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Abstract 
We propose a new generator of continuous distributions with at least four 
positive parameters called the Kumaraswamy-Odd Rayleigh-G family. Some 
special cases were presented. The plots of the Kumaraswamy Odd Rayleigh 
Log-Logistic (KORLL) distribution indicate that the distribution can take 
many shapes depending on the parameter values. The negative skewness and 
kurtosis indicates that the distribution has lighter tails than the normal distri-
bution. The Monte Carlo simulation results indicate that the estimated biases 
decrease when the sample size increases. Furthermore, the root mean squared 
error estimates decay towards zero as the sample size increases. This part 
shows the consistency of the maximum likelihood estimators. From the consi-
dered analytical measures, the new KORLL provides the best fit to the analysed 
five real data sets indicating that this new model outclasses its competitors. 
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1. Introduction 

Researchers use different approaches to induct additional parameters to a con-
tinuous class of distributions, ostensibly because in many applications, these 
classical probability distributions do not fit real life data. In other words, all of 
these approaches extend the classical baseline probability distributions by intro-
ducing additional parameter(s) to the baselines, thereby making the extended 
baselines much more flexible to fit wide range of data from practical situations. 
With this approach, several generalized families of distributions have been pro-
posed and applied to real life data in areas such as engineering, life sciences, en-
vironmental sciences, finance and medical sciences. 
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Recently, there are a lot of attempts in the statistics literature to generalize 
distributions. This generalization is mainly on a methodology proposed by many 
researchers, as in [1]. The most frequently used is the T-X approach by [2]. 
Some of the generalized families of distributions based on this approach in the 
literature include Weibull G family by [3], Lomax Generator of distributions by 
[4], Odd Generalized Exponential family by [5], Odd Lindley-G family by [6], 
Gompertz-G family by [7], Zubair-G family by [8], Odd Frechet G family by [9], 
Power Lindley G family by [10], Topp Leone Exponentiated-G Family by [11], 
Odd Chen-G family by [12], Burr X Exponential G family by [13], Inverse Lo-
max-G family by [14]. 

The objective of this paper is to propose a new family of distribution called the 
Kumaraswamy Odd Rayleigh-G family of distributions which has the capacity of 
providing more robust compound probability distribution when used in model-
ling real life data set. This new family adds three additional parameters to the 
baseline distribution. 

The rest of this article is structured as follows: In Section 2, we defined the 
Kumaraswamy Odd-Rayleigh-G Family. In Section 3, we derive some models 
based on the KORG family. In Section 4 we present the estimation method used 
in estimating the parameters of non-linear models. We conduct a Monte Carlo 
simulation study using a Kumaraswamy Odd-Rayleigh Log-Logistic (KORLLD) 
model in Section 5. In Section 6, we apply the new model of KORG family to five 
real life datasets and compare their performance with some existing distribu-
tions. Lastly, Section7 concludes the paper. 

2. Kumaraswamy Odd Rayleigh G (KOR-G) Family 

Attempts have been made to define new families of probability distributions 
which enhance the flexibility in practical data modeling of well known baseline 
distributions. In the spirit of the T-X approach by [3], this paper defines the 
cumulative distribution as 

( ) ( )( ) ( )df H x

a
F x z t t= ∫                       (1) 

where ( )( )f H x  is the function of the baseline cdf H(x) of any continous ran-
dom variable X. The function ( )( )f H x  must satisfy the following conditions 

(a) ( )( ) ( ),f H x a b∈ ; 
(b) ( )( )f H x  is non-decreasing and monotonically differentiable; 
(c) ( )( )f H x  tends to a as x tends to −∞ ; 
(d) ( )( )f H x  tends to b as x tends to ∞ . 
Let T be a random variable which is continuous with probability density func-

tion (pdf) z(t) defined on the close interval [a,b]. 
In 2011, [15] introduced the Kumaraswamy-G family of distribution. The 

probability density function (pdf) and the cummulative distribution function 
(cdf) are given by: 

( ) ( ) ( ) ( )
112 ; ; 1 ; , 0, , , 0KGf x g x G x G x x

λα αλ ζ ζ ζ α λ ζ
−−  = − > >     (2) 
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( ) ( )1 1 ; , 0, , , 0KGF x G x x
λαζ α λ ζ = − − > >             (3) 

where ( );G x ζ  and ( );g x ζ  are the cdf and pdf of the baseline distribution 
with parameter vector ζ . 

