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Abstract 
With ever-increasing applications of IoT, and due to the heterogeneous and 
bursty nature of these applications, scalability has become an important re-
search issue in building cloud-based IoT/M2M systems. This research pro-
poses a dynamic SDN-based network slicing mechanism to tackle the scala-
bility problems caused by such heterogeneity and fluctuation of IoT applica-
tion requirements. The proposed method can automatically create a network 
slice on-the-fly for each new type of IoT application and adjust the QoS cha-
racteristics of the slice dynamically according to the changing requirements of 
an IoT application. Validated with extensive experiments, the proposed me-
chanism demonstrates better platform scalability when compared to a static 
slicing system. 
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1. Introduction 

As millions of Internet of Things/Machine to Machine (IoT/M2M) devices are 
connected to the cloud, the IoT/M2M platform normally deployed in the cloud 
needs to be constructed with scalability design to serve a massive amount of 
IoT/M2M requests thus generated [1]. IoT/M2M system scalability can be achieved 
by horizontal scalability, which means scaling out or in server instances. Hori-
zontal scalability of web applications has been extensively studied with many 
good results [2] [3] [4] [5]. Nevertheless, such horizontal scalability ignores the 
nature of IoT/M2M applications with heterogeneous and bursty Quality of Ser-
vice (QoS) requirements. 
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Vertical scalability where the capability of server instances and their support 
networks can be upgraded or downgraded based on the changing requirements 
of QoS is a more viable approach. Normally, this implies providing different in-
frastructures of computing, storage, and network to IoT/M2M applications with 
different QoS requirements (e.g. reliability, delay and throughput). However, 
this will be too costly in terms of capital expenditures (CAPEX) and operating 
expenses (OPEX). The emergence of the fifth generation (5G) systems and its 
network slicing capability has paved a feasible path to tackle this problem [6]. 

With the upcoming 5G, network operators are expected to offer virtualized 
infrastructures with different QoS characteristics on top of the same physical 
network infrastructure based on Software-Defined Networking/Network Func-
tion Virtualization (SDN/NFV) technologies. Each virtual network infrastruc-
ture is thus called a “network slice” [7]. Network slices allow the realization of 
tailor-made networks according to the QoS requirements of specific applica-
tions. This is radically different from the one-size-fits-all approach as used in the 
fourth generation (4G) networks.  

Our research proposes to improve the cloud-based IoT/M2M system scalabil-
ity by assigning each different type of IoT/M2M applications to a different net-
work slice configured with the appropriate QoS. Our published work [8] first 
addressed this problem by pre-provisioning a fixed number of network slices to 
serve the same number types of IoT/M2M applications. Nevertheless, the endless 
potential of IoT/M2M innovations makes such a static approach not practically 
applicable. First, considering the fact that many new types of IoT/M2M applica-
tions are yet to appear, it is not feasible to define in advance all network slices 
required by all potential varieties of IoT/M2M applications. Instead, an auto-
matic procedure should be developed so that a new network slice can be created 
on-the-fly for each new kind of IoT/M2M applications. Second, to deal with the 
problem of potential fluctuation of incoming requests, a created slice will need 
to be dynamically adjustable whenever the QoS requirement of incoming re-
quests is changed. Third, whenever a network slice created for a particular type 
of IoT application is no longer needed, it has to be removed. 

As a result, in this work we propose the use of a dynamic SDN-based network 
slicing environment to effectively enhance IoT/M2M platform scalability in the 
cloud. Our main contributions are as follows: 

1) Designing a Slice Manager to manage network slices including slice crea-
tion, deletion, and QoS adjustment. 

2) Designing an Application Classifier to identify any new type of IoT/M2M 
applications and monitor, estimate and forecast its QoS requirements for further 
scalability management. 

3) Building a system prototype to validate the usability of our dynamic ap-
proach to enhance IoT/M2M system scalability versus that of a static approach, 
comparing response time, number of requests, throughput, CPU and memory 
usage, as well as power consumption. 
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The rest of the paper is organized as follows: Section 2 discusses our previous 
effort in applying network slicing to IoT/M2M platform scalability, presents the 
system requirements and motivation of a dynamic network slicing environment, 
and discusses its related work. Section 3 introduces our proposed mechanism for 
achieving IoT/M2M scalability via dynamic network slicing. Section 4 explains 
the key components of our experimental setup and the results of scalability test-
ing. Finally, in Section 5 we provide our conclusions and discuss future research 
topics. 

2. System Requirements and Related Work 

As stated in [9], multiple Standards Developing Organizations (SDOs) and Fora 
have proposed different definitions of network slicing depending on their own 
context [10] [11] [12] [13] [14]. Ultimately, all definitions fit into two categories: 
NFV-based or SDN-based network slicing.  

In the NFV-based network slicing [15] [16], network slice instances (NSIs) are 
composed of one or more network slice subnet instances (NSSIs), which in turn 
are composed of one or more interconnected Physical Network Functions (PNFs) 
and/or Virtual Network Functions (VNFs) running on virtual machines or con-
tainers. In terms of implementation, NFV-based slicing follows the NFV-MANO 
(Management and Orchestration) specification [17] where NSSIs are instances 
of network services (NSs) created upon previously onboarded network service 
descriptors (NSDs) with some particular pre-established QoS configuration (i.e. 
deployment flavor). The NFV-MANO architecture includes an NFV orchestra-
tor (NFVO) that manages the onboarding and instantiation of NSs, a VNF man-
ager (VNFM) that takes care of the lifecycle of VNFs, and a virtual infrastructure 
manager (VIM) that interacts with the network function virtualization infra-
structure (NFVI) for the actual deployment of VNFs.  

In the SDN-based network slicing [18], network slice instances are isolated 
partitions of physical and/or virtual resources (e.g. compute, storage, and net-
work) bridging clients with custom services. An SDN controller plays a centric 
role in the SDN-based architecture as it mediates client requirements (i.e. client 
context) with resource availability that enables custom services (i.e. server con-
text). Moreover, some components of the NFV-MANO can be mapped to those 
in the SDN-based slicing architecture [9]. For example, the SDN controller plays 
the role of NFVO, the SDN controller’s client context plays the role of NS, and 
the SDN controller’s server context plays the role of NFVI. Furthermore, the in-
teraction of SDN and NFV is feasible as proposed by the European Telecommu-
nications Standards Institute (ETSI) [19]. 

In this research, we utilize an SDN instead of NFV-based network slicing ap-
proach to improve IoT/M2M system scalability because our goal is to automati-
cally build network slices as partitions of the underlying network resources. This 
means that we do not create network slices based on pre-provisioned NSDs as in 
NFV-MANO, but do it dynamically and on-demand. In addition, by adjusting 
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the QoS of slices automatically we are not limited to a list of predefined deploy-
ment flavors of slices as in NFV-MANO.  

To our best knowledge, very few works have utilized either SDN or NFV slic-
ing to address the issue of system scalability for IoT/M2M platforms. E. Kapassa 
et al. [20] proposed an NFV-based framework that allows the creation of dy-
namic slices for IoT applications with diverse QoS requirements. However, their 
results on the improvement of scalability are not clear since their framework was 
not yet implemented. V. P. Kafle et al. [21] proposed a three-in-one (i.e. vertical, 
horizontal, and inter-slices) scalability approach based on SDN and NFV slicing. 
The authors provided results based on computer-based simulations and only for 
CPU resource provisioning while letting other resources like memory, storage, 
and throughput pending for future work.  

