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Abstract 
In this paper, the invariant subspaces of the generalized strongly dispersive 
DGH equation are given, and the exact solutions of the strongly dispersive 
DGH equation are obtained. Firstly, transform nonlinear partial differential 
Equation (PDE) into ordinary differential Equation (ODE) systems by using 
the invariant subspace method. Secondly, combining with the dynamical sys-
tem method, we use the invariant subspaces which have been obtained to 
construct the exact solutions of the equation. In the end, the figures of the 
exact solutions are given. 
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1. Introduction 

Nonlinear phenomena occur widely in various scientific fields, such as fluid 
mechanics, solid state physics, etc. As an important mathematical model to de-
scribe nonlinear phenomena, nonlinear partial differential equation has been 
widely concerned by many scholars in recent years, and the exact solutions of 
the PDE, including the soliton solution and wave solution, has always been a 
subject of interest to mathematical physicists. Recently, the methods of solving 
nonlinear partial differential equations mainly include Backlund-transformation 
method, non-locally symmetric method, Lie group method, and invariant sub-
space method, etc. 

The invariant subspace method was first proposed by Galaktionov et al., and 
then extended by many scholars and widely applied. For example, precise solu-
tions of Hunter-Saxton equation and compressible Euler equation were ob-
tained. This method was derived from the Lie symmetry analysis, and it is re-
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lated to the conditional Lie-Bäcklund symmetry method [1] [2] and the differen-
tial constraint method; its key step is to transform a nonlinear PDE into ODE 
systems based on the invariant subspaces [3]. Then, we use the invariant sub-
spaces we have obtained to construct the exact solutions of the nonlinearly PDE 
equations. So it is a dynamical system method by nature [3]. 

The outstanding feature of the invariant subspace method is its wide applica-
tion range; it is also an algorithm that can construct more solutions and similar 
solutions for nonlinear partial differential equations. 

However, there are still many problems in this method, such as how to con-
struct more exact solutions according to different nonlinear equations. Fur-
thermore, how to improve the efficiency of solving ordinary differential equa-
tions, such as with the help of Maple program, should be further studied. 

In 1993, Camassa and Holm obtained a new class of completely integrable 
nonlinear shallow water wave equations Camassa-Holm (CH) equation 

2 3 2t x xxt x x xxx xxxu au u uu u u uu+ − + = +                 (1.1) 

Equation (1.1) has a double Hamilton structure and is completely integrable. 
When 0a ≠ , it has smooth isolated wave solutions, when 0a = , it has a 
peaked solitary wave solution the form of e x ctu c − −=  (where c is the velocity). 

Dullin, Gottwald and Holm derived the DGH equation from a class of shallow 
water wave equations of non-local asymptotic form [4] 

2 3 2t x xxt x xxx x xx xxxu au u uu u u u uuγ+ − + + = +           (1.2) 

where xxu  is the linear dispersive term, when 0γ = , Equation (1.2) is the Ca-
massa-Holm (CH) equation, when ( )xx xxx

u u−  is the dispersive term [5], Equa-
tion (1.2) becomes the generalized strongly dispersive DGH equation 

( )1 22 2t x xxt x xx x xx xxxxxx
u c u u c uu u u u u uuγ+ − + + − = +      (1.3) 

where ( ),u u x t= , is an unknown function, and 1 2, ,c c γ  are arbitrary con-
stants. Equation (1.3) describes the unidirectional propagation of surface waves 
in shallow water. 