The Odd Rayleigh-G family has pdf and cdf given by 

( ) ( ) ( )
( )

( )
( )

2

3 22

; ; ;1exp , 0, , 0
;2;

OR

g x G x G x
f x x

G xG x

β β β
δ β

βδδ β

   = − > >         
   (4) 

( ) ( )
( )

2

2

;11 exp , 0, , 0
;2OR

G x
F x x

G x
β

δ β
βδ

   = − − > >   
   

         (5) 

where ( ) ( ), 1 ,G x G xβ β= − . 
Lemma I 
The cdf of the proposed KORG family of distributions is given by 

( ) ( )
( )

2

2

;11 1 1 exp , 0, , 0
;2KORG

G x
F x x

G x

λα

β
α λ

βδ

        = − − − − > >              (6) 

where 0x > , , , 0α λ δ >  the vector β  is the parameter of the baseline distri-
bution ( ),G x β  and ( ) ( ), 1 ,G x G xβ β= − . 

Proof 
From Equation (1), 

( )
( ) ( ) ( ) ( ){ }

1, , 1

0

; , , ,

; , ; , 1 , , dOR

KORG

F x
OR OR OR

F x

f t F t F t t
λδ β α α

α λ δ β

αλ δ β δ β δ β
−−  = −     ∫

   (7) 

let 

( ){ }1 , ,ORy F t
α

δ β= −
 

( ){ } ( )1
d , , , , dOR ORy F t f t t

α
α δ β δ β

−
= −

 
if 0t → , the 1y →  and if t x→ , ( ){ }1 , ,ORy F x

α
δ β→ − . So, 

( ) ( ){ }1 , , 1
1

; , , , dORF x
KORGF x y y

αδ β λα λ δ β λ
− −= −∫  

( ) ( ){ }1 ; ,
1; , , , ORF x

KORGF x y I
αδ βλα λ δ β −= −                (8) 

and 

( ) ( ){ }; , , , 1 1 ; ,KORG ORF x F x
λα

α λ δ β δ β = − −  
            (9) 

and this can be written as 

( ) ( )
( )

2

2

,1; , , , 1 1 1 exp
,2KORG

G x
F x

G x

λα

β
α λ δ β

βδ

       = − + − − −            

    (10) 

whence the proof. if 0x → , ( ); , , , 0KORGF x α λ δ β →  and if 
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x →∞ , ( ); , , , 1 1 1 1KORGF x αα λ δ β  = − − =   

From Equation (7), the pdf of the KORG family can be written as 

( ) ( ) ( ) ( ){ }
11

; , , , ; , ; , 1 ; ,KORG OR OR ORf x f x F x F x
λα α

α λ δ β αλ δ β δ β δ β
−−  = −     

 (11) 

And substituting Equations (4) and (5) in to 11 yields 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

2

3 22

12

2

1
2

2

; ; ;1exp
;2;

;11 exp
;2

;11 1 exp , 0, , 0
;2

KORG

g x G x G x
f x

G xG x

G x
G x

G x
x

G x

α

λα

β β β
αλ

βδδ β

β
βδ

β
α λ

βδ

−

−

   = −          

     × − −         

       × − − − > >     
       

 (12) 

Similarly, differentiating Equation (6) with respect to x will also yield Equation 
(12). Figure 1(a) illustrates the density function ( ); , , ,KORGf x α λ δ β  with differ-
ent parameter values. It is obvious from this graph that ( ); , , , 0KORGf x α λ δ β >  
∀  values of x. And to evaluate this integral 

( )
0

; , , , dKORGf x xα λ δ β
∞

∫  

Let 
( )
( )

2

2

,11 1 exp
,2

G x
y

G x

α

β
βδ

     = − − −         
 Then 

( ) ( )
( )

( )
( )

( )
( )