Our previous efforts in [22] [23] proposed an OpenStack-based, horizontal, 
highly scalable system with good scalability results. However this method as-
sumes that the network handles each IoT/M2M application in isolation from 
others. Such an assumption may not be realistic since multiple applications could 
arrive concurrently at the cloud. Hence, in a follow-up effort, we started to take 
the distinct QoS requirements (i.e. reliability, delay, and throughput) of different 
applications into consideration and assign each of them to a QoS-specific net-
work slice [8] [23]. We have shown that by mapping various types of IoT/M2M 
applications to different network slices, it can significantly improve the platform 
scalability in terms of response time, power consumption, and computational 
cost.  

Nevertheless, this mapping assumes that there is a fixed number of known 
IoT/M2M applications with the same number of SDN network slices. But realis-
tically speaking, not only applications may not be known in advance, but also 
the network slices thus required may not yet exist. Furthermore, the QoS setting 
of each slice needs to be adjustable according to the bursty nature of IoT/M2M 
applications [24].  

As a result, we set the requirements of our target system in this work as fol-
lows: 
• Need identify the type of IoT/M2M applications based on a stream of in-

coming HTTP requests and consider the QoS requirements (i.e. reliability, 
delay, and throughput) of each application. 

• Need automatically create network slices with the required QoS for each type 
of identified applications. 

• Need monitor the changes on the QoS requirements of applications and ad-
just the QoS of their assigned slices accordingly.  

Below we provide more details about these system requirements and their 
current state of the art in the literature. 

2.1. Identifying IoT/M2M Applications and Estimating Its QoS 

The system under scalability study in this research is the IoT/M2M platform 
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such as oneM2M [25] that receives the IoT/M2M applications in the form of 
RESTful requests. Below is a brief introduction to oneM2M as a typical example 
of such IoT/M2M platforms. These systems are normally defined as a standard 
for the IoT/M2M service layer. For oneM2M, its architecture is defined as shown 
in Figure 1. Its functional architecture comprises three entities: Application 
Entity (AE), Common Services Entity (CSE) and Network Services Entity (NSE), 
and four interface points: Mca, Mcn, Mcc, and Mcc’, spanning across a field 
domain and an infrastructures domain. The CSE supports many Common Ser-
vice Functions (CSFs) such as registration, group management, discovery, and 
security offered to AEs and other CSEs via Mca and Mcc/Mcc’. 

Like many other IoT/M2M platforms, oneM2M adopts a resource-based in-
formation model. All entities in the oneM2M platform, such as AEs, CSEs, and 
data, are all represented as resources, and its resources form a hierarchical tree 
called resource tree. All oneM2M resources can be manipulated by RESTful 
APIs. The oneM2M currently supports HTTP, CoAP, MQTT and Websocket 
protocols. This research will focus on the IoT/M2M applications represented as 
a stream of HTTP RESTful requests in the form of CRUD (Create, Read, Update 
and Delete) over a TCP/IP infrastructure. 

The issue of identifying IoT/M2M applications has been studied mostly by 
using machine learning methods [26] [27] [28]. Although such methods can 
deal with classification and clustering of applications, the referenced studies 
assume that IoT/M2M applications are predictable and can be categorized by 
predefined classes. However, IoT/M2M applications are, in reality, heteroge-
neous and it is impossible to construct a finite list of predefined categories for 
IoT/M2M application identification. Instead, a system should leverage some 
practical mechanisms embedded in the nature of IoT/M2M platforms (e.g. 
unique addressability of resources in the oneM2M) to achieve application iden-
tification. 
 

 
Figure 1. oneM2M functional architecture. 
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To estimate the QoS of IoT/M2M applications, previous research such as [29] 
proposed a collaborative approach, which consists of several IoT/M2M devices 
sharing their QoS usage experience with other devices in order to predict the 
QoS state of the network. This method assumes all the IoT/M2M devices have 
enough computational capacity to calculate and share their own QoS needs, 
which is not always true in the IoT/M2M. In addition, the research in [30] pro-
posed a more general approach where the SDN controller prioritizes applica-
tions based on the context data acquired from devices, service providers, and 
users. This method requires collecting, categorizing and processing a substantial 
amount of data that could result in excessive consumption of computational re-
sources. 

In this research, we leverage the message transmission statistics of the applica-
tions to IoT/M2M platforms to conduct both application identification and QoS 
estimation. We use a multi-threaded traffic generator to simulate the HTTP re-
quests sent by 50 to 100 User Equipment (UEs). Each thread simulates a UE for 
each type of IoT/M2M application. For the same type of application, its UEs will 
send the HTTP requests to access the same resource in the infrastructure do-
main. Thus, their HTTP requests all contain the same Uniform Resource Iden-
tifier (URI) destination [25]. Moreover, we assume each type of application is 
associated with a given reliability requirement. This enables a straightforward 
method for identifying the type of IoT/M2M application with its associated re-
liability from its unique addressability in the resource tree. 

To estimate the remaining QoS-related metrics for each identified application, 
our approach consists of collecting enough statistics from the incoming HTTP 
requests so that those metrics can be fairly estimated. As illustrated by Figure 2, 
our approach first identifies which application (e.g. A, B and C in Figure 2) an 
incoming request belongs to, from a continuous stream of oneM2M requests. 
Then, with the collection of sufficient data, the delay and throughput of each ap-
plication can be calculated. These along with the given reliability of the applica-
tion gives us all QoS requirements of the application. 

Once an application type and its QoS requirements are identified and esti-
mated, a QoS-matched network slice will be created and configured to serve that 
application. Furthermore, the application will be continuously monitored in or-
der to detect any changes in the QoS requirements of each application and up-
date the QoS characteristics of its serving slice accordingly. 
 

 
Figure 2. Estimation of QoS of different IoT/M2M applications. 
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2.2. Automatic Network Slice Creation 

SDN technologies allow a single physical network be partitioned into multiple 
virtual networks with each configured with specific QoS capabilities. Each vir-
tual network can be viewed as a SDN-based slice; it may consist of multiple 
end-to-end forwarding paths. However, in this research we assume each SDN- 
based slice consists of only one end-to-end forwarding path. Furthermore, each 
end-to-end forwarding path is allocated to a slice exclusively such that a slice can 
exercise its vertical scalability on the same path without interfering with the sca-
lability operations of other slices. An IoT/M2M server instance will be deployed 
in a slice to serve the continuous stream of HTTP RESTful requests generated by 
the application. 

Few approaches in the literature proposed an SDN system architecture for 
automated management of network slices. For example, in [31] authors proposed 
a framework that leverages SDN-based UE virtualization schemes and creates a 
representation of UEs in slices in the cloud. In [32] authors proposed a system 
architecture to enable the management of slices focused in the Industrial IoT 4.0. 
These works considered complex categories of IoT/M2M applications like mo-
bile broadband and industry 4.0 but didn’t suggest any general-purpose archi-
tecture capable of either automatically creating slices with appropriate QoS for 
new applications or updating the QoS of slices based on fluctuation of applica-
tion QoS. We achieve these capabilities by constructing an experimental system 
based on Open vSwitch (OVS) [33] in Linux with OpenDaylight (ODL) SDN 
Controller [34]. Virtual networks are created on top of OVS switches through 
the southbound OpenFlow APIs and the northbound RESTCONF APIs of Open-
Daylight [35]. 

The dynamic creation of network slices is enabled by an application making 
requests to the SDN controller using the RESTCONF northbound APIs. At re-
ceiving such a request, the SDN controller would convert it into the correspond-
ing rules deployed in OVS switches through OpenFlow Southbound APIs. A 
network slice can then be formed by configuring the OVS switch behavior to 
create a sequence of paths among the connected OVS switches. Once the paths 
have been established, it is possible to set the QoS for a slice by configuring its 
reliability, delay, and throughput parameters on one of the Ethernet ports of the 
connected OVS switches. 

