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Abstract 
Rapid assessment of foliar chlorophyll content in tobacco is critical for as-
sessment of growth and precise management to improve quality and yield 
while minimizing adverse environmental impact. Our objective is to develop 
a precise agricultural practice predicting tobacco-leaf chlorophyll-a content. 
Reflectance experiments have been conducted on flue-cured tobacco over 3 
consecutive years under different light quality. Leaf hyperspectral reflectance 
and chlorophyll-a content data have been collected at 15-day intervals from 
30 days after transplant until harvesting. We identified the central band that 
is sensitive to tobacco-leaf chlorophyll-a content and the optimum wave-
length combinations for establishing new spectral indices (simple ratio index, 
RVI; normalized difference vegetation index, NDVI; and simple difference 
vegetation index, DVI). We then established linear and BackPropagation (BP) 
neural network models to estimate chlorophyll-a content. The central bands 
for leaf chlorophyll-a content are concentrated in the visible range (410 - 680 
nm) in combination with the shortwave infrared range (1900 - 2400 nm). The 
optimum spectral range for the spectral band combinations RVI, NDVI, and 
DVI are 440 and 470 nm, 440 and 470 nm, and 440 and 460 nm, respectively. 
The linear RVI, NDVI, and DVI models, SMLR model and the BP neural 
network model have respective R2 values of 0.76, 0.77, 0.69, 0.78 and 0.86, and 
root mean square error values of 0.63, 1.60, 1.59, 2.04 and 0.05 mg chloro-
phyll-a/g (fresh weight), respectively. Our results identified chlorophyll-a 
sensitive spectral regions and new indices facilitate a rapid, non-destructive 
field estimation of leaf chlorophyll-a content for tobacco. 
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1. Introduction 

Leaf chlorophyll content is a useful indicator of several aspects of plant health, 
including nutrient stress, photosynthetic ability, and aging [1] [2]. Leaf chloro-
phyll is also important for aroma precursors in tobacco. Chlorophyll content is 
primarily affected by spectral light quality during leaf growth and development 
[3] [4]. Spectral light quality has been shown to alter chlorophyll in Hordeum 
[5], pea [3] and Arabidopsis [6]. 

Detection of chlorophyll in crop leaves in real-time is useful for crop-growth 
diagnostics and quality monitoring, as well as for the quantitative estimation and 
simulation of the C and N cycles in agroecosystems [7] [8] [9]. Chlorophyll is 
easy to measure by laboratory analysis [10] [11] and is frequently measured us-
ing a chlorophyll meter, which utilizes as a spectral index and remote sensing 
techniques, such as the SPAD 502® [Minolta Osaka Co., Ltd., Japan] [12] [13] 
[14] and remote-sensing techniques. Remote-sensing techniques can be applied 
to rapidly and accurately estimate crop chlorophyll content in a non-destructive 
procedure, and therefore it has a strong potential for applications in monitoring 
growth, yield estimation, and diagnosis of the nutritional status of field crops 
[15] [16] [17] [18] [19]. To date, few empirical studies evaluated chlorophyll 
content using remote sensing under different light spectral conditions. 

The reflectance signature of crops in the visible light region is primarily af-
fected by pigments. Numerous researchers used hyperspectral data to estimate 
the pigment content of crops to predict growth, yield, nutritional and health 
status [20]-[26]. For example, Sachidananda and Deepak [27] proposed a new 
spectral index model, the normalized difference chlorophyll index (NDCI) to 
predict chlorophyll-a content. Based on their results, Ju et al. [28] proposed that 
the red-edge position of leaves could be used to predict chlorophyll content. In 
addition, numerous researchers used various approaches to investigate hyper-
spectral inversion in vegetation. Some have used hyperspectral variables and 
first-order differentials to predict changes in crop chlorophyll density in crops 
[29] [30] [31]. Others analyzed and compared different spectral variables and 
radiation transmission models with the objective to improve the accuracy of 
chlorophyll inversion measurements [32] [33]. 