In recent years, many scholars have also done a lot of research on DGH equa-
tion. In 2007, Tian Lixin studied the global existence of the solution and Blow-up 
phenomenon and Hamilton structure of DGH equation. By using the qualitative 
analysis of planar autonomous system method, Guo Bolin and Liu Zhengrong 
obtained the spike isolated wave solutions of DGH equation. Compared with 
other methods, the invariant subspace method can obtain many new exact solu-
tions of the generalized strongly dispersive DGH equation, including rational 
function solutions, which are different from symmetric reduction solutions and 
soliton solutions [6] [7] [8] [9]. The purpose of the current paper is to provide 
more exact solutions to the generalized strongly dispersive DGH Equation (1.3) 
by using the invariant subspace method. Firstly, we transform nonlinear partial 
differential Equation (PDE) into ordinary differential Equation (ODE) systems 
by using the invariant subspace method. Secondly, combining with the dynami-
cal system method, we use the invariant subspaces which have obtained to con-
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struct the exact solutions of the generalized strongly dispersive DGH equation. 
Finally, the figures of the exact solutions are given. 

This paper is organized as follows: In Section 2, the invariant subspace me-
thod is introduced briefly. In Section 3, all invariant subspaces and their basis 
functions are given. In Section 4, by using the results given in Section 3, the ra-
tional function solution, trigonometric function solution and exponential func-
tion solution of the Equation (1.3) are obtained. In Section 5, the conclusion and 
prospect are given.  

In the following, we use G to represent the m-order differential operator, and 
by using the invariant subspace method, giving the nonlinear evolution equation 
[ ]F u  determined by the differential operator and its corresponding invariant 

subspaces, and the basis functions in the invariant subspaces. 

2. Invariant Subspace Method 

Firstly, we consider a nonlinear evolution equation as follows: 

[ ] ( ) ( ), ,
, , , ,

n

t n

u x t u x t
u G u G x u

x x
 ∂ ∂

= ≡  
∂ ∂  

               (2.1) 

where ( ),u u x t= , G is a m-th order differential operator, if have p functions 

1( ), , ( )pg x g x

 are linearly independent, and the n-dimensional linear space is 
[10] [11] 

( ) ( ) ( ){ } ( ) ( )2
1

, , , ,1
p

p i p i i
i

W g x g x g x c t g x i p
=

 
= = ≤ ≤ 

 
∑   

If G satisfies p pG W W  ⊆  , that is, for any constant ic , satisfy  

( ) ( ) ( )2
1 1

, , ,
p p

i i i i p i
i i

G c g x G c c c g x
= =

 
= 

 
∑ ∑   

The invariant subspace pW  is allowed by the operator G, so the nonlinear Equ-
ation (2.1) have the solution as follows 

( ) ( ) ( )
1

,
p

i i
i

u x t c t g x
=

= ∑  

where ic  satisfy n-dimensional dynamical system [12] [13] 

( ) ( ) ( ) ( )( )1 2, , , ,1pc t G c t c t c t i p′ = ≤ ≤  

Suppose the subspace pW  composed of solutions to the following linear ODE 

[ ] ( ) ( ) ( )1
1 1 0 0p p

pL y y a x y a y a y−
− ′≡ + + + + =  

then the invariant condition with respect to G takes the form 

[ ]
[ ] 0

0
L u

L G u
=

  ≡   

Theorem 1. If the subspace PW  is invariant under a nonlinear differential op-
erator G of order m, then   2 1p m≤ + . 

3. Invariant Subspace of Equation (1.3) 

Firstly, Equation (1.3) can be written in the form of general evolution Equation 
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(2.1) 

[ ] ( )1 22 2t xxt x xx xxx x x xx xxx
u u F u u u uu c u c uu u uγ− = = + − − − −      (3.1) 

the nonlinear operator G on the right side of Equation (3.1) is 

[ ] 1 22 2x xx xxx x xG u u u uu c u c uu= + − −                  (3.2) 

then, by the invariant subspace theorem 1, we have 7p ≤ , in what follows, the 
invariant subspaces of Equation (1.3) are given. 