2.3. Monitoring QoS Changes of Heterogeneous and Bursty  
IoT/M2M Applications 

The heterogeneity of IoT/M2M applications is illustrated in Table 1, where the 
main QoS characteristics of eight typical types of IoT/M2M applications are illu-
strated. All eight applications are different in terms of their message’s payload 
size, required throughput and minimum reliability needed to achieve normal 
operations, based on their respective references: smart meter [36], Bluetooth tags 
[37], eHealth [38], video [39], smart parking [40], intrusion detection [41], food 
monitoring [42], and air pollution [43].  

https://doi.org/10.4236/cn.2020.123007


D. de la Bastida, F. J. Lin 
 

 

DOI: 10.4236/cn.2020.123007 129 Communications and Network 
 

Table 1. QoS characteristics of different IoT/M2M applications. 

Application Payload Size Throughput Reliability 

Smart Meter [36] 1000 b 1000 b/s 99.99% 

Bluetooth Tag [37] 220 b 190 b/s 99.99% 

eHealth [38] 160 b 650 b/s 99.9999% 

Video [39] 10000 b 10000 b/s 99.99% 

Smart Parking [40] 380 b 2000 b/s 99.99% 

Intrusion Detection [41] 3000 b 3000 b/s 99.9999% 

Food Monitoring [42] 690 b 1500 b/s 99.99% 

Air Pollution [43] 240 b 750 b/s 99.99% 

 

Similarly, the bursty nature of IoT/M2M applications is illustrated in Figure 
3, where the throughput requirements of two example IoT/M2M applications: 
eHealth and Smart Parking exhibit constant changes during a day [44]. The same 
concept holds true for the other six applications in Table 1, and to any other 
IoT/M2M application. 

In this research, a stream of oneM2M requests belonging to different IoT/M2M 
applications constitutes the input for our proposed system while a network slice 
for each type of application with adequate QoS support constitutes the output. 
Figure 4 illustrates the input that consists of requests sent by eight types of ap-
plications where each application UE is simulated by a thread sending requests 
at a particular frequency. In addition, as explained earlier each application em-
beds its desired reliability in the URI of each request. Figure 4 also shows how 
our proposed system uses the throughput and the payload size information of 
Table 1 to derive the frequency of requests and the delay, while enforces the re-
quested reliability in the network slice created for each application. 

For example, if one hundred threads of smart meter run at a given time, the 
input of the system becomes 100 requests per second, where each request has a 
payload of 1000 bytes and includes the desired reliability of 99.99% in the URI. 
Then, the system would create a slice and configure its QoS support with 99.99% 
for reliability, at least 100,000 bytes/second for throughput, and at most 655 mil-
liseconds for delay (details in Section 3). In this research, we consider only relia-
bility, delay and throughput as the main QoS requirements to keep focus on rea-
lizing a general framework to enhance IoT/M2M scalability. Other QoS re-
quirements such as power utilization, level of security or availability are not con-
sidered at the moment but reserved as future work. 

In [45] the authors fed their proposed algorithm with real-time and archived 
data of IoT applications for QoS monitoring and estimation purposes. In [29], 
the authors utilized machine learning algorithms fed with pre-provisioned data-
sets to conduct QoS monitoring of IoT applications. Despite the good results of 
these two methods, they could not handle newly appeared applications. In addi-
tion, the changing nature of IoT applications might turn their use of historical 
data unreliable. 
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Figure 3. The fluctuation of throughput in a day for two IoT applications [44]. 

 

 
Figure 4. Input and output of our proposed system. 
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possesses sufficient underlying physical resources (i.e. computing, network, and 
storage) for creating network slices and for each application type, only one slice 
will be assigned.  

During system operations, the incoming applications can be classified into 
two categories: mapped and unmapped. Mapped applications are those already 
appeared and mapped with network slices, while unmapped applications are 
those newly appeared and yet to be mapped with appropriate slices. 

Figure 5 illustrates the high-level procedure of handling mapped types of 
applications. When the system receives incoming CRUD messages, it first per-
forms identification of application type, and then forwards the message to the 
corresponding network slice. Simultaneously, the system continuously monitors 
the changes of QoS requirements of the application and scales up or down the 
serving slice accordingly. When scalability is needed, the system utilizes one 
thread to buffer all the incoming messages while employing another thread to 
execute the scalability process. The buffered messages would be sent to the cor-
responding slice after the scalability process is finished to continue with normal 
operations. 

On the other hand, Figure 6 illustrates the high-level procedure of handling 
unmapped applications. Immediately after the system discovers a new type of ap-
plication and its required reliability from its application identification, it launches 
one thread to put all the incoming messages in a buffer until the slice is created 
and another thread to accumulate message transmission statistics and estimate 
the other application QoS metrics (i.e. delay and throughput). After estimating 
the QoS, the system would dynamically create a network slice and assign it to 
serve the newly mapped application type. It would also update the application-slice 
mapping database, and clear the unmapped application messages buffer by for-
warding its content to the newly created slice. 

 

 
Figure 5. System operations for mapped applications. 
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Figure 6. System operations for unmapped applications. 
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Figure 7. Proposed system architecture. 

 
Table 2. eHealth JSON template. 

eHealthJSON = { 

'patient_id' : <randomNumber1>, 

'meter_id' : <randomNumber2>, 

'blood_sugar-measurement' : <randomNumber3>, 

'observation' : <randomWord1> 

'date' : time.strftime("%d/%m/%Y"), 

'time' : time.strftime("%H:%M:%S") 

} 

 
are generated based on current system date_time. These procedures are similar 
to those utilized by popular traffic generator tools like Jmeter [48]. All the mes-
sages created by Traffic Generator go to Application Classifier. 

In addition, Traffic Generator allows running multiple threads for each appli-
cation type to simulate the fluctuation of IoT/M2M applications over time. 

3.2. Application Classifier 

Application Classifier is responsible for identifying IoT/M2M applications, esti-
mating their QoS, and managing scalability. It is composed of Application Di-
rector and QoS Classifier that reside on the data plane and the control plane, re-
spectively. 

If the incoming messages belong to the mapped applications, Application Di-
rector forwards those to their corresponding network slices. Meanwhile, QoS 
Classifier would continuously watch for any change of QoS requirements of the 
mapped applications and triggers scalability whenever needed. If the incoming 
messages belong to the unmapped applications, Application Director will notify 
QoS Classifier to request Slice Manager to create a new slice after estimating its 
QoS requirements.  

Application Director and QoS Classifier are explained in further detail next. 
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3.2.1. Application Director 
Application Director performs three specific tasks: 1) identifying application types 
as mapped or unmapped, 2) sending the mapped applications messages to the 
corresponding serving network slice, and 3) sending applications message trans-
mission statistics to QoS Classifier for QoS estimation and monitoring for both 
mapped and unmapped applications. 

Table 3 shows the detailed steps of Application Director. First, Application 
Director spawns a thread to send message transmission statistics (i.e. application 
id and throughput) to QoS Classifier every second (Line 1). We use a 1-second 
time interval to have a uniform data acquisition timing. During this interval, the 
message transmission statistics of applications that have more than one request 
per second are aggregated. QoS Classifier would either utilize these statistics to 
estimate the QoS required for unmapped applications or monitor changes in QoS 
 
Table 3. Application Director algorithm. 

1:     Spawn a thread to aggregate and send application id and throughput 
to QoS Classifier for QoS estimation and QoS monitoring (every second). 