Recent studies attempt to develop linear relationships between hyperspectral 
variables, wavelength regions, and chlorophyll content [34]; however, the ab-
sence of a simple linear relationship between hyperspectral variables and chlo-
rophyll content limits the wide use of hyperspectral data for the prediction of 
crop chlorophyll content. However, error backpropagation (BP) neural networks 
have powerful nonlinear mapping ability and hence, are promising for applica-
tion in the prediction of complex, nonlinear relationships involving uncertainty 
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[35] [36] [37]. Neural networks have been used to analyze hyperspectral data 
improving the accuracy of plant physiological and biochemical measurements 
[38] [39] [40] [41]. However, BP neural network-based methods rarely have 
been used for the analysis of hyperspectral data as a physiological indicator for 
crops. Tobacco is an important economic crop in China, which is planted in 
most of the provinces of China. The quality of tobacco products is affected by 
differences in spectral light quality in different regions of China. In the present 
work, we tested tobacco chlorophyll-a content and its corresponding hyperspec-
tral data under different light spectral treatments. Our objectives are to 1) iden-
tify the spectral bands influencing chlorophyll-a content in tobacco and to define 
new spectral indices; 2) quantify the relationship between the content of chlo-
rophyll-a content and a simple ratio vegetation index (RVI), a normalized dif-
ference vegetation index (NDVI), and a difference vegetation index (DVI); and 
3) evaluate optimal models to monitor tobacco chlorophyll-a content. 

2. Materials and Methods 
2.1. Experimental Design and Treatments 

We measured the response of tobacco grown under different light spectral con-
ditions. Flue-cured tobacco (Nicotiana tabacum L.) cv. Yunyan87 was grown in 
the open-field for three consecutive growing seasons of 2016, 2017 and 2018 at 
Fangcheng City (112˚54'E, 33˚15'N), Henan Province, PR of China, and 
flue-cured tobacco cv. K326 was added in 2018. The soil in the fields was 
classified as yellow loam soil (Alfisol in the USDA taxonomy) with an organic 
matter content of 11.5 g·kg−1, total N of 0.7 g·kg−1, an alkali-hydrolyzale nitrogen 
of 55.0 mg·kg−1, available phosphate of 18.0 mg·kg−1 and available potassium of 
135.21 mg·kg−1 (at a soil depth of 0.25 m). Six light quality treatments were em-
ployed, with natural light as the control. Experiments 1 - 5 were treated with red 
(R), yellow (Y), green (G), blue (B), and white (W) light filters, respectively. The 
experiment was a random block design using a factorial arrangement of treat-
ments with three replications. 48 tobacco plants were planted, under each light 
filter with a spacing of 1.20 m × 0.50 m, covering an area of 34.56 m2. Each light 
filter is placed on a vaulted iron bracket 2.8 m tall, with a bottom width of 6 m 
and length of 6 m, covering about 36 m2, respectively. The brackets were posi-
tioned randomly in a north-to-south direction, while the south and north open-
ings were uncovered to allow ventilation. All the filters were opened only during 
spectral measurements. Irradiance was adjusted by using a colorless filter and 
adjusting the height of bracket. Tobacco plants were transplanted on April 25, 
2016, April 26, 2017, and April 25, 2018. The cultivation and management me-
thods applied are similar to those used in a nearby local field producing high-quality 
tobacco plants.  

The light quality (spectral composition) of different light treatments was 
measured by ASD equipped with a whole-light cosine receiver. The cosine re-
ceiver was aligned level with the sky in open-field conditions prior to each test to 
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convert the spectral measurements. Each light treatment was measured nine 
times at different positions and heights to generate the average light quality 
(spectral composition) (Table 1). 

2.2. Measurements  
2.2.1. Leaf Reflectance Measurements 
Spectral measurements were carried out every 15 days beginning 30 days after 
transplantation and continuing until the end of the harvest periods for 2016, 
2017 and 2018. Leaf spectral reflectance was measured using an ASD Field Spec 
Pro FR spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) 
equipped with a leaf clip. The instrument records reflectance in the spectra range 
of 350 - 1000 nm with a 1.40-nm sampling interval, and a 3-nm resolution. In 
the 1000 - 2500 nm spectral range (the sampling interval is 2-nm, with a 10-nm 
spectral resolution). Measurements were taken under clear-sky conditions be-
tween 10:00 AM and 14:00 PM. Using the ASD leaf clips, leaves were measured 
in a confined environment with a stable, simulated light source to decrease error 
in the spectral data. Three typical, healthy tobacco plants were measured for 
each treatment; three upper, middle, and lower leaves were selected from each 
plant. The reflectance of each leaf sample was measured at five locations: the tip, 
the upper left, upper right, lower left, and lower right parts of the leaf. Hence, 
five reflectance curves were made for each leaf location. An average of the 75 
reflectance measurements was used as the leaf’s final spectral reflectance meas-
ured at the different positions of each plant leaf. A matched white Spectralon 
reference panel was used under the same conditions to calibrate the spectral ra-
diance measurements prior to each test. Scan time was 0.2 s. 
 