3.1. p = 2 

In this case, the invariant condition of 2W  reads 

[ ]
[ ] [ ]22

2
2 1 0 00

0L uL u
L G u D G a DG a G

==
  = + + =             (3.3) 

where [ ]2 1 0 0L u u a u a u′′ ′= + + = , substituting Equation (3.2) into Equation (3.3), 
we have a polynomial in ,xu u  

( ) ( )3 2 2 2 2 2
1 0 1 1 1 0 1 0 0 2 0 16 10 2 11 9 3 5 0.x xa a a a c u a a a a c uu a a u− + + + − + + − =  

take the coefficients of the above polynomial to be zero, we obtain the overde-
termined equations for solving ,i ia c  

2 3
1 0 1 1 1

2 2
0 1 0 0 2

2 2
0 1

: 6 10 2 0

: 11 9 3 0

: 5 0

x

x

u a a a a c

uu a a a a c

u a a

− + + =

− + + =

=

 

By solving the above equations, we can get three sets of solutions as follows: 
1) 2

0 1 1 1 1 2 10, , , 3 ;a a a c c c a= = = =  
2) 0 1 1 1 2 20, 0, , ;a a c c c c= = = =  
3) 0 0 1 1 1 2 0, 0, , 3 .a a a c c c a= = = = −  
According to the above three solutions, the two-dimensional invariant sub-

spaces allowed by the differential operator [ ]G u  of the Equation (3.2) are 

[ ] ( )
[ ]

( ){ }

2
1 1

21 2 1

21 1

2 2 3 ,

0,

1,exp .

t xxt xx x xx xxx x xxxx
F u u u u u u u uu c u a uu

G L y y a y

W a x

γ = − + − = + − −
 ′′= + =


= − 

 

[ ] ( )
[ ]

{ }

1 2

22 2

22

2 2 ,

0,
1, .

t xxt xx x xx xxx x xxxx
F u u u u u u u uu c u c uu

G L y y
W x

γ = − + − = + − −


′′= =
 = 

 

[ ] ( )
[ ]

( ) ( ){ }( )

( ) ( ){ }( )

1 0

0

23
21 0 0 0

23 0 0 0

2 2 3 ,

0,

cos ,sin 0 ,

exp ,exp 0 .

t xxt xx x xx xxx x xxxx
F u u u u u u u uu c u a uu

L y y a y
G W a x a x a

W a x a x a

γ = − + − = + − +


′′= + =
 = >



= − − − <





 

3.2. p = 3 

In this case, the invariant condition of 3W  reads 
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[ ]
[ ] ( )

[ ]3 3

3 2
2 1 00 0

0
L u L u

L G u D G a D G a DG a G
= =

  = + + + =   

where [ ]3 2 1 0 0L u u a u a u a u′′′ ′′ ′= + + + = , substituting the Equation (3.2) into the 
Equation (3.3), we have a polynomial in 2 2 2, , , , ,x x xx x xx xxu uu u uu u u u , and take its 
coefficients to be zero, we obtain the overdetermined equations for solving ,i ia c  

2 2
0

0 2
2 2

0 2 0 1 0 2
2 2

1 2 0 2 1 1 2
3
2 1 2 2 2 0

2 2
2 1 2

: 7 0
:18 0

: 16 4 0

: 9 3 0

: 21 14 0

:11 9 3 0

x

x

xx

x xx

xx

u a
uu a a

u a a a a a c

uu a a a a a a c

u u a a a a c a

u a a c

=

=

− + + =

− + + + =

− + + − =

− − =

 

By solving the above equations, we get a unique set of solutions as follows 

{ }0 1 1 2 1 1 2 10, , 0, , 3a a a a c c c a= = = = = −  

Thus, we obtain the three-dimensional invariant subspace is 

[ ] ( )
[ ]

( ) ( ){ }( )

( ) ( ){ }( )

1 1

1

3
31 1 1 1

32 1 1 1

2 2 3 ,

0,

1,cos ,sin 0 ,

1,exp ,exp 0 .

t xxt xx x xx xxx x xxxx
F u u u u u u u uu c u a uu

L y y a y
G W a x a x a

W a x a x a

γ = − + − = + − +


′′′ ′= + =
 = >



= − − − <





 

From the invariant subspace obtained when n = 2 and n = 3, we can see that 
the invariant subspace method is only related to the nonlinear terms of the equa-
tion. According to the similar calculation steps above, we can get the invariant 
subspaces when p = 4, 5, 6. But, when p = 7, there is no solution. 

