er compression rates. 

The implementation of the DCT on the detail coefficients would allow our al-
gorithm to extract an excellent concentration of the little information that the 
detail coefficients contain. For this reason, we chose to implement the DCT only 
on the detail coefficients. 

2.5. Scalar Quantization with Dead Zone 

Quantization 
The simplest form of quantization is scalar quantization. JPEG 2000 employs a 

dead-zone uniform scalar quantizer to coefficients resulting from the wavelet 
transform of image samples [38]. In this article, we employed dead-zone uniform 
scalar quantizer to coefficients resulting from the MDWPT + DCT of s-EMG 
samples namely EMG signal 1. Figure 5 illustrates such a quantizer with step 
size b∆ : 

 

 
Figure 5. Definition of quantization zones and highlighting the dead zone. 
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A scalar quantizer (SQ) can be described as a function Q that maps each element 
in a subset of the real line to a particular value. For a given MDWPT + DCT 
coefficient EMG signal 1; the quantizer produces a signed integer q given by 

( )EMG signal1q Q=                       (9) 

The quantization index q indicates the interval in which EMG signal 1 lies. In 
Figure 5, the endpoints of the quantization intervals are indicated by the vertical 
lines. Given q; the decoder produces an estimate of EMG signal 1 as 

 ( )1EMG signal1 Q q−=                     (10) 

In this work, EMG signal1  corresponds to the symbol flows from inverse 
arithmetic coding. 

For a given step size b∆ ; q is computed as 

( ) ( )
EMG signal1

EMG signal1 sign EMG signal1
b

q Q
 

=
∆

=  
 

     (11) 

The dimension of the quantization step b∆  is represented with respect to the 
dynamic dimension of the sub-band b. b∆  is represented in a form ( bε , bµ ) 
[39] corresponding to: 

111 2
2

b bRb
b

εµ − ∆ = + ⋅ 
 

                     (12) 

bR  is the dynamics of the original signal (number of bits), bε  is the desired 
dynamic of the coefficients and bµ  a multiplicative factor allowing to have 
values of b∆  different from the multiples 2N , with N positive integer. 

Notice that the MDWPT+DCT coefficients inside the interval ( );b b−∆ ∆  are 
quantized to zero for the quantizer in Figure 5. Thus, the interval ( );b b−∆ ∆  is 
called the “deadzone”. The width of this interval is 2 b∆ ; while all other intervals 
are of width b∆ . Figure 5 can be completed as follow Figure 6.  

The inverse quantizer is given by 

 ( ) ( )( )
1

0, 0,
 1

, 0,b

q
EMG signal Q q

sign q q r q
−

== =  + ∆ ≠
        (13) 

where r is a user selectable parameter within the range 0 1r≤ <  (typically 
1 2r = ). r can be chosen to achieve the best objective or subjective quality at 

reconstruction. 
• r = 0.5 result in midpoint reconstruction (no polarization). 
• r < 0.5 polarization of the reconstruction towards zero. 

 

 
Figure 6. Quantification Indexes. 
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A popular value for r is 0.375. for more details on the value of r = 0.375, refer 
to [38]. 

2.6. Arithmetic Coding 

An arithmetic coder is employed for the entropy coding of symbol streams from 
Uniform Scalar Dead-Zone Quantizer (USDZQ). The Arithmetic coding allows, 
from the probability of occurrence of the symbols of a source to create a single 
code word that is associated with a sequence of arbitrary length symbols. This 
differs from the Huffman encoding that assigns code words to variable lengths to 
each source symbol. The associated code with a sequence is a real number in the 
interval [0, 1]. This code is built by recursive subdivision of intervals. A range is 
divided for each new symbol belonging to the sequence. Is obtained, ultimately, 
a subinterval of the interval [0, 1] such that every real number belonging to this 
interval represents the sequence to coded. 

2.7. Evaluation Methods 

The Compression Factor (CF) is an important parameter in the quality evalua-
tion of a compression algorithm. It is defined by: 

CF 100% S S

S

O C
O

 −
= ∗ 

 
                    (14) 

where SO  is the number of bits needed to store the original data and SC  the 
amount of bits needed to store the compressed data. 