Table 1. Components of representative irradiance spectra for different treatments. Units, 
W·m−2. 

Treatments R B Y G W CK 

Ultraviolet light (350 - 400 nm) 0.22 0.73 0.10 0.54 1.72 1.88 

Percentum of solar radition 0.15% 0.49% 0.07% 0.36% 1.12% 1.22% 

Blue-Violet light (400 - 510 nm) 1.58 15.47 5.97 9.44 22.33 23.61 

Percentum of solar radition 1.04% 10.30% 3.92% 6.42% 14.63% 15.32% 

Green light (510 - 610 nm) 9.68 8.60 39.23 28.21 34.98 36.42 

Percentum of solar radition 6.41% 5.72% 25.79% 19.17% 22.91% 23.64% 

Red-orange light (610 - 760 nm) 65.51 43.24 53.98 47.83 45.74 46.53 

Percentum of solar radition 43.38% 28.78% 35.49% 32.51% 29.96% 30.20% 

Near-infrared light (760 - 1100) 74.02 82.20 52.82 61.12 47.92 45.65 

Percentum of solar radition 49.02% 54.72% 34.73% 41.54% 31.39% 29.62% 

Solar radiation (350 - 1100 nm) 151.00 150.24 152.10 147.13 152.69 154.09 
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2.2.2. Light-Quality Measurements 
The light quality (spectral composition) of different light treatments was meas-
ured by ASD equipped with a whole-light cosine receiver. The cosine receiver 
was aligned level with the sky in open-field conditions prior to each test to con-
vert the spectral measurements. Each light treatment was measured nine times at 
different positions and heights to generate the average light quality (spectral 
composition) (Table 1). 

2.2.3. Plant Collection and Measurement 
After the field measurements of leaf spectral reflectance, the test plants were 
transferred to the laboratory for measurement to measure chlorophyll-a content. 
Samples (~0.2 g) were collected using a 4 mm diameter leaf tissue punch, which 
was uimmersed into 95% ethanol solution, and left be extracted for chloro-
phyll-a for 24 h in the dark. After the dark treatment, the leaves had a 
white-green color. Leaf pigment density was measured using a Jasco 560-V colo-
rimetric spectrophotometer (Jasco, Tokyo, Japan). The concentration of ex-
tracted chlorophyll-a is calculated from absorbance values at 665, 649, and 470 
nm. 

2.3. Index Definition 

Two-band indices were evaluated in three ways: 
1) a simple ratio vegetation index (RVI);  
2) a normalized difference vegetation index (NDVI);  
3) a simple difference vegetation index (DVI). 
They are calculated using and two-band (λ1 and λ2) combination in the 400 - 

2450 nm wavelength range according to Equations (1), (2) and (3): 

1

2

RVI
R
R
λ

λ

=                            (1) 

1 2

1 2
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R R
R R
λ λ

λ λ

−
=

+
                        (2) 

1 2DVI R Rλ λ−=                          (3) 

where 1Rλ  is the reflectance at 1λ  and 2Rλ  is the reflectance at 2λ . 

2.4. Statistical Analyses 

Multiple comparisons of chlorophyll-a content between the different light 
treatments were conducted using SPSS software version 16.0 (SPSS, IBM, Chi-
cago, IL, USA). Linear models and 1:1 relationships between measured and pre-
dicted values were generated using SigmaPlot version 12.5 (Systat Software Inc., 
Chicago, IL, USA). The BP neural network model and correlation plots have 
been in MATLAB version 6.0 (MathWorks Inc., Natick, MA, USA). The preci-
sion of the model and validated model were evaluated with the coefficient of de-
termination (R2) and the root mean-square error (RMSE). Higher R2 and lower 
RMSE values indicate higher precision and accuracy of a model in predicting 
tobacco chlorophyll-a content. Each model generated from the 2017 and 2018 
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data has been validated using the data from the 2016 harvest to identify the dif-
ferences between the models and to check the generic capacities of the predic-
tion models.  

