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Abstract

We propose a new generator of continuous distributions with at least four
positive parameters called the Kumaraswamy-Odd Rayleigh-G family. Some
special cases were presented. The plots of the Kumaraswamy Odd Rayleigh
Log-Logistic (KORLL) distribution indicate that the distribution can take
many shapes depending on the parameter values. The negative skewness and
kurtosis indicates that the distribution has lighter tails than the normal distri-
bution. The Monte Carlo simulation results indicate that the estimated biases
decrease when the sample size increases. Furthermore, the root mean squared
error estimates decay towards zero as the sample size increases. This part
shows the consistency of the maximum likelihood estimators. From the consi-
dered analytical measures, the new KORLL provides the best fit to the analysed
five real data sets indicating that this new model outclasses its competitors.

Keywords

Odd Rayleigh-G Family, Kumuraswamy Odd Rayleigh-G Family, Kumuraswamy
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1. Introduction

Researchers use different approaches to induct additional parameters to a con-
tinuous class of distributions, ostensibly because in many applications, these
classical probability distributions do not fit real life data. In other words, all of
these approaches extend the classical baseline probability distributions by intro-
ducing additional parameter(s) to the baselines, thereby making the extended
baselines much more flexible to fit wide range of data from practical situations.
With this approach, several generalized families of distributions have been pro-
posed and applied to real life data in areas such as engineering, life sciences, en-

vironmental sciences, finance and medical sciences.
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Recently, there are a lot of attempts in the statistics literature to generalize
distributions. This generalization is mainly on a methodology proposed by many
researchers, as in [1]. The most frequently used is the T-X approach by [2].
Some of the generalized families of distributions based on this approach in the
literature include Weibull G family by [3], Lomax Generator of distributions by
[4], Odd Generalized Exponential family by [5], Odd Lindley-G family by [6],
Gompertz-G family by [7], Zubair-G family by [8], Odd Frechet G family by [9],
Power Lindley G family by [10], Topp Leone Exponentiated-G Family by [11],
Odd Chen-G family by [12], Burr X Exponential G family by [13], Inverse Lo-
max-G family by [14].

The objective of this paper is to propose a new family of distribution called the
Kumaraswamy Odd Rayleigh-G family of distributions which has the capacity of
providing more robust compound probability distribution when used in model-
ling real life data set. This new family adds three additional parameters to the
baseline distribution.

The rest of this article is structured as follows: In Section 2, we defined the
Kumaraswamy Odd-Rayleigh-G Family. In Section 3, we derive some models
based on the KORG family. In Section 4 we present the estimation method used
in estimating the parameters of non-linear models. We conduct a Monte Carlo
simulation study using a Kumaraswamy Odd-Rayleigh Log-Logistic (KORLLD)
model in Section 5. In Section 6, we apply the new model of KORG family to five
real life datasets and compare their performance with some existing distribu-

tions. Lastly, Section7 concludes the paper.

2. Kumaraswamy Odd Rayleigh G (KOR-G) Family

Attempts have been made to define new families of probability distributions
which enhance the flexibility in practical data modeling of well known baseline
distributions. In the spirit of the T-X approach by [3], this paper defines the

cumulative distribution as
F( =]z (t)a )

where f (H (x)) is the function of the baseline cdf H(x) of any continous ran-
dom variable X. The function f (H (x)) must satisfy the following conditions
(@) f(H(x))e(ab);
(b) f(H(x
(c) f (H (x
(d) f(H(x
Let 7'be a random variable which is continuous with probability density func-
tion (pdf) z(¢) defined on the close interval [a,b].
In 2011, [15] introduced the Kumaraswamy-G family of distribution. The

)
)) is non-decreasing and monotonically differentiable;
)) tends to aas xtends to —o;

)) tends to bas xtendsto .

probability density function (pdf) and the cummulative distribution function
(cdf) are given by:

A-1

fro () =229 (x¢)6(x¢) " [1-6(x¢) | x>0@2¢>0 (@)
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FKG(x)zl—[l—G(x;g)“T, X>0,a,4,¢ >0 (3)

where G(X;é’ ) and ¢ (X;é’ ) are the cdf and pdf of the baseline distribution
with parameter vector ¢ .
The Odd Rayleigh-G family has pdf and cdf given by

()w{ L[Mj } 05550 (@)