3.3. p = 4 

The four-dimensional invariant subspace allowed by the differential operator 
[ ]G u  of the Equation (3.2) is 

[ ] ( )
[ ]

{ }

1
4

4

2 3
4

2 2 ,

0

1, , ,

t xxt xx x xx xxx xxxx
F u u u u u u u uu c u

G L y y

W x x x

γ = − + − = + −
= = =


= 

 

3.4. p = 5 

The five-dimensional invariant subspace allowed by the differential operator 
[ ]G u  of the Equation (3.2) is 

[ ] ( )
[ ]

{ }

1
5

5

2 3 4
5

2 2 ,

0,

1, , , , .

t xxt xx x xx xxx xxxx
F u u u u u u u uu c u

G L y y

W x x x x

γ = − + − = + −
= = =


= 

 

3.5. p = 6 

The six-dimensional invariant subspace allowed by the differential operator 
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[ ]G u  of the Equation (3.2) is 

[ ] ( )
[ ]

{ }

1 1
6

6

2 3 4 5
6

2 2 3 ,

0,

1, , , , , .

t xxt xx x xx xxx x xxxx
F u u u u u u u uu c u a uu

G L y y

W x x x x x

γ = − + − = + − +
= = =
 = 

 

4. Exact Solutions and Figures of Equation (1.3) 

In this section, combining the invariant subspace method with the dynamical 
system method, by using the results obtained in Section 3, construing the exact 
solution of the Equation (1.3) in invariant subspaces. We can divide the solu-
tions of generalized strongly dispersive DGH equation into three types: poly-
nomial function solutions, exponential function solutions and trigonometric 
function solutions. Then, the figures of the exact solutions are given. 

4.1. Polynomial Solution of the Equation (1.3) 

When n = 2, for  

[ ] ( ) 1 22 2t xxt xx x xx xxx x xxxx
F u u u u u u u uu c u c uuγ= − + − = + − −        (4.1) 

where 1 2, ,c c γ  are arbitrary constants, from 22G  in Section 3, we get  
{ }22 1,W x=  . 

So, we can suppose that Equation (4.1) has the solution as follows: 

( ) ( )1 0 1 .u t t xφ φ= +                      (4.2) 

Substituting (4.2) into Equation (4.1), we get the equation for ( )0,1nx n = , and 
take its coefficients to be zero, we get 

( ) ( )
( ) ( ) ( ) ( )

2
2 2 2

1 1 2 2 1 2

0,
2 0.

t t c
t t t c c t

φ φ
φ φ φ φ
 ′ − =
 ′ − − =  

By solving Equation (4.3), we get 

( ) ( )1 2
1 2

2 1 2 1

2 1,
c t Ct t
c t C c t C

φ φ
±

= =
− ± − ±

 

The Polynomial solution of Equation (4.1) are obtained 

1 2
1

2 1 2 1

2 1c t Cu x
c t C c t C

+
= +
− + − +

                  (4.3) 

See Figure 1(a) and Figure 1(b). 
Figure 1(a) is the rational solution of the Equation (4.1) when 1 2c = − , 2 1c = − , 

1 2 1C C= = , and 10 ~ 10x = − , 10 ~ 10t = − . 
Figure 1(b) is the rational solution of the Equation (4.1) when  

1 2 1 2 1c c C C= = = = , and 10 ~ 10x = − , 10 ~ 10t = − . 

4.2. Trigonometric Solution and Exponential Solution of Equation  
(1.3) 

When n = 3, for  

https://doi.org/10.4236/jamp.2020.88126


X. X. Li et al. 
 

 

DOI: 10.4236/jamp.2020.88126 1660 Journal of Applied Mathematics and Physics 
 

 
Figure 1. Polynomial solution of Equation (4.1). 
 