2:     While Receiving a oneM2M request from Traffic Generator Do 
3:         Extract URI from the request. 
4:         Extract Reliability from URI. 
5:         If URI does not exist in application-slice mapping table Then 
6:             Insert URI with extracted Reliability as new application type 

with slice state NOT READY in the application-slice mapping table. 
7:         End If 
8:         If not yet executed, spawn a thread to execute the function 

Handle_QoS_Classifier_Messages(). 
9:         If slice state for URI is READY Then 
10:           If buffer for URI application type is not empty Then 
11:               Spawn a thread to clear buffer by forwarding all requests in it 

to the corresponding slice. 
12:           End If 
13:           Spawn a thread to forward oneM2M request to the URI corresponding slice. 
14:        Else 
15:           Store request in a buffer. 
16:        End If 
17:   End While 
18:   Function Handle_QoS_Classifier_Messages() 
19:       While received notification from QoS Classifier Do 
20:           If notification == GOT_NEW_SLICE Then 
21:               Change the URI corresponding slice state from NOT READY 

to READY in application-slice mapping table. 
22:           Else If notification == EXECUTING_SCALABILITY Then 
23:               Change the URI corresponding slice state from READY 

to NOT READY in application-slice mapping table. 
24:               Suspend sending message transmission statistics of the 

application under scale-up/down. 
25:           Else If notification == FINISHED_SCALABILITY Then 
26:               Change the URI corresponding slice state from NOT READY 

to READY in application-slice mapping table. 
27:               Resume sending message transmission statistics of the  

corresponding application. 
28:           End If 
29:       End While 
30:   End Function 
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of mapped applications and if needed, request Slice Manager to create a new slice 
of the required QoS or execute scalability to adjust the QoS of an existing slice. 

When a oneM2M request arrives at Application Director (Line 2), it first ex-
tracts the destination URI (Line 3) and application’s reliability from URI (Line 
4). Each destination URI in oneM2M uniquely identifies an IoT/M2M applica-
tion [25]. If this URI doesn’t exist in the application-slice mapping table kept by 
Application Classifier (Line 5), Application Director uses the URI along with its 
given reliability to create a new entry in the application-slice mapping table and 
mark its mapped network slice NOT READY (Line 6). This will trigger the sys-
tem to store the requests in a buffer (Line 15) while the slice is being created. 

Next, if not yet executed, Application Director would create a thread to handle 
the response from QoS Classifier asynchronously (Line 8) by calling Function 
Handle-QoS-Classifier-Messages() (Lines 18 to 30). This function is executed 
whenever a notification message from QoS Classifier is received (Line 19). There 
are three possible notifications from QoS Classifier to Application Director: 

1) GOT_NEW_SLICE when a new slice has been successfully created and con-
figured; in this case, Application Director would change the URI’s slice state from 
NOT READY to READY in the application-slice mapping table (Lines 20 and 21). 

2) EXECUTING_SCALABILITY when the need to scale a URI’s slice is de-
tected by QoS Classifier. Application Director would change the URI’s slice state 
from READY to NOT READY (Lines 22 and 23) and suspend sending message 
transmission statistics of the application under scale-up/down (Line 24). 

3) FINISHED_SCALABILITY when the process of scalability is completed by 
Slice Manager. QoS Classifier would relay this notice to Application Director to 
allow the latter to change the URI’s slice state from NOT READY to READY 
(Lines 25 and 26) and resume sending message transmission statistics of the 
corresponding applications (Line 27). 

At this point, all URIs are recorded in the application-slice mapping table, but 
for those URIs whose slice states are NOT READY (i.e. not fully configured yet 
or under scalability process), their requests would be temporarily stored in a 
buffer (Line 15). On the other hand, for the applications whose slice states are 
READY (Line 9), Application Director first verifies whether the previous re-
quests for this application have been buffered. If true, it would create a new 
thread to clear the buffer by forwarding all its content to the corresponding slice 
(Lines 10 to 12). Finally, the current request is forwarded to the appropriate 
network slice (Line 13). 

Note that we initiate several threads along with the tasks of Application Di-
rector with the aim of enabling concurrent processing needed in our system op-
erations (e.g. sending message transmission statistics every second) while avoid-
ing the system getting blocked on waiting for a response. 

3.2.2. QoS Classifier 
QoS Classifier has two groups of specific tasks: 1) estimating QoS of new appli-
cations then requesting Slice Manager to create a new network slice, and finally 
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instructing Application Director which slice to forward the new application 
messages, and 2) monitoring QoS changes of existing applications and invoking 
Slice Manager for scale-up or scale-down based on adjustment forecasting. In 
order to achieve these tasks, QoS Classifier utilizes the following three data 
structures during system operations:  

moving_average = [application id, moving average throughput] 

sliding_window = [application id, [[QoS]1 [QoS]2 [QoS]3 … [QoS]10]] and, 

thresholds = [application id, [scale-up thresholds], [scale-down thresholds]] 

• Moving_average: contains the average of the latest five received throughput 
values of each application. Moving average is a sampling technique for re-
moving outliers from data samples. It helps to avoid triggering scalability 
unnecessarily (i.e. scaling up or scaling down repeatedly due to unstable mes-
sage transmission flow). 

• Sliding_window: contains the latest ten results of estimated QoS using the 
moving average of each application. Each is a tuple of the two estimated QoS 
metrics, i.e., [QoS]1 ≤ i ≤ 10 = [delayi, throughputi] where Throughput (T) is 
the moving average of throughput and Delay (D) is derived from the ratio 
between a common TCP window size (i.e. 65,535 bytes) and the measured 
throughput [49] as follows:  

D = TCP_Window_Size/throughput. 

• Thresholds: specifies QoS values such as delay in milliseconds and through-
put in bytes/second, of scale-up and scale-down thresholds for each applica-
tion. In this research, they are set at +60% and −60% of the estimated delay 
and throughput, respectively. 

The principles and advantages of the three data structures are illustrated in 
Figure 8. For simplicity, we show only an example of the throughput received 
during a period of 23 seconds. However, the same principle can be applied to the 
delay and other time sequences. 

Assuming that the throughput values collected in Figure 8 are for a new ap-
plication type, a new slice will be created based on the forecasted throughput 
calculated at the 14th second, which is 79 bytes/second. This is derived from a 
linear regression model built upon the first sliding window of 10 QoS measure-
ments in the sliding_window table. Each QoS measurement in the sliding win-
dow is calculated based on the moving average of the five received throughput 
values in the moving_average table. Based on such an initial value, the correspond-
ing scale-up and scale-down thresholds, 126 bytes/second and 32 bytes/second, 
respectively, can also be calculated for the system, then stored in the thresholds 
table. 

After creating a slice, the process continues with QoS monitoring. To do so, the 
moving average is recalculated with every new input. As mentioned before, the 
moving average helps to filter outliers. The value of throughput shown at the 16th 
second is an example of an outlier. It is out of range of the scalability thresholds, 
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Figure 8. Moving average and sliding window for QoS forecasting and monitoring. 
 
and without the help of the moving average, it could have triggered scalability 
unnecessarily. The system keeps updating the sliding window and recalculating 
the linear regression model to forecast the QoS at every second. Finally, the ex-
ample also demonstrates how the forecasted throughput helps to trigger scalabil-
ity before the system is overloaded (i.e. at the 18th second when the throughput 
is 72 bytes/second instead of at the 23rd second). 