52[G(X;ﬂ)]3 262 G(X;ﬁ)
FOR(x)zl—exp{—%(gg;ﬁ;J } x>0,6,8>0 (5)

where G_(X,ﬂ) :1—G(X,,6’).
Lemmal

The cdf of the proposed KORG family of distributions is given by

Frors (X):l— 1—|:l—exp{— 23;2 {%J H , Xx>0,a,4>0
(6)

where x>0, a,4,0 >0 the vector f is the parameter of the baseline distri-

bution G(x,B) and G(x B8)=1-G(x,A).
Proof

From Equation (1),

Frors (X;a,ﬂﬁ,ﬂ)
-1 (7)

= [ i f o (66, ) Fog (16, 8) | [1—{|:oR (1.5, /3)}“} dt

let
y=1-{Fo (1.5, 8)}"
dy = {Foe (1.6, 8)}" " fog (1,6, B)clt
if t—>0,the y—>1 andif t—x, y_’l—{FOR(Xﬁ,ﬁ)}“.so,
Feors (X2, 4,8, 8) = — Ll’{FOR(Xﬁ,/?)}a Ay iy
Frons (52, 4,8, B) = —y* 1} Fos (e 2)” @)
and

Feore (X2, 2,5, ) :1—[1—{FOR (x5, ﬂ)}“]ﬂ )

and this can be written as
A

Feors (X2, 4,6, 8)=1- +1—{1—exp[—%(%} j} (10)

whence the proof. if X —0, Fyoeg (X;,4,6,8) >0 and if
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X—>®, Fons (Xa,4,8,8)=1-[1-1° | =1

From Equation (7), the pdf of the KORG family can be written as

feors (X, 4,8, B) = ad fop (X5, B)| Fog (x;5,ﬂ)]a_l [1—{FOR (x;5,ﬁ)}a}

1
(11)

And substituting Equations (4) and (5) in to 11 yields

o JBIG(6A) | 1 (G(xp))
fons () =% 5 [G(x8) p{ 25° G(x;ﬂ)]}

X

1- 1—exp{— ! (CE(X,B)J} , Xx>0,a,4>0

X

G(xp)

Similarly, differentiating Equation (6) with respect to x will also yield Equation
(12). Figure 1(a) illustrates the density function fyqee (X;@, 4,8, 8) with differ-
ent parameter values. It is obvious from this graph that f,qs (X, 4,8, 8)>0

Vv values of x. And to evaluate this integral

j:’fKORG (X, 2,8, B)dx

] (Gwn“

Let y=1-<1- — | =
€ y exp[ 252 G(X,ﬂ)

dy__e9(xp)6(:h), {_L[G(X:/)’)ﬂ
26°

- 3

dx 52 [G(x;ﬁ)]

7 i (b)
!
o+ o )
!
!
o & !
~ J
& i
% o ;
j
.)
- 1 — o=1,p=4,1=3,6=1
7 B— a=1,p=6, =3,6=1
B— o=1,p=4, 2=0.5,541
4 m— o=1.8,p=4, 1=3,63
— B— 0=0.5,5=3, A=3,551
T T T T | T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
X

Figure 1. Density and hazard rate plots of KORLL distribution with varying parameter values.
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if X2, then y=|1-(1-exp(~=0))" |0
therefore

Jy Trons (%, 2,8, F)dx=—[ 2y* dy =—y17 =1
J’: frore (X0, 4,8, B)dx =1

which showed that f, . (X;a, A,0, /3) is a pdf for the continous random vari-
able X. The Hazard function (hfyqe) and survival function (sfyoes) of the
KORG family can be given as

hf\ore (x): aﬂg(X;ﬂ)G(X;ﬂ)

52 [G_(x;ﬂ)T 1_{1_6)('0{_&;[2522} }}

XeXp{_Ti‘Z(EE:ﬁ;}z}[l_eXp{_T;(EEi:?;JZHH (13)

and

Sfrore = 1—{1—exp[— 2;2 (géigj }} (14)

Quantile Function of KORG

The quantile function of KROG model can be given as

Q(u)=G" 1 (15)

2

1
Py
1+| -25%log 1—{1—(1—u)1}

where G™ is the quantile function of the baseline distribution.

3. Sub-Models of KORG Family

In this section, we considered two submodels of KORG family: Kumaraswamy
Odd Rayleigh Log-Logistic (KORLL) and Kumaraswamy Odd Rayleigh Inverse
Rayleigh (KORIR) distributions.