[ ] ( ) 1 12 2 3t xxt xx x xx xxx x xxxx
F u u u u u u u uu c u a uuγ= − + − = + − +       (4.4) 

where 1 2, ,c c γ  are arbitrary constants. Suppose that Equation (4.4) has exact 
solutions in the form of trigonometric and exponential functions: 

( ) ( ) ( ) ( ) ( )2,1 0 1 1 2 1 1cos sin , 0,u t t a x t a x aφ φ φ= + + >           (4.5) 

( ) ( ) ( ) ( ) ( )2,2 0 1 1 2 1 1exp exp , 0.u t t a x t a x aφ φ φ= + − + − − <         (4.6) 

substituting (4.5) into Equation (4.4), we get the equation for  

( ) ( )1 1cos ,sina x a x , and take its coefficients to be zero, we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

5 3 3
2 2 2

1 2 1 1 1 0 1 1 1 1 1 1
5 3 3
2 2 2

1 1 1 2 1 0 2 1 2 1 1 2

0

1 2 2 0

1 2 2 0
0

a t a t a t t a t a c t

a t a t a t t a t a c t
t

φ γ φ φ φ γ φ φ

φ γ φ φ φ γ φ φ
φ


′+ + − − − =


 ′+ − + − − =
 ′ =

 

By solving Equation (4.3), we get  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 2 3 2 2 3, sin cos , cos sint C t C At C At t C At C Atφ φ φ= = + = −  

So, the solution in form of the trigonometric function of Equation (4.4) is 

( ) ( ) ( )
( ) ( ) ( )

2,1 1 2 3 1

2 3 1

sin cos cos

cos sin sin .

u C C At C At a x

C At C At a x

= + +  

+ −  

 

where 1 2 3, ,C C C  are arbitrary constants, and 
( )2

1 1 1 1 1 1

1

2

1

a C a a c a t
A

a

γ γ− + +
=

+
. 

Substituting (4.6) into Equation (4.4), we get the equation for  

( ) ( )1 1exp ,expa x a x− − − , and take its coefficients to be zero, we get 

( )
( )

2
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

2
1 2 1 0 1 1 1 1 2 1 1 1 2 1 2

0

2 2 1 0

2 2 1 0
0

a a a a a a a c a

a a a a a a a c a

γ φ φ φ γ φ φ φ

γ φ φ φ γ φ φ φ
φ

 ′− − − + − + − + + =


′− − + − − − − − + + =
 ′ =

 

By solving Equation (4.8), we get  

( ) ( ) ( )
( ) ( ) ( )

( )
2 3

0 1 1 2

exp exp
, , .

exp exp
C Bt C Dt

t C t t
Dt Bt

φ φ φ= = =  
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Figure 2. Trigonometric solution of Equation (4.4).  

 

 
Figure 3. Exponential solution of Equation (4.4). 

 
So, the trigonometric solution of Equation (4.4) is 

( )
( ) ( ) ( )

( ) ( )2 3
2,2 1 1 1

exp exp
exp exp .

exp exp
C Bt C Dt

u C a x a x
Dt Bt

= + − + − −  

where 1 2 3, ,C C C  are arbitrary constants, and 1 1 1

1

2
1

C a a
B

a
−

=
+

, 

( )2
1 1 1 1

1

2

1

a a c a
D

a

γ γ+ + −
=

+
. 

See Figure 2 and Figure 3. 

5. Conclusion 

Firstly, by using the invariant subspace method, the invariant subspaces of the 
generalized strongly dispersive DGH equation are obtained. Secondly, we se-
lected the partial invariant subspaces, and we get an exact solution other than 
the soliton of the equation, such as the solutions in form of polynomial function, 
trigonometric function and exponential function of the generalized strongly dis-
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persive DGH equation. Meanwhile, the invariant subspace method derived from 
symmetry analysis, this method also can be used to solve the nonlinear PDEs. 
And symmetry analysis is an invariance analysis to some extent. The above 
theory provides a direction for future research. Moreover, the results in the 
present paper are verified by the maple procedure. 
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