Table 4 shows the detailed tasks related to QoS Classifier. First, it defines 
global tables to keep the values of moving average, window of ten estimated QoS 
values, and values of scale-up and scale-down thresholds of each application (i.e. 
one entry per application) (Line 1) that will be used during system operations. 
Then, QoS Classifier continuously receives message transmission statistics from 
Application Director, including application id and throughput (Line 2). QoS 
Classifier uses this input to calculate the moving average of the received message 
transmission statistics (Line 3). When the next moving average is ready (Line 4), 
QoS Classifier estimates delay and throughput (Line 5) and stores those values in 
the next position of the corresponding sliding window of ten tuples (Line 6). 
When the sliding window is completed (Line 8), QoS Classifier uses a linear re-
gression model to forecast the QoS values of the applications at time tn + m (Line 
9). Where tn represents the current time and +m represents a number of addi-
tional seconds. In this research, we assume m = 60. Therefore, it forecasts the 
status of the QoS metrics in 60 seconds in the future. Next, QoS Classifier que-
ries the application-slice mapping table to check the state of the slice associated 
with the received application id and decide how to handle the forecasted QoS 
values such as forecasted delay and throughput. 

If the slice state is NOT READY (Line 11), QoS Classifier needs to handle the 
provisioning of a new network slice in coordination with Slice Manager. Based 
on the forecasted QoS values, it establishes the thresholds for scalability on each 
metric (Line 12) and creates a new entry in the thresholds global table (Line 13). 
Then, QoS Classifier spawns a new thread to run the function Get_New_Slice()  

Seconds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Received Throughput 50 60 60 50 50 120 25 50 50 60 65 70 70 73 75 5 95 110 120 120 130 130 130

50 60 60 50 50
54

60 60 50 50 120
68

60 50 50 120 25
61

…
Estimated Throughput - - - - 54 68 61 59 59 61 50 59 63 68 71 59 64 72 81 90 115 122 126

Trigger Scalability? x x x x x x x x x x x x x x x x x x ✓
1 2 3 4 5 6 7 8 9 10

Initial throughput = 79
Scale up threshold = 126
Scale down threshold = 32 ✓

Estimated QoS of last 10 Iterations
throughput at t15+60 = 90

…
throughput at t18+60 = 136

Moving Average 
Result 1

Moving Average 
Result 2

Moving Average 
Result 3

…

Estimated QoS of last 10 Iterations
throughput at t14+60 = 79

Initial 
QoS

Trigger Scalability 
normally (slower)

Trigger Scalability 
with our approachOutlier
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Table 4. QoS Classifier algorithm. 

1:     Create moving_average, sliding_window, and thresholds global tables in memory. 
2:     While receiving application id and throughput from Application Director Do 
3:         Compute moving average of the latest five received throughput and 

save them in the moving_average table 
4:         If next moving average is ready Then 
5:             Estimate Delay and Throughput out of moving average. 
6:             Store the estimated QoS values along with application id in the 

sliding_window table 
7:         End If 
8:         If next window of the ten estimated QoS values is ready Then 
9:             Set forecasted_qos = Linear regression of ten estimated QoS in tn + m. 
10:       End If 
11:       If slice state of application id is NOT READY Then 
12:           Calculate QoS values for scale-up and scale-down thresholds 

based on forecasted QoS 
13:           Store thresholds in the thresholds table along with application id. 
14:           Spawn a new thread to call the function Get_New_Slice() with 

the estimated scale-up QoS values and application’s reliability 
from the application-slice mapping table as parameters. 

15:       Else If slice state of application id is READY Then 
16:           If forecasted_qos > 0 Then 
17:               Retrieve corresponding scale_up and scale_down thresholds 

from the thresholds table 
18:               If forecasted_qos ≥ scale_up threshold Or 

forecasted_qos < scale-down threshold Then 
19:                   Notify Application Director by sending 

EXECUTING_SCALABILITY notification to it. 
20:                   Recalculate scalability thresholds based on forecasted QoS 

and update the thresholds table. 
21:                   Spawn a new thread to call the function Trigger-Scalability() with 

recalculated scale-up QoS values and IP address of slice as parameters. 
22:               End If 
23:           Else If forecasted_qos ≤ 0 Then 
24:               Spawn a new thread to call the function Release_Slice() 

with IP address of slice as parameter. 
25:           End If 
26:       End If 
27:   End While 
28:   Function Get_New_Slice (arguments: QoS values) 
29:       Invoke Slice Manager to get a new network slice including QoS values as parameters. 
30:       After “success” notification from Slice Manager, notify 

Application Director by sending GOT_NEW_SLICE notification to it. 
31:   End Function 
32:   Function Trigger_Scalability (arguments: QoS values, IP address) 
33:       Invoke Slice Manager to execute scalability with QoS values and IP address 

as parameters. 
34:       After “success” notification from Slice Manager, notify 

Application Director by sending FINISHED_SCALABILITY notification to it. 
35:   End Function 
36:   Function Release_Slice (arguments: IP address) 
37:       Invoke Slice Manager to delete a slice with its IP address as parameter. 
38:       After “success” notification from Slice Manager, delete the 

corresponding entries from the global tables of application-slice 
mapping, moving_average, sliding_window, and thresholds. 

39:   End Function 
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(Lines 24 to 27) to request Slice Manager to create new slices by sending the val-
ues of delay and throughput corresponding to the scale-up threshold, in addition to 
the application’s reliability stored in the application-slice mapping table (Line 14). 

Note that QoS Classifier utilizes both scale-up and scale-down thresholds to 
decide when to trigger the execution of scalability, while Slice Manager only 
utilizes the scale-up threshold to configure the initial capacity of the slice. By 
doing so, it allows the incoming application messages to grow until the maxi-
mum capacity allowed by the scale-up threshold. After getting the information 
of the new slices from Slice Manager (i.e. slice IP address), QoS Classifier noti-
fies Application Director about the readiness of the new slices by sending the 
GOT_NEW_SLICE notification to it (Line 26). This enables Application Direc-
tor to set the state of the slices to READY in the application-slice mapping table 
in order to release the buffer and forward the subsequent incoming application 
messages of the same type to the newly created slice. 

If the slice state is READY (Line 15), QoS Classifier will start or continue to 
watch the QoS changes and if required, either trigger scalability or release the 
slice. The forecasted QoS values can be used to distinguish between these two 
situations (i.e. triggering or releasing).  

If the forecasted QoS values are positive (Line 16) (i.e. the slope of the linear 
regression is positive), QoS Classifier retrieves the scalability thresholds of the 
corresponding application stored in the thresholds table (Line 17) and evaluates 
the forecasted QoS values versus the scale-up and scale-down thresholds. If the 
forecasted QoS values are not within the thresholds (Line 18), the system would 
trigger the execution of scalability. 

QoS Classifier first notifies Application Director about the imminent execu-
tion of scalability by sending an EXECUTING_SCALABILITY notification (Line 
19). In this way, Application Director can change the state of the corresponding 
slices to NOT READY, suspend sending message transmission statistics of the 
corresponding application and buffer subsequent incoming oneM2M requests. 
Then, QoS Classifier calculates new QoS values for scale-up and scale-down 
thresholds based on the forecasted QoS values and updates the corresponding 
entry in the thresholds table (Line 20). Next, it spawns a new thread to call the 
function Trigger_Scalability() (Lines 32 to 35) that would invoke Slice Manager 
for executing scalability by providing the new scale-up QoS values and the IP 
address of the slice as parameters (Line 21). Finally, after receiving the acknowl-
edgment from Slice Manager, QoS Classifier notifies Application Director by 
sending a FINISHED_SCALABILITY notification (Line 34). By doing so, Ap-
plication Director can set the state of the corresponding slices to READY and 
resume normal operations. 

On the other hand, if the forecasted QoS values are less than or equal to zero 
for at least ṁ seconds (Line 23) (i.e. the slope of the linear regression is nega-
tive), it is the evidence that the application messages flow has stopped its opera-
tions, letting its corresponding network slice in an idle state, therefore that slice 
has to be released to save energy and computational resources. Here ṁ is the 
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minimum amount of time needed by an inactive application to be safely deter-
mined as stopped. In this research, we assume ṁ = 30. Then, QoS Classifier 
spawns a new thread to call the function Release_Slice() (Lines 36 to 39) that 
would invoke Slice Manager for deleting the corresponding slice by providing its 
IP address as parameter (Line 24). Finally, after receiving the acknowledgment 
from Slice Manager, QoS Classifier removes all corresponding entries of such 
application and slice from all global variables in Application Classifier (Line 38). 