3.1. The KORLL Model

The cdf and pdf of log-logistic (L) distribution are given as
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T

G(x;7)=
(XT) 1+ x°
and
g(x;r):Lz, r>0,x>0
(1+x’)

The quantile function of the LL distribution is given by

QLL(u)z(u’l—l)

where u is uniformly distributed in the interval (0, 1). Then, the KORLL distri-
buton has the cdf given by:

FKORLL(x;a,ﬂ,,r,é)=1—{1{1_exp{—2§; H } (16)

The corresponding pdf of Equation (16) is given below:
feor (X, 4,7,6)

A-1
_gdrx™ ex - 1-ex =l 1-|1-ex =alll 4
Ty P Pl 2s? Pl2s?

The hazard function (£), and survival function (sf) are presented below:

adrxZ ! _x2 _xZ ol
hfor (X) = 5 exp o5 1—exp o
20 ) * °
—XF
1-{1-e
ool ]|
Y
_XZT
SfKORLL(X):{l_l}L_eXp{ 252 H } (19)

3.1.1. Quantile Function of KORLL
Lemma II

L
T

Let the random variable uz be uniformly distributed on (0,1). Define the ran-

dom variable y as

y= 1 (20)

1\ |2
a

1
1+| —267 log 1—[1—(1—u)1}

then the random variable x defined as
1
x=(y’1—1)7 (21)

has a kumaraswamy odd Rayleigh-Log-Logistic distribution Ze.
X~ KORLL(a,l,é‘,z’) .And when « =A=1, xis distributed as ORLL(5,T).
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Figure 1 illustrates the various shapes of the density and hazard functions of
the KORLL distribution at various parameter values. The density can be symme-
tric, skewed, and unimodal depending on the parameter values chosen. The ha-
zard function can take many shapes depending on parameter values. This in-
cludes J-shaped and non-decreasing.

Table 1 presents the skewness and kurtosis of both the baseline log-logistic
distribution and the KORLL distribution, computed from the quantile function
in Equation (21) using Equation (22) and (23) respectively. For the choosen pa-
rameter values the skewness of the log-logistic ranged from —1.4352 to —0.0686,
whereas that of the KORLL ranged from —0.0696 to 0.3479. Interms of skewness,
it’s clear that KORLL model is much more flexible than the log-logistic distribu-
tion. Similarly the kurtosis for the baseline and extended baseline distribution
ranged from -2.9641 to —0.1024 and —0.1646 to 31.0576 for the choosen para-
meter values, respectively. This further suggest the flexibility of the KORLL over

log-logistic distribution.

Table 1. Skewness and Kurtosis using different parameter values.

KORLL Log-Logistics
Parameters
Skewness Kurtosis Skewness Kurtosis
a=0517=07,1=0.9,6=04 0.2554 1.0148 —1.4352 —2.9641
a=17=07,1=09,6=04 0.1572 0.4164 —1.4352 —2.9641
a=0517r=151=09,6=04 0.0308 0.0961 —-0.3506 —-0.5362
a=0517=151=056=04 0.0036 0.5462 —1.4352 —2.9641
a=7,7t=8,1=10,6=7 0.2113 0.9667 —-0.0686 -0.2015
a=5171=151=10,6=8 —0.0696 —0.1646 —0.0686 -0.2015
a=7,7tr=7,A=556=4 0.0479 31.0576 -0.0777 —-0.2407
a=57=7,A=10,6=8 —0.0643 28.6411 -0.0777 —-0.2407
a=057=091=056=0.7 0.1266 0.3387 -0.5444 -2.0176
a=17r=04,1=09,6=0.7 0.3479 0.9374 —-0.8794 —-0.1024
o
—=1,p=4,1=3,6~1 — A~ — o=1,p=4,0=3,6=1
B—a-1,46, 1=3,5-1 7 ol Do N, m—a=1,p=6, 4=3,6~1
B— o=1,8=4, 2=0.5,5=1 7 5 x Mo | Bl 205551
m— o=1.8,5=4, 1=3,6=3 7 i . X Nk \ | m—o=18,-4,2=3,563
B 0=0.5,5=3, 1=3,6~1 5 . - | \ : . B a=0.5,=3, 1=3,6~1
/ 1 S
;
d © |
! .
) Ko
! 2 &+
; =
i
J i g
. S
4
/
J (@) o |
T T T T T = T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
X X

Figure 2. cdf and sf plots of KORLL distribution with varying parameter values.
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3.1.2. Skewness and Kurtosis
The skewness and kurtosis of the KORLL distribution can easily be computed
from the quantile function using the relation: the Bowley’s skewness (by [16]) is

based on the quantile defined as

3 1 1
ofg)-2a3)<ll)
S_ 4 ] 2 : 4 (22)
o)Ll
And the Moor’s Kurtosis by [17] is based on octiles given by
7 5 3 1
fs)-ols)-2ls) (3]
K= 2 2e 2 (23)
os)-(5)