2

3 22

12

2

; ; ;d 1exp
d ;2;

;11 exp
;2

g x G x G xy
x G xG x

G x
G x

α

α β β β
βδδ β

β
βδ

−

   = − −          

     × − −           

and if 0x = , then ( )( )1 1 exp 0 1y
α = − − =  

 

 

 
Figure 1. Density and hazard rate plots of KORLL distribution with varying parameter values. 
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if x = ∞ , then ( )( )1 1 exp 0y
α = − − −∞ =  

 
therefore 

( ) 0 1 0
10 1

; , , , d d 1KORGf x x y y y Iλ λα λ δ β λ
∞ −= − = − =∫ ∫  

( )
0

; , , , d 1KORGf x xα λ δ β
∞

∴ =∫  
which showed that ( ); , , ,KORGf x α λ δ β  is a pdf for the continous random vari-
able X. The Hazard function ( )KORGhf  and survival function ( )KORGsf  of the 
KORG family can be given as 

( ) ( ) ( )

( ) ( )
( )

( )
( )

( )
( )

2
32

2

12 2

2 2

2

; ;

,1; 1 1 exp
,2

, ,1 1exp 1 exp
, ,2 2

,11 1 exp
2

KORG

g x G x
hf x

G x
G x

G x

G x G x
G x G x

G x

λα

α

αλ β β

β
δ β

βδ

β β
β βδ δ

δ

−

=
           − − −         

         

           × − − −                    

× − − −
( )
( )

1
2

, 0, , 0
,

x
G x

λα

β
α λ

β

−
        > >     

       

  (13) 

and 

( )
( )

2

2

,11 1 exp
,2KORG

G x
sf

G x

λα

β
βδ

       = − − −            

           (14) 

Quantile Function of KORG 

The quantile function of KROG model can be given as 

( )

( )

1
1

1 2
1

2

1

1 2 log 1 1 1

Q u G

u
α

λδ

−

−

 
 
 
 
 =  
       + − − − −           

         (15) 

where 1G−  is the quantile function of the baseline distribution. 

3. Sub-Models of KORG Family 

In this section, we considered two submodels of KORG family: Kumaraswamy 
Odd Rayleigh Log-Logistic (KORLL) and Kumaraswamy Odd Rayleigh Inverse 
Rayleigh (KORIR) distributions. 

3.1. The KORLL Model 

The cdf and pdf of log-logistic (LL) distribution are given as 
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( );
1

xG x
x

τ

ττ =
+  

and 

( )
( )2; , 0, 0
1

xg x x
x

τ

τ

ττ τ= > >
+

 
The quantile function of the LL distribution is given by 

( ) ( )
1

1 1LLQ u u τ
−−= −  

where u is uniformly distributed in the interval (0, 1). Then, the KORLL distri-
buton has the cdf given by: 

( )
2

2; , , , 1 1 1 exp
2KORLL
xF x

λατ

α λ τ δ
δ

   − = − − −    
     

         (16) 

The corresponding pdf of Equation (16) is given below: 

( )
112 1 2 2 2

2 2 2 2

; , , ,

exp 1 exp 1 1 exp
2 2 2

KORLLf x

x x x x
λα ατ τ τ τ

α λ τ δ

αλτ
δ δ δ δ

−−−          − − − = − − −          
             

  (17) 

The hazard function (hf), and survival function (sf) are presented below: 

( )
12 1 2 2

2 2 2

1
2

2

exp 1 exp
2 2

1 1 exp
2

KORLL
x x xhf x

x

ατ τ τ

ατ

αλτ
δ δ δ

δ

−−

−

    − −
= −    

     

   − × − −    
     

        (18) 

( )
2

21 1 exp
2KORLL
xsf x

λατ

δ

   − = − −    
     

              (19) 

3.1.1. Quantile Function of KORLL 
Lemma II 
Let the random variable u be uniformly distributed on ( )0,1 . Define the ran-

dom variable y as 

( )