Error backpropagation (BP) neural network analysis is one of the most widely 
used artificial neural network analyses because of its ability to solve nonlinear 
problems. This multilayer feedforward network, reverses the output error into 
the input layer with the need to disclose the input samples, while the correcting 
for the weight of each layer of neurons continuously to make the export result 
constantly close to the target export. 

3. Results 
3.1. Effect of Different Light Qualities on Chlorophyll-a Content of  

Tobacco Leaves 

The chlorophyll-a content in the five spectrally filtered light treatments shows a 
changing trend over time, increasing from 30 to 90 days after transplantation 
and then decreasing from days 90 to 135 (Figure 1). Chlorophyll-a content in 
CK declines from day 60 after transplantation. Differences in chlorophyll-a con-
tent between the six treatments followed the order R > B > Y > G > W > CK in 
all stages. The difference is more expressed from day 90 to 135 after transplant-
ing. There is no difference at day 60 after transplanting. These results illustrate 
that the filtered delays the degradation time of chlorophyll-a and increases its 
content compared to the control. In relation to the composition of the irradiance 
spectrum, the decrease in ultraviolet, blue-violet light, and the increase in 
near-infrared light compared with CK is favorable for chlorophyll-a synthesis, 
delaying the degradation of chlorophyll-a and the maturation of tobacco.  

3.2. Spectral Indices and the Estimation Model of Leaf Spectral  
Reflectance 

3.2.1. NDVI, RVI, and DVI Based on Leaf Spectral Reflectance 
All two-band reflectances in the spectral range 350 - 2500 nm corresponding to 
tobacco leaf chlorophyll-a content are combined using the NDVI, RVI, and DVI 
to select the most effective indices to estimate chlorophyll-a in tobacco leaves. 
Contour maps of the relationships between NDVI (Figure 2(a)), RVI (Figure 
3(a)), and DVI (Figure 4(a)) and chlorophyll-a content of tobacco leaves (2017 
and 2018 data) are presented in Figures 2-4. There is a large degree of diversity 
between the combinations of different wavebands to predict chlorophyll-a con-
tent. However, frequent overlap between the sensitive areas for the three spectral 
indices is observed. 

Combined spectral regions are found at the following wavelengths: ~490 ± 30, 
630 ± 30 and 440 ± 30 nm (NDVI); 530 ± 30 and 680 ± 40 nm (NDVI); 580 ± 80 
and 2200 ± 250 nm (NDVI); ~430 ± 30 and 460 ± 40 nm (RVI); 450 ± 10 and 
600 ± 20 nm (RVI); 1600 ± 200, 2200 ± 250, and 600 ± 150 nm (RVI); ~465 ± 
115 and 540 ± 40 nm (DVI); and 1480 ± 100, 2100 ± 350 and 2200 ± 250 nm 
(DVI). Most R2 values are > 0.70 using linear regression based on each index. 
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Figure 1. Changes in chlorophyll-a content in flue-cured tobacco 
under different light treatments during the growing period.  

 

 
(a) 

 
(b) 

Figure 2. Contour maps of coefficients of determination (R2) for a linear relationship 
between the normalized difference vegetation index and chlorophyll-a content in 
tobacco leaves using 350 - 2500 nm (panel a) and 400 - 700 nm (panel b) under 
different light treatments in 2017 and 2018 (n = 277).  
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(a) 

 
(b) 

Figure 3. Contour maps of coefficients of determination (R2) for a linear 
relationship between the simple ratio vegetation index and chlorophyll-a 
content of tobacco leaves using 350 - 2500 nm (panel a) and 400 - 700 nm 
(panel b) under different light treatments in 2017 and 2018 (n = 277).  
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(b) 

Figure 4. Contour maps of coefficients of determination (R2) for a linear 
relationship between the difference vegetation index and chlorophyll-a content 
of tobacco leaves using 350 - 2500 nm (panel a) and 400 - 700 nm (panel b) 
under different light treatments in 2017 and 2018 (n = 277).  