3.2. The KORIR Model

The cdf and pdf of the baseline Inverse Rayleigh distribution are given as

G(x;8)= exp{i}

X2
and

g(xp)= Z’Bexp{;—f}, x>0,5>0

X3

f is scale parameter. The qf is given by

Q(”):{Ioéfu)};

when u is uniformly distributed. The cdf and pdf of KORIR distribution is given

as
P

FKORlR(X;a*;L'T'S):l_ 1- 1_eXp{_%|:eXp{;_zﬂ}_l:| }:l (24)
Zaﬂﬂexp{ﬁ;}[exp{_zﬂ}_lj (1—exp{_ﬂz}]
fomn (X, 4,7,8) = X X X
1 s T 1 5 T
xexp{—ﬁ{exp{x—z}—l} Hl—exp{—g[exp{x—z}—l} H (25)
P S B e A T
1 {1 exp{ 257 {exp{xz} 1} H , x>0

Quantile Function of KORIR
Lemma III
Let the random variable z be uniformly distributed on (0,1). Define the ran-
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dom variable y as in Equation (20), then the random variable X defined as
1

" {_ 'nggy)} E =

has a kumaraswamy odd Rayleigh-Inverse Rayleigh distribution ie.
X~ KORIR(a, l,&,ﬁ) .And when « =A=1, xis distributed as ROLL(5,ﬂ).

4., Estimation

The parameters of the KORG family are estimated in this section using the me-
thod of maximum likelihood. Given a random sample of X, X,,X;,X,,**, X, of
size n with parameters «,4,5 and B from KORG family of distribution, the
pdf of KORG can written as

L alepes), [ 7 27
R i e

VR (27)
1 {1 exp{ Zf; H
x|1-<41—- -
252

wmg{%%}

Let 9=(a, 4,6, ﬁ)T be the (p x 1) parameter vector, then the log-likelihood

function based on Equation (25) is given by

1(9)= nIog(g—f)+glog(g(x;ﬂ))+glog(6(x;ﬁ))—3g log(G(x: 3))
Z;

n n _Zé
_E‘ o5 (a-1) 2. log [1—exp{ 552 }] (28)

+(4 —1)%" log 1—{1—exp{;§§ }}

Partially differentiating the likelihood function yields the components of the

o aa
da' oA 05" op

a n Q -Z;
—=—+>log|1-e s
oo a+§ g{ Xp{Zdz}]
72 22"
Z,Z) exp {wal— exp{ 255 H (29)
i=1 _ZZ “
5%|1-4{1-e £

a_l—£+i|0g 1_ 1_exp _Z; ’ (30)
o A& 26°

N
score function U ) :( J as follows
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—Z;

Z2exps—2L

B 2

o -2n 275 n {25}
— =4y L i (a-1

85 &S §53 (e )21: -72

5% 1-exp{ -~

25

ZZ ZZ a-1 (31)
Z2expl—L 1 expl =2
2
s

(32)

dz dg(x; dG(x;
where z;zd—;, gr’n(x;ﬂ)=%f), G, (% 8) g;ﬂ),and
_ dG(x;
Gé(x;ﬂ)=—gﬂ’3).

The estimators of the parameters can be obtained by setting Equations
(29)-(32) to zero and solving numerically using Newton Rapson or any other iter-

ative methods.

5. Monte Carlo Simulation

A Monte Carlo Simulation is conducted and the results of the bias and root
mean squared error of the various estimated parameter values are presented in
Table 2. The efficacy for the simulation study is to observe the performance of
the maximum likelihood estimates and to see whether the simulated values of
the model parameters approach the true parameter values or not. The Monte
carlo simulation is described as follows:

(a) For known parameter values i.e. 9=(a,7,4,8 )T , samples of different siz-
es from the KORLL distribution were generated (¢ =05, =07, 1=0.9,
and & =0.4) using the quantile function defined in Equation (21).

(b) Using the maximum likelihood method, we compute the MLE of &, 7,
}; ,and (SA] for the i* replicate.