1
1 2

1
2

1

1 2 log 1 1 1

y

u
α

λδ

−
=

  
   + − − − −        

             (20) 

then the random variable x defined as 

( )
1

1 1x y τ
−−= −                         (21) 

has a kumaraswamy odd Rayleigh-Log-Logistic distribution i.e.  
( )~ , , ,x KORLL α λ δ τ . And when 1α λ= = , x is distributed as ( ),ORLL δ τ . 

https://doi.org/10.4236/ojs.2020.104045


J. Y. Falgore, S. I. Doguwa 
 

 

DOI: 10.4236/ojs.2020.104045 725 Open Journal of Statistics 
 

Figure 1 illustrates the various shapes of the density and hazard functions of 
the KORLL distribution at various parameter values. The density can be symme-
tric, skewed, and unimodal depending on the parameter values chosen. The ha-
zard function can take many shapes depending on parameter values. This in-
cludes J-shaped and non-decreasing.  

Table 1 presents the skewness and kurtosis of both the baseline log-logistic 
distribution and the KORLL distribution, computed from the quantile function 
in Equation (21) using Equation (22) and (23) respectively. For the choosen pa-
rameter values the skewness of the log-logistic ranged from −1.4352 to −0.0686, 
whereas that of the KORLL ranged from −0.0696 to 0.3479. Interms of skewness, 
it’s clear that KORLL model is much more flexible than the log-logistic distribu-
tion. Similarly the kurtosis for the baseline and extended baseline distribution 
ranged from −2.9641 to −0.1024 and −0.1646 to 31.0576 for the choosen para-
meter values, respectively. This further suggest the flexibility of the KORLL over 
log-logistic distribution. 

 
Table 1. Skewness and Kurtosis using different parameter values. 

Parameters 
KORLL Log-Logistics 

Skewness Kurtosis Skewness Kurtosis 

0.5, 0.7, 0.9, 0.4α τ λ δ= = = =  0.2554 1.0148 −1.4352 −2.9641 

1, 0.7, 0.9, 0.4α τ λ δ= = = =  0.1572 0.4164 −1.4352 −2.9641 

0.5, 1.5, 0.9, 0.4α τ λ δ= = = =  0.0308 0.0961 −0.3506 −0.5362 

0.5, 1.5, 0.5, 0.4α τ λ δ= = = =  0.0036 0.5462 −1.4352 −2.9641 

7, 8, 10, 7α τ λ δ= = = =  0.2113 0.9667 −0.0686 −0.2015 

5, 15, 10, 8α τ λ δ= = = =  −0.0696 −0.1646 −0.0686 −0.2015 

7, 7, 5, 4α τ λ δ= = = =  0.0479 31.0576 −0.0777 −0.2407 

5, 7, 10, 8α τ λ δ= = = =  −0.0643 28.6411 −0.0777 −0.2407 

0.5, 0.9, 0.5, 0.7α τ λ δ= = = =  0.1266 0.3387 −0.5444 −2.0176 

1, 0.4, 0.9, 0.7α τ λ δ= = = =  0.3479 0.9374 −0.8794 −0.1024 

 

 
Figure 2. cdf and sf plots of KORLL distribution with varying parameter values. 
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3.1.2. Skewness and Kurtosis 
The skewness and kurtosis of the KORLL distribution can easily be computed 
from the quantile function using the relation: the Bowley’s skewness (by [16]) is 
based on the quantile defined as 

3 1 12
4 2 4

3 1
4 4

Q Q Q
S

Q Q

     − +     
     =

   −   
   

                  (22) 

And the Moor’s Kurtosis by [17] is based on octiles given by 

7 5 3 1
8 8 8 8

6 2
8 8

Q Q Q Q
K

Q Q

       − − +       
       =

   −   
   

               (23) 

3.2. The KORIR Model 

The cdf and pdf of the baseline Inverse Rayleigh distribution are given as 

( ) 2; expG x
x
ββ − =  

   
and 

( ) 3 2

2; exp , 0, 0g x x
x x
β ββ β− = > > 

   
β  is scale parameter. The qf is given by 

( ) ( )

1
2

log
Q u

u
β − =  

  
 

when u is uniformly distributed. The cdf and pdf of KORIR distribution is given 
as 