Note that similar to Application Director, QoS Classifier also takes advantage 
of using multiple threads to execute concurrent tasks. 

3.2.3. Slice Manager 
Slice Manager resides on the control plane and it is an SDN application running 
on top of the OpenDaylight SDN controller. Its main purpose is to automatically 
provision network slices based on the QoS requirements estimated by QoS Clas-
sifier and each application’s reliability. Each network slice fulfills the QoS re-
quirements of a specific application type and offers the services of an IoT/M2M 
platform. In our system, each network slice comprises an end-to-end service, 
having a client sending a particular type of IoT/M2M application messages to a 
server (i.e. oneM2M platform). 

In our previous work [8] [23], we created the network slices manually by defin-
ing a series of OpenFlow rules on each OVS and issuing multiple device-specific 
commands to set the actual QoS capabilities of each slice. Such a manual proce-
dure is infeasible when deploying a large network. To tackle this problem, we 
apply SDN technologies to automate the aforementioned tasks. With SDN con-
trollers, we not only can access the current network topology and functions but 
also extract the details of each network device in the current topology. Further-
more, SDN controllers can translate configuration settings written in JSON or XML 
into complex OpenFlow rules and directly install them in the corresponding 
forwarding devices. The configuration settings include device/vendor-specific 
rules to set QoS capabilities required by a network slice.  

Table 5 introduces the tasks executed by Slice Manager. These tasks include a 
set of general instructions and three functions: one for creating a new slice, 
another to execute scalability, and the last one to delete an idle slice. Regarding 
the general instructions, when Slice Manager starts, it first connects to the SDN 
controller (Line 1), executes a full scan of all the forwarding devices (i.e. OVS 
switches) connected in the underlying topology, and creates an internal database 
of connected links among the forwarding devices (Line 2). Using the collected 
topology information, Slice Manager calculates all feasible network slices in the 
system and stores these results in memory (Line 3). This is done by looking at all 
the possible sequences of paths from the input switch (i.e. the switch where Traf-
fic Generator is connected to) to the output switch (i.e. the switch where oneM2M 
servers are connected to) in the current network topology. Finally, Slice Manager 
loads into memory a provided list of IP addresses that can be assigned to new 
network slices (Line 4). 
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Table 5. Slice Manager algorithm. 

1:     Connect to SDN Controller 
2:     Get current network topology from SDN Controller 
3:     Set All_Slices = Calculate all possible sequence of paths from input 

switch to output switch in the current network topology. 
4:     Set All_IP_Addresses = List of IP addresses for new network slices 
5:     While new request from QoS Classifier arrives Do 
6:         If request == create slice Then 
7:             Spawn a thread to run the function Create_Slice() 
8:         Else If request == execute scalability Then 
9:             Spawn a thread to run the function Execute_Scalability() 
10:       Else If request == delete slice Then 
11:           Spawn a thread to run the function Delete_Slice() 
12:       End If 
13:   End While 
14:   Function Create_Slice (arguments: QoS values from QoS Classifier) 
15:       Retrieve next unused slice in All_Slices & next unused IP 

address in All_IP_Addresses 
16:       Foreach path in the retrieved slice Do 
17:           Generate insert RESTCONF command 
18:           Send RESTCONF to SDN Controller 
19:           Set OpenFlow rules into the corresponding switch 
20:       End For 
21:       Set QoS using Linux tc qdisc 
22:       Instantiate a oneM2M server virtual machine and assign IP 
23:       Return the retrieved IP address 
24:   End Function 
25:   Function Execute_Scalability (arguments: new QoS values from QoS Classifier, slice IP) 
26:       Retrieve slice using slice IP 
27:       Set QoS using Linux tc qdisc 
28:       Return success 
29:   End Function 
30:   Function Delete_Slice (arguments: slice IP) 
31:       Retrieve slice using slice IP 
32:       Foreach path in the retrieved slice Do 
33:           Generate delete RESTCONF command 
34:           Send RESTCONF to SDN Controller 
35:           Delete OpenFlow rules from the corresponding switch 
36:       End For 
37:       Reset QoS using Linux tc qdisc 
38:       Set retrieved slice as unused in All_Slices & set IP as unused in All-IP-Addresses 
39:       Delete corresponding oneM2M server virtual machine 
40:       Return success 
41:   End Function 

 
With all this information ready, Slice Manager continuously waits for requests 

coming from QoS Classifier (Line 5). If the request is for the creation of new slices 
(Line 6), Slice Manager spawns a new thread to run the function Create_Slice() 
(Line 7). On the other hand, if the request is for the execution of scalability (Line 
8), it spawns a new thread to run the function Execute_Scalability() (Line 9). Fi-
nally, if the request is for the deletion of an idle slice (Line 10), it spawns a new 
thread to run the function Delete_Slice() (Line 11). We present the details of 
these three functions in the following paragraphs. Slice Manager exposes the 
function Create_Slice() to QoS Classifier for the creation of a new network slice 
that satisfies a given QoS as a parameter (Line 14). In this function, Slice Man-
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ager first retrieves the next unused sequence of paths and the next unused IP 
address from memory (Line 15) to provision a new network slice. Then, for each 
path in the selected sequence (Line 16), Slice Manager translates the path into an 
ODL-based XML representation (Line 17) that is passed to the SDN controller 
via the RESTCONF protocol [50] (Line 18). The SDN controller then translates 
the XML declarations into OpenFlow rules to establish the logical links between 
the connected OVS switches and build the actual network slices (Line 19). Then, 
Slice Manager utilizes the tc qdisc commands [8] [23] on one of the ports of the 
connected OVS switches to set the required QoS (Line 21). Next, it utilizes Linux 
commands to launch a Kernel-based Virtual Machine (KVM) instance with an 
active IoT/M2M server and assigns the next unused IP address to it (Line 22). 
Finally, it returns the assigned IP address to QoS Classifier (Line 23). 

Slice Manager also exposes the function Execute_Scalability() to QoS Classifi-
er in order to scale-up or scale-down QoS capabilities of slices according to new 
QoS values (Line 25). Remember that QoS Classifier instructs Application Di-
rector to buffer the incoming application messages until the scalability proce-
dure is completed (See Table 4, Line 19). In this research, we utilize a QoS up-
date approach to execute scalability. This means setting new QoS configurations 
in the same existing slice. To do so, upon retrieving the corresponding sequence 
of paths (i.e. slice) based on the given IP address (Line 26), the new QoS confi-
guration requested by QoS Classifier is translated into appropriate tc qdisc 
commands [51] that are executed on the Ethernet port of the corresponding 
OVS switch (Line 27). Finally, Slice Manager notifies QoS Classifier about its 
successful completion (Line 28), allowing the latter to work in coordination with 
Application Director to let the system continue its normal operations. 

The third function offered by Slice Manager is Delete_Slice() which is used to 
delete idle slices from the system (Line 30). Slice Manager first retrieves the cor-
responding sequence of paths (i.e. slice) based on the given IP address (Line 31). 
Then, for each path in the sequence (Line 32), Slice Manager creates appropriate 
delete RESTCONF commands (Line 33), that are sent to the SDN controller 
(Line 34), converted into corresponding OpenFlow rules and installed in the re-
spective OVS switches (Line 35). Next, Slice Manager resets the QoS settings of 
the Ethernet port of the corresponding OVS switch using appropriate tc qdisc 
commands (Line 37). Finally, Slice Manager sets both the slice and its IP address 
as unused in memory (Line 38), deletes the associated KVM virtual machine 
(Line 39), and notifies QoS Classifier about its successful completion (Line 40), 
allowing the latter to finish the slice releasing procedure. 