(c) Steps (a) and (b) are replicated N= 1000 times.
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Table 2. A simulation results for the KORLL distribution.

n Properties a=0.5 =07 A=09 0=04
50 Bias 0.0324 0.5088 0.8369 0.2625
RMSE 0.6847 0.8095 1.9637 0.9301

Est. 0.5324 1.2088 1.7369 0.6625

200 Bias —0.0781 0.2628 0.7567 0.2155
RMSE 0.1979 0.4535 1.7441 0.7009

Est. 0.4219 0.9628 1.6567 0.6155

300 Bias —-0.0716 0.2095 0.6768 0.2526
RMSE 0.1607 0.3817 1.6282 0.5791

Est. 0.4284 0.9095 1.5768 0.6526

500 Bias —0.0587 0.1547 0.5437 0.1942
RMSE 0.1281 0.2979 1.2762 0.4519

Est. 0.4413 0.8547 1.4437 0.5942

700 Bias —0.0484 0.1189 0.4211 0.1435
RMSE 0.1104 0.2468 1.0641 0.3582

Est. 0.4516 0.8189 1.3211 0.5435
1000 Bias —0.0348 0.0801 0.269 -0.0755
RMSE 0.0944 0.2045 0.8391 0.4558

Est. 0.4665 0.7801 1.169 0.3558

(d) The bias and RMSE for each sample size n are computed as
A 1N . A A
3 =Wzl9i, Bias(J)=39-9,

var (g) = iu (33)
RMSE () = {var(§)+(5ias('§))2}

where l§| = (&, 5 , /{, f) are the mle for each iteration
(n=50,200,300,500,700,1000) . The simulation results in Table 2 have shown

that based on the parameter values chosen, the estimated Biases decrease as the

N

sample size n inreases. In addition, the estimated root mean squared errors de-
cay towards zero as the sample size increases. These two observations illustrate

the consistency of the maximum likelihood estimates.

6. Application

Here, we illustrate the applicability of the KORLL distribution to five data sets.
Data set I represent survival times of 121 patients with breast cancer as reported
by [18]. Data set II represents the Marine water as reported by [19]. Data set III
represents 101 data points that reflect the stress-rupture life of kevlar 49/epoxy
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strands which were subjected to continuous persistent pressure at the 90 percent
stress point until everything had collapsed as in [20]. Data set IV represents the
death times (in weeks) of patients with cancer of tongue with aneuploidy DNA
profile as reported by [21]. Data set V is due to [21] which is a life times data re-
lating to times (in months from 1* January, 2013 to 31* July, 2018) of 105 pa-
tients who were diagnosed with hypertension and received at least one treatment
related to hypertension in the hospital where death is the event of interest.

We used a maxLik package by [22] in R by [23]. The analytical measures in
comparing the model fit are the Akaike Information Criterion (AIC) and Baye-
sian Information Criterion (BIC). Smaller values of the AIC statistic indicate
better model fittings. The competing models are as follows:

(i) The Marshall Olkin Extended Log-Logistics (MOELL) as in [24] wth cdf

a’o
Fuoer (X, 7,6) _1_M’ x>0
(ii) The Kumuraswamy Log-Logistic (KUMLL) as in [25] with cdf

5) 7

)
1
F xa,7,8,7)=1-{1-|1-———=—| L | x>0
KUMLL( ) |: 1+(X/Q)T]

(iii) The Zografos-Balakrishnan Log-Logistic (ZBLL) as in [26] with cdf
y(r, log [1+(x/a)ﬁ J)
I'(z) '

a,A,0,y >0

x>0

Feu (Xa,7,4)=

Based on the considered analytical measures, we have noted that the proposed
KORLL model provides the best fit to the five analyzed real life data sets pre-

sented in Tables 3-7. This proposed model outperforms the other four competing

Table 3. MLEs of the Parameters with SEs (paranthesis), BIC, —11, and AIC values for data
set I.

Model Estimates BIC -1 AIC
a 3 i 5 7
KROLL 0.8201 0.6894 0.3432 6.4677 - 1177.12 578.9682 1165.936

(0.5051)  (0.0881) (0.3096) (0.3043)

KUMLL 59172 12.6227 - 0.5267 14.4993 1192.862 586.8401 1181.68
(0.8224)  (1.1446) - (0.0443)  (3.5236)
MOELL  13.8653 1.8536 - 5.6094 - 1181.2  587.5998  1181.2
(2.4619)  (0.1901) - (2.8307) -
ZBLL 16.8813 1.6039 1.5947 - - 1206.298 595.9553 1197911

(4.3020) (0.1383)  (0.2628)

LL - 0.4335 - - - 1514.859 755.0317 1512.063
- (0.0307)
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Table 4. MLEs of the Parameters with SEs (paranthesis), BIC, —1l, and AIC values for