It is the main criterion for evaluating a compression algorithm. But when it 
comes to the evaluation of a lossy compression method, it is necessary to associate 
with this quantitative parameter those qualitative ones. Quality parameters are 
used to control the quality of reconstructed signals and to compare different ap-
proaches. The most commonly used quality measure is Mean Square Error (MSE) 
and defined by: 

[ ] [ ]( )2

1

1MSE
N

O r
n

y n y n
N =

= −∑                  (15) 

[ ]Oy n  is the original signal (according Figure 3, [ ]Oy n  = EMG signal); 
[ ]ry n  is the reconstructed signal; 

N is the number of samples of the signal. 
We have the signal to noise ratio (SNR): 

2

10 2SNR 10log x

e

σ
σ
 

=  
 

                     (16) 

where log is decimal logarithm. 
With 2

xσ  is the spectral power of the original signal and 2
eσ  is the spectral 

power of the reconstruction error. 
In [5] [40] two other evaluation criteria of the quality of the reconstructed 

signal are presented: the distortion of the average frequency denoted MFD (Mean 
Frequency Distortion) and the PRD (Percent Root mean square Difference). 
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They are defined respectively by Equations (17) and (18). 

( )

2

MFD
max ,

o r

o r

F F
F F

 −
=   
 

                    (17) 

In Formula (17), oF  and rF  represent the average frequency calculated re-
spectively on the original signal and on the reconstructed signal. 

[ ] [ ]( )
[ ]( )

21

0
21

0

PRD 100%
N

O rn
N

On

y n y n

y n µ

−

=
−

=

−
= ⋅

−

∑
∑

              (18) 

N is the number of samples of the original signal; μ is the reference value of 
the DAC (Digital Analog Converter) used for data acquisition s(n) ( 0µ =  for 
EMG signals). [ ]ry n  is reconstructed signal and [ ]Oy n  is the original signal. 

2.8. Characteristics and Sources of the Signals Used 

The compression algorithm proposed is applied to two categories of surface EMG 
signals. The first category contains surface EMG signals collected at a resolution 
of 12 bits/sample. The second category consists of EMG signals suitable for a 
dynamic and isometric protocol at resolution of 16 bits/sample. In the course of 
the experiments we found that the resolution of the signals influenced the dif-
ferent parameters such as PRD, CF... Therefore, we decided to apply our ap-
proach to both categories of EMG signals. 

2.8.1. S-EMG Protocol of Category 1 
The recordings are performed on biceps muscles with 40% of the maximum vo-
luntary contraction. The angle between the arm and forearm of the subject is 90 
˚. The electrical activity of the muscle via the electrodes passes through an am-
plifier whose gain is between 2000 and 5000 (enough to view the output voltage). 
The signal thus amplified, passes through an analog/digital converter and this 
signal is recovered by a computer and stored as a record. The signals are rec-
orded at sampling rates of 2048 Hz and with a resolution of 12 bits/sample. 

2.8.2. S-EMG of Category 2 Using Dynamic and Isometric Protocol 
The acquisition of the different EMG signals in this category respects dynamic 
and isometric experimental protocols. 
• Isometric experimental protocol 

The recording was carried out on 14 individuals. EMG signals are collected on 
the biceps muscles using pre-amplified surface electrodes (DE-02 model, DelSys 
Inc. Boston MA, USA). The angle between the arm and forearm of the subjects 
was 90˚ with 60% of the maximum voluntary contraction. The signals were fed into 
a data acquisition card with LabVIEW (NI-DAQ for Windows, National Instru-
ments, USA). All signals were sampled at 2 kHz and digitized with 2 bytes/sample. 
The duration of the signals varies from 3 to 6 minutes [17]. 
• Dynamic experimental protocol 

During the evaluation of the proposed techniques with a dynamic experimental 
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protocol, a set of S-EMG signals collected on the large external muscle were used 
in 14 people on a cycling simulator (Cateye CS1000, USA). In the experiment, 
pre-amplified surface electrodes were used (DE-02 model, DelSys Inc. Boston, 
MA, USA). The signals were fed into a data acquisition card with LabVIEW 
(NI-DAQ for Windows, National Instruments, USA). All signals were sampled 
at 2 kHz and quantized on 16 bits. The duration of the signals varies from 3 to 6 
minutes [17]. 