4. Implementation and Evaluation of Our System 

In this section, a scalability testbed implemented based on KVM, OVS, and Open- 
Daylight is presented. Two IoT/M2M system designs: 1) multiple dynamic net-
work slicing, and 2) multiple static network slicing are tested and compared for 
their scalability features under various loads in terms of the average number of 
requests, response time, throughput, energy consumption, and memory/CPU cost. 
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4.1. Scalability Testbed 

The scalability testbed is implemented in a desktop computer with a 4-core 
3.2GHz CPU, 32 GB of memory and 1TB hard drive. It runs Ubuntu 16.06 and is 
installed with OpenDaylight Oxygen SR2, KVM 2.4, OVS 2.5.5, and OpenMTC 
[52] release 4 as the oneM2M platform. Figure 9 shows the logical network to-
pology of the testbed: it is configured with five OVSs interconnected with each 
other in a mesh using patch links. The internal OVS-based virtual network can 
support a maximum throughput of up to 100 Mbps. 

Traffic Generator, as described in Section 3.1, is used to simulate eight IoT/M2M 
applications with the characteristics as shown in Table 1: 
• Smart meter [36] simulates data collection from appliances in a house. 
• Bluetooth tag [37] simulates a Bluetooth Low Energy (BLE) tag attached to 

objects for location tracking. 
• eHealth [38] simulates blood glucose measurements. 
• Video [39] simulates video metadata messages from a video server. 
• Smart parking [40] simulates a parking lot capable of detecting empty slots 

for car parking. 
• Intrusion detection [41] simulates a video surveillance system equipped with 

motion detectors. 
• Food monitoring [42] simulates the detection and maintenance of required 

temperature and humidity for food delivery from farm to supermarket. 
• Air pollution [43] simulates the measurements of PM2.5 particles in the air, 

taken on an hourly basis. 
With these eight applications, Traffic Generator is capable of generating ap-

plication behavior characteristics simulating the heterogeneity and bursty na-
ture of IoT/M2M applications. For example, we can categorize smart meter and 
video as applications that cannot tolerate long delay. However, they have dif-
ferent requirements in throughput: smart meter requires only low throughput, 
 

 
Figure 9. Network logical topology. 

OVS Switch1 OVS Switch2

OVS Switch3

OVS Switch4

OVS Switch5

Tap1

Tap2

Tap3

Tap4

Tap5

Tap6

Tap7

Tap8

Tap9

Tap0

Physical Machine Running OVS and ODL

OVS Patch

Tap
Terminal Access 
Point (tap) Port

https://doi.org/10.4236/cn.2020.123007


D. de la Bastida, F. J. Lin 
 

 

DOI: 10.4236/cn.2020.123007 144 Communications and Network 
 

while video demands high throughput. On the other hand, both intrusion detec-
tion and food monitoring require low delay for data transmission. Nevertheless, 
intrusion detection demands high reliability, while food monitoring can tolerate 
low reliability. 

4.2. Experiments Setup 

The IoT applications considered in this research are based on HTTP RESTful 
communications, but we are aware that other application protocols like CoAP or 
MQTT are also popular among IoT applications. Our algorithm might need fur-
ther adjustment for these kinds of protocols. In addition, some of these applica-
tion protocols are based on UDP (e.g. CoAP) instead of TCP. Our algorithm as-
sumes having a TCP/IP underlying infrastructure in which delay can be pre-
dicted based on TCP window size and throughput; on the other hand, if the ap-
plications are running under UDP/IP communications, other considerations 
might be required. 

Every time we run an experiment, eight types of IoT/M2M applications are 
deployed concurrently and each of them follows the same messages flow load 
schema as depicted in Figure 10. It consists of continuous streaming of HTTP 
POST requests meant to insert data in the oneM2M resource tree. 

As shown in Figure 10, the total duration of this test schema is 300 seconds 
(i.e. five minutes), distributed as follows: 
• From Second 0 to Second 60, the messages flow load corresponds to 50 threads 

of an application, simulating 50 UEs sending requests simultaneously. 
• From Seconds 60 to 120, the load increases in a ratio of 5 threads every 6 

seconds, giving a total of 50 additional threads activated at the end of Second 
120.  

• Then, the load remains stable with 100 threads running from Seconds 120 to 
180.  

• Next, from Seconds 180 to 240 the load is decreased in a ratio of 5 threads 
every 6 seconds, with a total of 50 threads removed, and a total of 50 threads 
still running at the end. 

• Finally, those active 50 threads continue sending data from Seconds 240 until 
300. 
 

 
Figure 10. Messages flow load schema. 
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We plan to evaluate the scalability performance of our dynamic system versus 
that of a static system. Due to the absence of dynamism in a static system, the 
latter cannot change its capacity to suit the evolving QoS needs of individual ap-
plications. Therefore, we use two types of static systems for comparison: overde-
sign and underdesign. We call the system overdesign because it is pre-provisioned 
with more capacity than what is needed. On the other hand, we call the system un-
derdesign as it is pre-provisioned with less capacity than what is actually needed. 

Our objective is to prove that the dynamic slicing system has better scalability 
performance as follows: 

1) In terms of efficiency (i.e. response time, number of requests, and through-
put), it can come close to that of an overdesign system without the price of 
higher costs (i.e. CPU, memory, and power usage) paid by the overdesign. 

2) In terms of cost (i.e. CPU, memory, and power consumption), it can come 
close to an underdesign system while still achieving better response time, num-
ber of requests, and throughput. 

The three system designs for our verification are as follows: 
• The dynamic system: This is our proposed system that consists of one dy-

namic slice for each type of IoT/M2M applications. It automatically creates 
each slice and sets its initial QoS with the given reliability and the scale-up 
threshold values (i.e. delay and throughput) after the first QoS forecasting 
iteration. The QoS of each slice and its scalability thresholds can be dynami-
cally adjusted according to the changing needs of the incoming requests. Based 
on our study, such a dynamic system will vary its QoS from 60% higher than 
the initially detected traffic loading to 120% during the testing period.  

• The underdesign static system: This system consists of one static slice for 
each of the eight IoT/M2M applications. We pre-provision each slice with a 
QoS equals to 60% higher than the initially detected traffic loading (i.e. simi-
lar to the initial QoS of the dynamic system) in addition to the given reliabil-
ity. However, all eight slices created are static and cannot perform scale-up or 
scale-down. 

• The overdesign static system: This system is similar to the underdesign system, 
except for having a pre-provisioned QoS on each slice equals to 120% higher 
than the initially detected traffic loading. Therefore, this design can accom-
modate all the QoS requirements of applications from beginning to end. 

Each design is tested using the same eight types of IoT/M2M applications con-
currently and each type was run based on the same general load schema as de-
picted in Figure 10. 

4.3. Results of Evaluation 

The results of the evaluation are presented in this subsection. Figure 11 shows 
the results of the average number of requests handled by the systems during the 
5-minute testing period. The proposed dynamic slicing system was able to han-
dle a much higher number of requests than the underdesign slicing system. Taking 
eHealth applications as an example, the proposed system was able to handle 
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10,038 requests on average during the execution of the tests, while the underde-
sign system could only achieve 4947 requests. The same pattern is observed in 
the other seven applications. On the other hand, the overdesign system over-
passes our dynamic system for the number of requests, but the difference is not 
significant. For example, for eHealth the difference is only at 952 requests. 