Data set II.
Model Estimates BIC -1l AIC
Q z y) 5 7
KROLL 0.8887 0.3138 0.3037 3.4610 - 588.4807 287.0733 582.1466
(0.2031)  (0.0389) (0.1894) (0.1641)
KUMLL 7.6431 4.4116 - 0.2906 4.5788  595.8207 290.7433 589.4865
(1.9310)  (2.4439) - (0.0673)  (3.8666)
MOELL 15.7221 0.8058 - 14.1988 - 591.2842 290.2668 586.5335
(5.1599)  (0.0747) - (4.3053) -
ZBLL 0.1492 1.1900 9.3955 - - 598.5214 293.8854 593.7708
(0.3282)  (0.2247) (3.7651)
LL - 0.2528 - - - 666.7035 331.56 665.1199
- (0.0331)
Table 5. MLEs of the Parameters with SEs (paranthesis), BIC, —1l, and AIC values for
Data set III.
Model Estimates BIC -1l AIC
a ¢ i 5 7
KROLL 0.8308 0.4859 0.1945 3.0197 - 1154.099 567.8195 1143.639
(0.0034)  (0.0028) (0.01779) (0.0419)
KUMLL  7.6605 16.3647 - 0.3284 7.7114  1167.367 574.4534 1156.907
(0.3681)  (1.7609) - (0.0251)  (0.0123)
MOELL 11.1388 1.2706 - 8.9333 - 1169.462 577.8084 1161.617
(2.9676)  (0.1028) - (3.748) -
ZBLL 20.0089 1.0373 1.6079 - - 118391 585.0321 1176.064
(10.9152) (0.0954) (0.3745)
LL - 0.3761 - - - 1393.779 694.5821 1391.164
- (0.0293)

Table 6. MLEs of the Parameters with SEs (paranthesis), BIC, -1, and AIC values for

Data set I'V.
Model Estimates BIC -1 AIC
a 7 i 5 7

KROLL 0.8104 0.6072 0.2525 5.3920 - 563.4723 273.8725 555.7449
(0.0006)  (0.0004) (0.0354) (0.0001)

KUMLL 10.5183  13.4904 - 0.3931 3.0626  574.2929 279.2828 566.5657
(2.2634) (13.5114) - (0.0952)  (1.5268)

MOELL 11.0024 1.6251 - 15.7128 - 569.8063 279.0054 564.0108
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Continued
(6.2578)  (0.1691) - (6.2920) -
ZBLL 18.6091 1.2735 1.7605 - - 581.7961 285.0003 576.0006
(3.5334) (0.1401) (0.2278)
LL - 0.3826 - - - 700.4312 348.2497 698.4994
- (0.0418)

Table 7. MLEs of the Parameters with SEs (paranthesis), BIC, -1, and AIC values for

Data set V.
Model Estimates BIC -1 AIC
a z i 5 7
KROLL  3.1172 0.4968 9.0421 5.8242 - 936.4692 458.9267 925.8534
(0.6112) (0.0738) (3.7577) (1.8566)
KUMLL  8.7308 18.7688 - 0.7217  13.1942 961.8756 471.6299 951.2599
(0.8082)  (1.4343) - (0.0473) (0.8803)
MOELL  28.1447 3.1661 - 3.1572 - 947.8358 470.9179 947.8358
(1.5932) (0.2767) - (0.9238) -
ZBLL 24.8004 2.4252 1.5230 - - 981.1929 483.6155 973.2311
(2.0922) (0.2055) (0.1536)
LL - 0.4251 - - - 1345.432 670.3889 1342.778
- (0.0321)

extensions of the log-logistic distributions presented.

7. Conclusion

In this paper, a new family of distributions called the Kumaraswamy Odd Ray-
leigh G family which introduced three additional parameters to the baseline dis-
tribution is proposed and studied. This new family gives more flexibility and
proved best fit, to a wide range of data from practical situations. The Monte
Carlo simulation results indicated that the simulated values of the parameters of
the sub-model of this family approached the true values as the sample size in-
creases. Also, the root mean squared error estimates decay towards zero as the
sample size becomes large. These facts suggest the consistency of the estimates.
Based on the considered analytical measures, we concluded that the proposed
family represented in this study by the Kumaraswamy Odd Rayleigh Log-Logistic
distribution provided the best fit to the 5 analysed real life data sets, some of
which are the survival times of 121 patients with Breast cancer and death times

(in weeks) of patients with cancer of tongue with aneuploidy DNA profile.
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