3. Results and Discussion 
3.1. Results of Proposed Approach 

The results of compression and decompression are reported in Tables 2-4 and 
Figures 7-10. 

The results that we present in the different tables below are some results se-
lected from among many others. In each category of EMG signals, we have re-
named the signals. in the tables below, the names “Kheir1”, “Kher2”, “Jouve3” 
refer to the signals of category 1. For category 2, the names “EMG Dynamic 1”, 
“Dynamic 4”, refer to names, dynamic S-EMGs and “EMG isometric 1”, “EMG 
isometric 4” refer to names, isometric S-EMGs. 

Tables 2-4 present respectively the results of the compression and decom-
pression by the proposed approach (MDWPT + DCT) implemented on the 
S-EMG of the first category and the second category. The proposed method  

 
Table 2. Results of the proposed approach implemented on S-EMG of the category 1 (12 bits/samples). 

Quantization 
Step 

Proposed method 

EMG Kheir 1 EMG Kheir 2 

CF (%) PRD (%) SNR (dB) MSE MFD (%) CF (%) PRD (%) SNR (dB) MSE MFD (%) 

10−8 83.54 0.002 91.22 2.80E−17 4.44E−9 83.48 0.029 90.61 3.015E−17 3.69E−8 

10−7 87.03 0.03 70.97 2.96E−15 3.54E−8 86.92 0.028 70.88 2.83E−15 1.67E−4 

10−6 88.24 0.28 51.21 2.8E−13 1.43E−5 88.20 0.29 50.67 2.97E−13 0.01 

10−5 93.72 2.75 31.22 2.79E−11 2.40E−5 93.63 2.85 30.89 2.83E−11 0.02 

10−4 97.39 26.82 11.43 2.66E−9 4.72E−4 97.32 27.57 11.19 2.63E−9 0.02 

 
Table 3. Results of the proposed algorithm implemented on S-EMG using Dynamic Protocol of the category 2. 

Quantization 
Step 

Proposed method 

EMG Dynamic 1 EMG Dynamic 4 

CF (%) PRD (%) SNR (dB) MSE MFD (%) CF (%) PRD (%) SNR (dB) MSE MFD (%) 

10−5 88.34 0.0043 87.15 2.71E−11 1.62E−8 88.56 0.0047 86.42 3.11E−11 3.82E−8 

10−4 90.90 0.05 66.85 2.90E−9 1.71E−8 91.03 0.05 66.40 3.12E−9 1.99E−5 

10−3 92.79 0.43 47.26 2.58E−7 2.16E−6 93.36 0.43 47.42 2.46E−7 8.26E−5 

10−2 95.92 4.27 27.40 2.56E−5 2.74E−5 96.07 26.86 4.54 2.80E−5 0.02 

10−1 98.42 37.42 8.54 0.0019 0.23 98.57 36.77 6.69 0.0018 3.22 
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Table 4. Results of the proposed algorithm implemented on S-EMG using Isometric protocol of the category 2. 