 
Precise sampling of the spectral region (400 - 700 nm) produced more-detailed 

contour maps of relationships between chlorophyll-a content and the NDVI 
(Figure 2(b)), RVI (Figure 3(b)), and DVI (Figure 4(b)). On the basis of the R2 
values, the best forms for chlorophyll-a content among the selected NDVI, RVI 
and DVI index were NDVI (R440, R470), RVI (R440, R470), and DVI (R440, 
R460). 

3.2.2. Linear Estimation Model 
Linear regression models of tobacco-leaf chlorophyll-a content are established 
based on the optimal spectral index derived from contour maps of the 2017 and 
2018 data (Figure 5). Performance of the linear prediction models for chloro-
phyll-a content and NDVI (R440, R470), RVI (R440, R470), and DVI (R440, 
R460) is shown in Figures 5(a)-(c), with respective R2 values of 0.77, 0.76, and 
0.69 (n = 111), indicating that the linear models have a good predictive accuracy. 

3.2.3. Stepwise Multiple Linear Regression (SMLR) 
Twenty NDVI, 20 RVI and 20 DVI indices with the optimal R2 for the linear re-
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tablish the SMLR estimation model for chlorophyll-a content. The spectral in-
dices selected by stepwise regression were NDVI (R440, 470), NDVI (R650, 
2060) and DVI (430, 460). The R2 of the stepwise model was 0.78, as shown in 
Table 2. 

3.2.4. The BP Neural Network 
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tions are used as the input layer and output layer transfer function, respectively. 
20 NDVI, 20 RVI, and 20 DVI indices with optimal R2 for linear regression were 
selected from the contour maps as input for the BP neural network for model es-
timation of leaf chlorophyll-a content.  
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(d) 

Figure 5. Predicted results of the normalized difference vegetation index (NDVI, panel 
a), simple ratio vegetation index (RVI, panel b), difference vegetation index (DVI, panel 
c) linear models and the BP network model (BP, panel d) (n = 277).  

 
Table 2. Performance indicators of models of tobacco leaf chlorophyll-a content.  

Model type Simulated equations 
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Root mean square 
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NDVI y = 2.11 + 7.25x 0.77** 1.60 2.11 

DVI y = 2.11 + 74.74x 0.69** 1.59 2.11 

RVI y = −7.06 + 9.19x 0.76** 0.63 −7.06 
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0.78** 2.04 2.00 

BP 
 

0.86** 0.05 
 

**denotes significant at 0.01 level. 
 

The 2017 and 2018 data are used as training samples for this model, and the 
R2 of the prediction result is 0.86 (Table 2). In addition, point-to-point mapping 
results of the BP neural network (Figure 5(d)) also demonstrates that the BP 
neural network has a higher accuracy than the linear NDVI, RVI, and DVI mod-
els and SMLR model. 

3.3. Testing of Chlorophyll-a Estimation Models 

To determine whether the estimation models could be used under different light 
conditions, the independent validation dataset from the 2016 experiment was 
used to test the reliability of the models (Figure 6). In the 1:1 relationship plot 
(Figure 6), the more accurate the predictive equations, the more closely clus-
tered the points are with respect to the theoretical 1:1 correspondence. 
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The statistical parameters of RMSE and R2 were used to evaluate the perfor-
mance of the models. The RMSE values of the NDVI, RVI, and DVI linear mod-
els, SMLR model and the BP neural network are 1.60 mg·g−1, 0.63 mg·g−1, 1.59 
mg·g−1, 2.04 mg·g−1 and 0.05 mg·g−1 respectively (Table 2), and the R2 values for 
1:1 plots of observed and predicted values were 0.62, 0.64, 0.56, 0.64 and 0.96, 
respectively (Figure 6). These results indicate that the BP neural network pro-
vides the highest accuracy and stability with the highest R2 and smallest RMSE 
values in the validation test. 