Figure 12 shows the results of average response time for the three system de-
signs. The proposed system demonstrated a much faster response time for all 
eight applications compared to the underdesign system and a compatible response 
time with that of the overdesign system. This is particularly significant for ap-
plications (e.g. eHealth and Bluetooth tags) that require quick response time. In 
particular for Bluetooth tags, the dynamic system obtained an average response 
time at 746 milliseconds, compatible to the 723 milliseconds of the overdesign 
system, whereas the underdesign system could only get an average response time 
at 2610 milliseconds. 
 

 
Figure 11. Average number of requests during test duration. 

 

 
Figure 12. Average response time results. 
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As shown in Figure 13, our system also achieved a higher throughput for all 
applications when compared to the underdesign system, while compatible to 
that of the overdesign system. This is especially important for applications that 
require to transmit a large amount of data such as video and intrusion detection. 
In particular for video applications, our system achieved an average throughput 
at 79,507 bps, compatible to the 87,962 bps of the overdesign system, whereas 
the underdesign system reached 60,461 bps. 

On the other hand, we also verified whether the dynamic slicing system would 
increase the computational and power cost because it requires more complex 
operations than the static slicing system and how far this cost is from that of the 
static system. The CPU and memory usage results are shown in Figure 14 and 
the amount of power consumed is proportional to the amount of CPU and mem-
ory utilized [8] [22] [23] as depicted in Figure 15.  

These are measured as the overall system cost for all eight IoT/M2M applica-
tions running concurrently during the 5-minute tests on the same physical in-
frastructure. We verified that the resource utilization of our dynamic system 
would slightly increase when compared with that of the underdesign system. But 
it shows significant savings when compared to the overdesign system. 

Certain types of applications might not work well with the demand of high 
CPU, memory usage, and power consumption (e.g. eHealth applications [53]). 
Hence, it is important to analyze whether any higher CPU and memory usage 
including power consumption would negatively impact any of eight applications 
under testing. Note the two thresholds shown in Figure 14: overloaded CPU at 
90% and overloaded memory at 40%. They are used to verify whether our design 
is within the safe range of operations of a reference cloud system. Taken from 
[54] and [55], these two thresholds are derived as the maximum CPU usage of 
Google Cloud Spanner instances and the default threshold for Linux memory 
swapping, respectively. Though our dynamic system utilized up to 79.4% of CPU 
 

 
Figure 13. Average throughput results.  
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Figure 14. Overall CPU and memory cost.  
 

 
Figure 15. Overall power cost. 
 
and 13.5% of memory, they are still below the overload thresholds of 90% CPU 
and 40% memory, respectively. Hence, we can conclude that the dynamic system 
indeed achieves higher scalability within the safe utilization of more computa-
tional resources. In other words, the increasing cost in CPU, memory usage, and 
power consumption of the dynamic slicing system can be seen as a valuable 
trade-off for improved scalability of the system. On the other hand, Figure 14 
shows that the overdesign static system would exceed the CPU Threshold of 90%. 

4.4. Discussion 

Based on our experimental results, we have proved: 
1) In terms of efficiency, i.e. average response time, number of requests, and 

throughput, the dynamic system performs very close to the overdesign system 
with a difference of only 8% in all three metrics. On the other hand, the efficien-
cy of the underdesign system is much worse than that of the dynamic system as 
follows: response time lengthened to 103% slower, number of requests and 
throughput reduced to 82%. 

79.4

13.5

75.1

12.7

96.8

23.5

Overloaded CPU Threshold (90%)

Overloaded Memory Threshold (40%)

0
10
20
30
40
50
60
70
80
90

100
110

CPU Memory

Pe
rc

en
ta

ge
 (%

)

Overall Cloud System CPU and Memory Cost
Dynamic Static 60% Static 120% %CPU %Memory

63.9 60.5

78.5

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

Power

W
at

ts

Overall Cloud System Power Cost
Dynamic Static 60% Static 120%

https://doi.org/10.4236/cn.2020.123007


D. de la Bastida, F. J. Lin 
 

 

DOI: 10.4236/cn.2020.123007 149 Communications and Network 
 

2) In terms of cost, i.e. CPU, memory, and power utilization, the dynamic sys-
tem stands very close to the underdesign system with a difference of 4%, 1%, and 
3%, respectively. On the other hand, the overdesign system costs more than a 
dynamic system as follows: CPU at 18% more, memory at 10% more, and power 
utilization at 15% more. 

As we have observed in the experimental results, every system design pays a 
trade-off between efficiency and cost. The dynamic system keeps a good balance 
between these two metrics. Through Application Director, QoS Classifier, and 
Slice Manager, it is able to incorporate every new application into operations in 
a good balance. 

As mentioned in the beginning of this paper, scalability in the cloud has been 
well studied, particularly horizontal scalability enabled by virtualization tech-
nologies [2] [3] [4] [5]. While cloud scalability offers some promising features, 
scalability with IoT/M2M platforms in the cloud is more complex due to their 
heterogeneity and burstiness nature. This motivated us to look for better scala-
bility solutions. After applying horizontal [22] [23] and static vertical [8] scala-
bility approaches in our prior efforts, this research has furthered IoT/M2M sca-
lability using a dynamic vertical approach. The obtained results demonstrate 
that existing cloud environments can take advantage of SDN-based network 
slicing and network virtualization technologies to enable a new level of vertical 
scalability with better results. 

5. Conclusions and Future Work 

In this work, we have proposed an innovative solution to the problem of scala-
bility for IoT/M2M platforms in the cloud by leveraging SDN-based network slic-
ing. Our solution is a dynamic network slicing system that improves system sca-
lability by considering the heterogeneous and bursty nature of IoT/M2M appli-
cations. The proposed system can automatically create network slices on-the-fly 
for an IoT application with the matched QoS requirements. Furthermore, it would 
also constantly monitor the QoS demands of the ongoing messages flow and dy-
namically adjust the QoS characteristics of the serving slice accordingly. 

The proposed system architecture in this research includes two main compo-
nents. First, an Application Classifier for identifying IoT/M2M applications, es-
timating their QoS requirements, and monitoring changes in QoS to trigger sca-
lability mechanism accordingly. Second, a Slice Manager for spawning and de-
leting network slices, and executing scalability. Slice Manager provides appro-
priate network slices by utilizing SDN technologies. It emits RESTCONF com-
mands that are translated into OpenFlow rules by the SDN controller in order to 
manage the slices accordingly. 

By Application Classifier and Slice Manager, our proposed system can dynam-
ically scale-up or down network slices for any number of IoT/M2M applications 
with constantly changing QoS requirements. Each slice provides platform services 
based on the unique QoS requirements of the application behavior assigned to it 
and thus enables the IoT/M2M system to reach a new level of scalability. 
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Our unique contribution lies not only in the architectural and algorithmic de-
sign of a scalable IoT/M2M system but also in a better understanding of how 
network slicing can really improve scalability and what trade-off to be paid to 
improve system scalability. 

Future exploration can include addressing scalability using both horizontal 
and vertical approaches (i.e. hybrid). Moreover, further study on how the un-
derlying physical network infrastructure may affect the cost and efficiency of a 
slice could be done as our experiment now is all based on a virtual environment. 

Another potential direction of future work consists of leveraging the result of 
this research and migrate it to the framework of NFV-based network slicing. 
NFV-based network slicing on top of MANO is expected to be the base of future 
5G networks. Moreover, Virtual Network Functions (VNFs) in the NFV-based 
network slicing framework can be realized either in cloud or fog and in both 
virtual machines and containers, which have the potential to further improve the 
scalability of IoT/M2M systems. 
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