Quantization 
Step 

Proposed method 

EMG Isometric 1 EMG Isometric 4 

CF (%) PRD (%) SNR (dB) MSE MFD (%) CF (%) PRD (%) SNR (dB) MSE MFD (%) 

10−2 88.67 0.006 83.82 3.05E−5 8.62E−10 88.91 0.01 81.98 2.99E−5 1.05E−8 

10−1 91.27 0.06 64.01 0.0029 2.89E−7 91.51 0.08 62.01 0.0029 6.36E−8 

2 * 100 94.46 1.27 37.91 1.19 5.36E−5 94.75 1.58 36.02 1.18 1.88E−7 

4 * 100 95.35 2.47 32.14 4.50 1.73E−4 95.62 3.15 30.03 4.70 0.0038 

6 * 100 95.85 3.87 28.24 11.05 3.9E−4 96.10 4.79 26.39 10.87 7.62E−4 

 

 
Figure 7. Evolution of the CF versus the quantization step. (a) S-EMG of the first category; (b) Dynamic S-EMG of the second 
category; (c) Isometrics S-EMG of the second category. 
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gives good results, be it qualitative (MSE, SNR, PRD and MFD) or quantitative 
(CF). According to these Tables 2-4, the quality of the signal improves progres-
sively with the refinement of the quantization step and this to the detriment of 
the compression factor which decreases as the quantization step is refined. The 
compression factor will be chosen according to the application. Thus, it is ne-
cessary to make a compromise between the compression factor and the quality 
of the decompressed signal to be retained. It should not be forgotten that the 
quality of the signal reconstructed by this algorithm depends closely on the re-
finement of the quantization step. The computational load depends on the re-
finement of the quantization step. Finally, to choose the compression factor it is 
imperative to consider the application to choose the quality of the signal and the 
associated compression rate. The framed parts of Tables 2-4 above, represent 
the results where the quality of the reconstructed signal is good. The evolution of 
the compression factor as a function of the quantization step for each category of 
the EMG signals is represented by the following figures. 

Figures 7(a)-(c) above shows the evolution of the compression factor and the 
quantization step for each category of the signal. The analysis of Figures 7(a)-(c) 
and Tables 2-4 shows that a small step corresponds to a good quality of the re-
constructed signal and therefore an optimal compression factor. An excessive 
quantization step corresponds to a very high compression factor and consequent-
ly a poor quality of the reconstructed signal. This leads us to look for the optimal 
quantization step corresponding to the best quality of the reconstructed signal 
and indirectly the optimal compression factor. During the experiment, we de-
termined that the optimal compression factor is on average 93.42%. With regard 
to the qualitative parameters, the averages are: PRD = 1.06%; SNR = 40.63 dB. 
This at first sight shows that the proposed approach is efficient and robust. 
However, it is important to note that the quality of the decompressed signal is 
very sensitive when it is a compression for transmission or for storage for the 
purpose of remote diagnostics or subsequent diagnoses. It follows from the fore-
going that the trade-off between the compressed signal and the quality of the 
decompressed signal must be closely monitored, since poor quality of the recon-
structed signal would lead to a fatal diagnosis error. 

It is therefore imperative that subjective criteria come into play requiring the 
presence of experts accustomed to evaluate these criteria. Thus, in the biomedi-
cal field where the final judge is the specialist, the subjective criterion should be 
based on an expertise and diagnosis of original signals and reconstructed signals 
after compression. To better understand the quality of the signal reconstructed by 
the subjective criterion (visual aspect), the results of this experiment are record-
ed in Figures 8-10, representing the plot of the two categories of signals used. 

The goal of lossy compression is to drastically reduce the size of the data while 
keeping the compressed signal as close to the original as possible to better ana-
lyze the resemblance between the reconstructed compressed signal and the origi-
nal signal, we use the visual aspect. so we superimposed the two signals. From this 
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Figure 8. Qualitative examples. EMG signal (Jouve3) of the first category. CF = 92.44%, PRD = 1.48%, SNR = 36.57 dB, MSE = 
3.15 × 10−13, MFD = 0.01%, Quantization step = 10−6. 
 