( )
2

2 2

1; , , , 1 1 1 exp exp 1
2KORIRF x

x

λα

βα λ τ δ
δ

−    −      = − − − − −              

   (24) 

( )

1 2

2 2 2

2 3

12 2

2 2 2 2

2 2

2 exp exp 1 1 exp
; , , ,

1 1exp exp 1 1 exp exp 1
2 2

11 1 exp exp
2

KORIR
x x xf x

x

x x

x

α

β β βαλβ
α λ τ δ

δ

β β
δ δ

β
δ

− −

−− −

 −        − − −                =

              × − − − − −                        

 × − − −  


1
2

1 , 0x

λα −
−        − >           

  (25) 

Quantile Function of KORIR 
Lemma III 
Let the random variable u be uniformly distributed on ( )0,1 . Define the ran-
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dom variable y as in Equation (20), then the random variable 1x  defined as 

( )

1
2

1 log
x

y
β  = − 

  
                      (26) 

has a kumaraswamy odd Rayleigh-Inverse Rayleigh distribution i.e.  
( )~ , , ,x KORIR α λ δ β . And when 1α λ= = , x is distributed as ( ),ROLL δ β . 

4. Estimation 

The parameters of the KORG family are estimated in this section using the me-
thod of maximum likelihood. Given a random sample of 1 2 3 4, , , , , nx x x x x  of 
size n with parameters , ,α λ δ  and β  from KORG family of distribution, the 
pdf of KORG can written as 

( ) ( ) ( )
( )

12 2

3 2 22

1
2

2

; ;
exp 1 exp

2 2;

1 1 exp
2

KORG

Z Zg x G x
f x

G x

Z

α

β β

λα

β

β β
αλ

δ δδ β

δ

−

−

       = − − −    
           

      × − − −        

   (27) 

where 
( )
( )

,
,

G x
Z

G xβ

β
β

 
=   
 

. 

Let ( )T, , ,ϑ α λ δ β=  be the (p × 1) parameter vector, then the log-likelihood 
function based on Equation (25) is given by 

( ) ( )( ) ( )( ) ( )( )

( )

( )

2
1 1 1

2 2

2 2
1 1

2

2
1

log log ; log ; 3 log ;

1 log 1 exp
2 2

1 log 1 1 exp
2

n n n

i i i

n n

i i

n

i

l n g x G x G x

Z Z

Z

β β

α

β

αλϑ β β β
δ

α
δ δ

λ
δ

= = =

= =

=

 = + + − 
 

  −  − − −      
   −   + − − −        

∑ ∑ ∑

∑ ∑

∑

 (28) 

Partially differentiating the likelihood function yields the components of the 

score function ( )

T

, , ,l l l l
ϑ α λ δ β

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

U  as follows 

( )

2

2
1

12 2

2 2

21
2

2

log 1 exp
2

exp 1 exp
2 2

1

1 1 exp
2

n

i

n

i

Zl n

Z Z
Z Z

Z

β

α

β β
β β

α

β

α α δ

δ δ
λ

δ
δ

=

−

=

  −∂   = + −   ∂    
    − −   ′ −   

        + −
   −   − −        

∑

∑
       (29) 

2

2
1
log 1 1 exp

2

n

i

Zl n
α

β

λ λ δ=

   −∂    = + − −   ∂      
∑              (30) 
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( )

( )

2
2

22

3 2
1 1 3

2

12 2
2

2 2

21
3

2

exp
22 1

1 exp
2

exp 1 exp
2 2

1

1 1 exp
2

n n

i i

n

i

Z
Z

Zl n
Z

Z Z
Z

Z

β
β

β

β

α

β β
β

α

β

δ
α

δ δ δ
δ

δ

α
δ δ

λ

δ
δ

= =

−

=

 − 
 

∂ −   = + + −
∂   −  −      

    − −   −   
        + −
   −   − −        

∑ ∑

∑

        (31) 

( )
( )

( )
( )

( )
( )

( )

( )