 

 
NDVI 

 
DVI 

 
RVI 

Predicted values (%)

-1 0 1 2 3 4

M
ea

su
re

d 
va

lu
es

(%
)

-1

0

1

2

3

4
y=1.25+0.19x
R2=0.62**

Predicted values (%)

-2 -1 0 1 2 3

M
ea

su
re

d 
va

lu
es

 (%
)

-2

-1

0

1

2

3

y=-1.14+0.25x
R2=0.56**

Predicted values (%)
-2 -1 0 1 2 3 4

M
ea

su
re

d 
va

lu
es

 (%
)

-2

-1

0

1

2

3

4

y=-1.21+0.20x
R2=0.64**

https://doi.org/10.4236/ajps.2020.118086


F. F. Jia et al. 
 

 

DOI: 10.4236/ajps.2020.118086 1229 American Journal of Plant Sciences 
 

 
SMLR 

 
BP 

Figure 6. The 1:1 relationship between the measured and predicted values for chlorophyll-a 
content in tobacco leaves in the 2016 data based on linear models of NDVI (440, 470), 
RVI (440, 470), DVI (440, 460), and BP neural network (n = 111).  

4. Discussion 
4.1. Response of Chlorophyll-a Content 

Chlorophyll-a is the primary photosynthetic pigment absorbing photosyntheti-
cally active radiation (PAR) from sunlight in vegetation canopies [30]. Its con-
centration strongly influences maximal leaf light-use efficiency (e.g., Waring et 
al., 1995 [42]). There is little research on changes in chlorophyll-a content in to-
bacco in relation to changes in the spectral composition of light. In the present 
study, the content of chlorophyll-a under different light treatments follows the 
pattern R > B > Y > G > W > CK in all stages. This indicates that changes in the 
proportions of various spectral regions (e.g., decreased ultraviolet and blue-violet 
light and increased near-infrared light) enhance chlorophyll-a content and delay 
its degradation. 

4.2. Selection of Active Chlorophyll-a Absorption Bands and a  
New Spectral Index 

The development of a new, simple, and reliable spectral index is a challenge and 
hot research topic in the field of agricultural remote-sensing monitoring. In the 
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present study, we investigated the NDVI, RVI, and DVI indices, as combination 
of any two bands within the spectral range of 350 - 2500 nm, and then construct 
a new, simple spectral index for chlorophyll-a content derived from the optimal 
combinations of these spectral ranges. In contrast with other approaches, this 
method is more appropriate for a given crop and does not require previous 
knowledge. 

Comprehensive and systematic analyses have been performed to determine 
the active bands of chlorophyll-a content in tobacco during 3 consecutive years 
under various light emission spectral treatments with two varieties. The spectral 
bands having a high impact on chlorophyll-a content are 440, 460 and 470 nm. 
The three wavelength bands are all located in the blue-violet region of the visible 
spectrum, in which a strong absorption band of chlorophyll-a is located. These 
findings are consistent with those of a prior report [43] [44] [45] [46].  

4.3. Accuracy and Generic Potential of the Prediction Models 

Various predictive models for monitoring chlorophyll-a content have been es-
tablished based on new spectral indices, and subsequently validated. All models 
showed significant levels of accuracy and stability. The ability of the BP neural 
network to take advantage of point-to-point fitting improved the performance of 
the BP model significantly. Therefore, the BP neural network can be used for a 
precise prediction of chlorophyll-a content in flue-cured tobacco under spec-
trally different light sources. 

A 3-year field investigating the impact of light spectral emission on flue-cured 
tobacco yielded numerous samples with a good representativeness of chloro-
phyll-a. The BP neural network prediction model generated the most reliable 
performance of chlorophyll-a, with results validated by a validation dataset. 

5. Conclusion 

Abundant data with regard to crop leaf hyperspectra are available. These data 
can be used to extract information that reflects the physiological status of crops 
by defined hyperspectral indices. Here, we analyzed the relationship between 
chlorophyll-a content and NDVI, RVI, and DVI, and identified the spectral 
bands having the largest impact to monitor chlorophyll-a content in tobacco. 
We demonstrated that a BP neural network has the highest accuracy and lowest 
error, and can be used to monitor chlorophyll-a content in flue-cured tobacco. 
The method described here for establishing new spectral indices for chloro-
phyll-a content in tobacco can be applied for other biochemical variables and 
other plant species as well. 
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