 
Figure 9. Qualitative examples. EMG signal (Dynamic4) of the third category. CF = 93.36%, PRD = 0.43%, SNR = 47.42 dB, MSE 
= 2.46 × 10−7, MFD = 8.26 × 10−5, Quantization step = 10−3. 
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Figure 10. Qualitative examples. EMG signal (Isometric1) of the second category. CF = 94.46%, PRD = 1.27%, SNR = 37.91 dB, 
MSE = 1.19, MFD = 5.36 × 10−5, Quantization step = 2. 
 

superposition, we find that the two signals are almost identical. If we take the visu-
al aspect as a criterion, we can say that Figures 8-10 above show that the pro-
posed approach for different signals guarantees the conservation of considerable 
information after reconstruction (CF, PRD and visual observation). Although 
the results presented below show that the proposed approach is effective quan-
titatively and qualitatively in compressing surface EMG signals, it is imperative 
to compare these performances with the scientific works reported in the literature. 

3.2. Comparative Performance of Proposed Approach with Others 
Works of Literature 

In order to make a comparative evaluation of the performance of the proposed 
approach with other published works, we will distinguish three (03) cases. The 
first case will be a comparison of the performance of the proposed approach 
with the work published on the S-EMG signals of category 1. The second case 
compares the proposed approach with literature’s works implemented on the 
S-EMG signals of Category 2 (isometric protocol S-EMG signals), and the third 
and final case will be a comparison of the proposed approach with literature’s 
work implemented on the S-EMG signals of Category 2 (dynamic protocol 
S-EMG signal). 
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• First comparison case (on S-EMG signals of category 1) 
The works [23] [31] and [32] mentioned in Table 5 and graphically represented 

in Figure 11 have all been implemented on the same S-EMG signals as the pro-
posed approach. They are based on fractals, Modified Wavelet Packets Trans-
forms (MDWPT) and WPT + DCT (Wavelet Packets Transforms + Discrete 
Cosine Transforms) respectively. 

In analyzing the results, we note that the work of Ntsama et al. [23] have a 
minimum PRD of 1.09% corresponding to a CF of 70.80%; Welba et al. [31] has 
a minimum PRD of 0.61% and CF = 70%; Oyobe et al. [32] has a minimum PRD 
of 2.44% for CF = 72.52% while the proposed approach gives a minimum PRD 
of 0.002% for a CF of 83.54%. It is obvious that the proposed approach is more 

 
Table 5. Comparative performance evaluation for signals of the first Category-CF (%) 
and PRD (%). Best results (lowest PRD and high CF). 

Oyobeet al. [32] 
WPT + DCT 

Welba [31] 
MDWPT 

Ntsama [23] 
FRACTAL 

Proposed 
MDWPT + DCT 

CF (%) PRD (%) CF (%) PRD (%) CF (%) PRD (%) CF (%) PRD (%) 

72.52 2.44 70 0.61 70.80 1.09 83.54 0.002 

75.19 2.45 75 1.19 71.82 4.01 87.03 0.03 

76.95 2.45 80 1.52 72.87 4.92 88.24 0.28 

77.18 2.45 85 2.68 73.73 6.65 93.72 2.75 

77.63 2.45 / / 74.30 6.60 97.30 26.82 

 

 
Figure 11. Compression Factor as a function of the PRD (evaluation for S-EMG signals 
of the first category). 
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efficient than the published works [23] [31] and [32]. This comparison highlights 
the role, choice and importance of the DCT in the proposed approach on the 
one hand and the effectiveness of the approach compared to conventional wave-
let packets on the other hand (Table 5 and Figure 11).  
• Second comparison case (on S-EMG signals with isometric protocol) 

Articles [16] [22] and [30] have been implemented on the same data bank but 
not necessarily on the same S-EMG signals. Using the same S-EMG data bank is 
one of the reasons that encouraged the comparison of the proposed approach 
with these works. A comparative analysis shows that the proposed approach 
seems more efficient than the works [16] [22] and [30] (Table 6 and Figure 12). 

 
Table 6. Comparative performance evaluation for isometric protocol-PRD (%). Best re-
sults (lowest PRD and high CF). 