2
1 1 1 1

2

2

2
1 2

2

2 2

2 2

1

; ; ;
3

; ; ;

exp
2

1

1 exp
2

exp 1 exp
2 2

1

n n n n
m m m

i i i i

n

i

n

i

Z Zg x G x G xl
g x G x G x

Z
Z Z

Z

Z Z
Z Z

β β

β
β β

β

α

β β
β β

β β β
β β β β δ

δ
α

δ
δ

α
δ δ

λ

= = = =

=

=

′′ ′ ′∂
= + − −

∂

 − ′  
  + −

  − −  
    

    − −   ′ −   
        + −

∑ ∑ ∑ ∑

∑

∑

1

2
2

21 1 exp
2
Z

α

βδ
δ

−

   −   − −        

      (32) 

where 
d
d
Z

Z β
β β
′ = , ( ) ( )d ;

;
dm

g x
g x

β
β

β
′ = , ( ) ( )d ;

;
dm

G x
G x

β
β

β
′ = , and  

( ) ( )d ;
;

dm

G x
G x

β
β

β
′ = . 

The estimators of the parameters can be obtained by setting Equations 
(29)-(32) to zero and solving numerically using Newton Rapson or any other iter-
ative methods. 

5. Monte Carlo Simulation 

A Monte Carlo Simulation is conducted and the results of the bias and root 
mean squared error of the various estimated parameter values are presented in 
Table 2. The efficacy for the simulation study is to observe the performance of 
the maximum likelihood estimates and to see whether the simulated values of 
the model parameters approach the true parameter values or not. The Monte 
carlo simulation is described as follows: 

(a) For known parameter values i.e. ( )T, , ,ϑ α τ λ δ= , samples of different siz-
es from the KORLL distribution were generated ( 0.5α = , 0.7τ = , 0.9λ = , 
and 0.4δ = ) using the quantile function defined in Equation (21). 

(b) Using the maximum likelihood method, we compute the MLE of ˆiα , îτ , 

îλ , and îδ  for the ith replicate. 
(c) Steps (a) and (b) are replicated N = 1000 times. 
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Table 2. A simulation results for the KORLL distribution. 

n Properties 0.5α =  0.7τ =  0.9λ =  0.4δ =  

50 Bias 0.0324 0.5088 0.8369 0.2625 

 RMSE 0.6847 0.8095 1.9637 0.9301 

 Est. 0.5324 1.2088 1.7369 0.6625 

200 Bias −0.0781 0.2628 0.7567 0.2155 

 RMSE 0.1979 0.4535 1.7441 0.7009 

 Est. 0.4219 0.9628 1.6567 0.6155 

300 Bias −0.0716 0.2095 0.6768 0.2526 

 RMSE 0.1607 0.3817 1.6282 0.5791 

 Est. 0.4284 0.9095 1.5768 0.6526 

500 Bias −0.0587 0.1547 0.5437 0.1942 

 RMSE 0.1281 0.2979 1.2762 0.4519 

 Est. 0.4413 0.8547 1.4437 0.5942 

700 Bias −0.0484 0.1189 0.4211 0.1435 

 RMSE 0.1104 0.2468 1.0641 0.3582 

 Est. 0.4516 0.8189 1.3211 0.5435 

1000 Bias −0.0348 0.0801 0.269 −0.0755 

 RMSE 0.0944 0.2045 0.8391 0.4558 

 Est. 0.4665 0.7801 1.169 0.3558 

 
(d) The bias and RMSE for each sample size n are computed as 

( )

( ) ( )

( ) ( ) ( )( ){ }

1
2

1
1

2 2

1ˆ ˆ ˆ ˆ, ,

ˆ ˆ
ˆ

ˆ ˆ ˆ

N

i
i

N i

i

Bias
N

var
N

RMSE var Bias

ϑ ϑ ϑ ϑ ϑ

ϑ ϑ
ϑ

ϑ ϑ ϑ

=

=

= = −

−
=

= +

∑

∑                (33) 

where ( )ˆ ˆ ˆˆ ˆ, , ,iϑ α δ λ τ=  are the mle for each iteration  
( )50,200,300,500,700,1000n = . The simulation results in Table 2 have shown 
that based on the parameter values chosen, the estimated Biases decrease as the 
sample size n inreases. In addition, the estimated root mean squared errors de-
cay towards zero as the sample size increases. These two observations illustrate 
the consistency of the maximum likelihood estimates. 