Trabuco et al. 
[22] 

Melo et al. [30] 
Trabuco et al. [16]  

1D WDAL 
Trabuco et al. [16] 

2D RI-HEVC 
Proposed 

MDWPT + DCT 

CF PRD CF PRD CF PRD CF PRD CF PRD 

70 2.07 70 - 70 0.77 70 - 88.91 0.01 

75 2.22 75 1.65 75 1.24 75 1.21 91.51 0.08 

80 2.52 80 2.23 80 1.99 80 1.78 94.75 1.58 

85 3.31 85 3.38 85 3.36 85 2.99 95.62 3.15 

90 6.88 90 6.14 90 7.06 90 6.18 96.10 4.79 

95 19.74 95 - 95 19.28 95 18.3 - - 

 

 
Figure 12. Compression Factor as a function of the PRD (evaluation for isometric proto-
col S-EMG signals of the second category). 
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• Third comparison case (on S-EMG signals with dynmic protocol of the 
second category of S-EMG signals 

For a given CF or less than 90%, Figure 13 shows that the proposed approach 
has the lowest PRD among the different approaches in Table 7. This remark 
leads to the conclusion that the proposed approach is more efficient than the 
other approaches in Table 7 in terms of PRD. Despite the good performance, it 
is also important to note that our compression approach has certain limitations. 
For example, the average optimal compression ratio is 93.42% for an average 
PRD of 1.06% and an SNR of 40.63 dB. From a compression ratio of 95%, the 
quality of the reconstructed signal begins to deteriorate. 

 
Table 7. Comparative performance evaluation for dynamic protocol-PRD (%). Best re-
sults (lowest PRD and high CF). 

Trabuco 
et al. [36] 

Melo  
et al. [30] 

Trabuco et al. [16] 
1D WDAL 

Trabuco et al. [16] 
2D RI-HEVC 

Proposed 
MDWPT + DCT 

CF PRD CF PRD CF PRD CF PRD CF PRD 

70 4.41 70 - 70 1.12 70 - 88.56 0.0047 

75 4.70 75 4.71 75 1.74 75 - 91.03 0.05 

80 5.41 80 6.25 80 2.64 80 2.71 93.36 0.43 

85 6.40 85 8.91 85 3.93 85 4.28 96.07 26.86 

90 8.22 90 12.60 90 6.11 90 7.96 98.57 36.77 

95 15.76 95 - 95 12.63 95 19.53 - - 

 

 
Figure 13. Compression Factor as a function of the PRD (evaluation for dynamic proto-
col S-EMG signals of the second category). 
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4. Conclusions 

In this article, it was a question of contributing to the compression of S-EMG 
signals through a new compression technique called MDWPT. This technique 
was tested on S-EMG signals in 2016 through a communication [31] which 
aimed to show that it is possible to compress S-EMG signals by this new ap-
proach (MDWPT). The purpose of this article was to further improve this com-
pression technique on the one hand and compare its efficiency compared to con-
ventional wavelet packets and compared to some literature work on the other 
hand. This work shows that the results are satisfactory and very encouraging. It 
is also apparent from this article that, the proposed algorithm for different signal 
guarantees acceptable quality as well as the conservation of considerable informa-
tion after reconstruction (FC, PRD and visual observation). The performance of 
an S-EMG compression algorithm depends of the type and resolution of the 
S-EMG signal. 

In this work, only surface EMG signals were considered. Extension to other 
types of electrophysiological signals may be a generalization track of the algo-
rithm. 
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Abbreviations 

MDWPT  Modified Discrete Wavelet Packet Transform 
DCT  Discrete Cosine Transform 
S-EMG  Surface electromyographics signal 
CF   Compression Factor 
SNR  Signal to noise Ratio 
PRD  ADPCM: Adaptive Differential Pulse Code Modulation 
ACELP  Algebraic Code-Excited Linear Prediction 
MFD   Mean Frequency Distortion 
PRD  Percent Root mean square Difference 
MSE  Mean Square Error 
DC   Detail Coefficients 
AC   Approximation Coefficients 
DAC  Digital Analog Converter 
JPEG  Joint Photographic Experts Group 
HD   High Density 
HEVC  High Efficient Video Coding 
H.264/AVC Advanced Video Coding 
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