6. Application 

Here, we illustrate the applicability of the KORLL distribution to five data sets. 
Data set I represent survival times of 121 patients with breast cancer as reported 
by [18]. Data set II represents the Marine water as reported by [19]. Data set III 
represents 101 data points that reflect the stress-rupture life of kevlar 49/epoxy 
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strands which were subjected to continuous persistent pressure at the 90 percent 
stress point until everything had collapsed as in [20]. Data set IV represents the 
death times (in weeks) of patients with cancer of tongue with aneuploidy DNA 
profile as reported by [21]. Data set V is due to [21] which is a life times data re-
lating to times (in months from 1st January, 2013 to 31st July, 2018) of 105 pa-
tients who were diagnosed with hypertension and received at least one treatment 
related to hypertension in the hospital where death is the event of interest. 

We used a maxLik package by [22] in R by [23]. The analytical measures in 
comparing the model fit are the Akaike Information Criterion (AIC) and Baye-
sian Information Criterion (BIC). Smaller values of the AIC statistic indicate 
better model fittings. The competing models are as follows: 

(i) The Marshall Olkin Extended Log-Logistics (MOELL) as in [24] wth cdf 

( ); , , 1 , 0MOELLF x x
x a

τ

τ τ

α δα τ δ
δ

= − >
+  

(ii) The Kumuraswamy Log-Logistic (KUMLL) as in [25] with cdf 

( )
( )

1; , , , 1 1 1 , 0
1

KUMLLF x x
x

γδ

τα τ δ γ
α

   = − − − >  
+      

(iii) The Zografos-Balakrishnan Log-Logistic (ZBLL) as in [26] with cdf 

( )
( )( )

( )
, log 1

; , , , 0ZBLL

x
F x x

λγ τ α
α τ λ

τ

 + = >
Γ  

, , , 0α λ δ γ >  
Based on the considered analytical measures, we have noted that the proposed 

KORLL model provides the best fit to the five analyzed real life data sets pre-
sented in Tables 3-7. This proposed model outperforms the other four competing  

 
Table 3. MLEs of the Parameters with SEs (paranthesis), BIC, −ll, and AIC values for data 
set I. 

Model  Estimates    BIC −ll AIC 

 α̂  τ̂  λ̂  δ̂  γ̂     

KROLL 0.8201 0.6894 0.3432 6.4677 - 1177.12 578.9682 1165.936 

 (0.5051) (0.0881) (0.3096) (0.3043)     

KUMLL 5.9172 12.6227 - 0.5267 14.4993 1192.862 586.8401 1181.68 

 (0.8224) (1.1446) - (0.0443) (3.5236)    

MOELL 13.8653 1.8536 - 5.6094 - 1181.2 587.5998 1181.2 

 (2.4619) (0.1901) - (2.8307) -    

ZBLL 16.8813 1.6039 1.5947 - - 1206.298 595.9553 1197.911 

 (4.3020) (0.1383) (0.2628)      

LL - 0.4335 - - - 1514.859 755.0317 1512.063 

 - (0.0307)       
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Table 4. MLEs of the Parameters with SEs (paranthesis), BIC, −ll, and AIC values for 
Data set II. 

Model  Estimates    BIC −ll AIC 

 α̂  τ̂  λ̂  δ̂  γ̂     

KROLL 0.8887 0.3138 0.3037 3.4610 - 588.4807 287.0733 582.1466 

 (0.2031) (0.0389) (0.1894) (0.1641)     

KUMLL 7.6431 4.4116 - 0.2906 4.5788 595.8207 290.7433 589.4865 

 (1.9310) (2.4439) - (0.0673) (3.8666)    

MOELL 15.7221 0.8058 - 14.1988 - 591.2842 290.2668 586.5335 

 (5.1599) (0.0747) - (4.3053) -    

ZBLL 0.1492 1.1900 9.3955 - - 598.5214 293.8854 593.7708 

 (0.3282) (0.2247) (3.7651)      

LL - 0.2528 - - - 666.7035 331.56 665.1199 

 - (0.0331)       

 
Table 5. MLEs of the Parameters with SEs (paranthesis), BIC, −ll, and AIC values for 
Data set III. 

Model  Estimates    BIC −ll AIC 

 α̂  τ̂  λ̂  δ̂  γ̂     

KROLL 0.8308 0.4859 0.1945 3.0197 - 1154.099 567.8195 1143.639 

 (0.0034) (0.0028) (0.01779) (0.0419)     

KUMLL 7.6605 16.3647 - 0.3284 7.7114 1167.367 574.4534 1156.907 

 (0.3681) (1.7609) - (0.0251) (0.0123)    

MOELL 11.1388 1.2706 - 8.9333 - 1169.462 577.8084 1161.617 

 (2.9676) (0.1028) - (3.748) -    

ZBLL 20.0089 1.0373 1.6079 - - 1183.91 585.0321 1176.064 

 (10.9152) (0.0954) (0.3745)      

LL - 0.3761 - - - 1393.779 694.5821 1391.164 

 - (0.0293)       

 
Table 6. MLEs of the Parameters with SEs (paranthesis), BIC, −ll, and AIC values for 
Data set IV. 

Model  Estimates    BIC −ll AIC 

 α̂  τ̂  λ̂  δ̂  γ̂     

KROLL 0.8104 0.6072 0.2525 5.3920 - 563.4723 273.8725 555.7449 

 (0.0006) (0.0004) (0.0354) (0.0001)     

KUMLL 10.5183 13.4904 - 0.3931 3.0626 574.2929 279.2828 566.5657 

 (2.2634) (13.5114) - (0.0952) (1.5268)    

MOELL 11.0024 1.6251 - 15.7128 - 569.8063 279.0054 564.0108 
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Continued 

 (6.2578) (0.1691) - (6.2920) -    

ZBLL 18.6091 1.2735 1.7605 - - 581.7961 285.0003 576.0006 

 (3.5334) (0.1401) (0.2278)      

LL - 0.3826 - - - 700.4312 348.2497 698.4994 

 - (0.0418)       

 
Table 7. MLEs of the Parameters with SEs (paranthesis), BIC, −ll, and AIC values for 
Data set V. 

Model  Estimates    BIC −ll AIC 

 α̂  τ̂  λ̂  δ̂  γ̂     

KROLL 3.1172 0.4968 9.0421 5.8242 - 936.4692 458.9267 925.8534 

 (0.6112) (0.0738) (3.7577) (1.8566)     

KUMLL 8.7308 18.7688 - 0.7217 13.1942 961.8756 471.6299 951.2599 

 (0.8082) (1.4343) - (0.0473) (0.8803)    

MOELL 28.1447 3.1661 - 3.1572 - 947.8358 470.9179 947.8358 

 (1.5932) (0.2767) - (0.9238) -    

ZBLL 24.8004 2.4252 1.5230 - - 981.1929 483.6155 973.2311 

 (2.0922) (0.2055) (0.1536)      

LL - 0.4251 - - - 1345.432 670.3889 1342.778 

 - (0.0321)       

 
extensions of the log-logistic distributions presented. 

7. Conclusion 

In this paper, a new family of distributions called the Kumaraswamy Odd Ray-
leigh G family which introduced three additional parameters to the baseline dis-
tribution is proposed and studied. This new family gives more flexibility and 
proved best fit, to a wide range of data from practical situations. The Monte 
Carlo simulation results indicated that the simulated values of the parameters of 
the sub-model of this family approached the true values as the sample size in-
creases. Also, the root mean squared error estimates decay towards zero as the 
sample size becomes large. These facts suggest the consistency of the estimates. 
Based on the considered analytical measures, we concluded that the proposed 
family represented in this study by the Kumaraswamy Odd Rayleigh Log-Logistic 
distribution provided the best fit to the 5 analysed real life data sets, some of 
which are the survival times of 121 patients with Breast cancer and death times 
(in weeks) of patients with cancer of tongue with aneuploidy DNA profile. 
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