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Abstract 

Grandi’s paradox, which was posed for a real function of the form ( )1 1 x+ , 
has been resolved and extended to complex valued functions. Resolution of 
this approximately three-hundred-year-old paradox is accomplished by the 
use of a consistent truncation approach that can be applied to all the series 
expansions of Grandi-type functions. Furthermore, a new technique for im-
proving the convergence characteristics of power series with alternating signs 
is introduced. The technique works by successively averaging a series at dif-
ferent orders of truncation. A sound theoretical justification of the successive 
averaging method is demonstrated by two different series expansions of the 
function ( )1 1 ex+ . Grandi-type complex valued functions such as ( )1 i x+  

are expressed as consistently-truncated and convergence-improved forms and 
Fagnano’s formula is established from the series expansions of these func-
tions. A Grandi-type general complex valued function ( )1 ei sxθρ +  is in-

troduced and expanded to a consistently truncated and successively averaged 
series. Finally, an unorthodox application of the successive averaging method 
to polynomials is presented. 
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1. Introduction 

Luigi Guido Grandi (1671-1742) is known due to his book entitled Quadratura 
in short. The book does not contain much original work except for two particu-
lar items; namely, the construction of a curve that has become known as the 
Witch of Agnesi and the identification of a paradox originating from the series 
expansion of ( )1 1 x+ . Through Grandi’s personal correspondence with the 
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well-known mathematicians, such as Leibniz (1646-1716), the paradox has 
gained a renown and in time named after Grandi [1]. The paradox can be stated 
as follows. Consider the series expansion of ( )1 1 x+ , which may be obtained by 
performing a simple division or expanding into a Maclaurin series. Both me-
thods give the same result,  

2 3 4 51 1
1

x x x x x
x
= − + − + − +

+


                 (1) 

which obviously converges for 0 1x≤ ≤  and diverges for 1x > . The upper 
limit of convergence, 1x = , is named here as the threshold point for later pur-
poses. Grandi remarked that for 1x =  the left-hand side of (1) would be 
( )1 1 1 1 2+ =  while the right-hand side could be collected as  

( ) ( )1 1 1 1 0 0 0− + − + = + + =  , so that one would end up with the paradox 
1 2 0= . 

Before proceeding to the resolution of the paradox the series expansion in (1) 
is rendered convergent for 1x >  by a simple manipulation as follows  

( )
1 1

1 1 2 3 4

1 1 1 1 1
1 1 1

x x
x xx x x x x x

− −

− −= = = − + − +
+ + +

            (2) 

Since 1 1x <  for 1x > , (2) is convergent for 1x > . 

2. Resolution of Grandi’s Paradox 

In tackling with Grandi’s paradox the crucial point is to perceive the duality 
embedded in it. Starting from this recognition the paradox can be resolved as 
presented in detail in Beji [2]. Here, we shall first recapitulate the main aspects 
of that work and then proceed to extend it to complex valued functions. 

The duality concerns the numerical value of series expansion depending on 
the number of terms included for the threshold value 1x = . If one retains terms 
up to an odd power in the series,  

2 3 2 2 11 1
1

n nx x x x x
x

+= − + − + + −
+


                (3) 

where n is an arbitrary integer, the resultant sum on the right is obviously 0 for 
1x = . On the other hand, if terms up to an even power are kept,  

2 3 2 1 21 1
1

n nx x x x x
x

−= − + − + − +
+


                (4) 

setting 1x =  results in 1 on the right. Thus, depending on the highest power 
kept being odd or even the result on the right is either 0 or 1. In a sense, the se-
ries cannot be called precisely convergent for 1x = . The paradox indeed pivots 
around this altercation of numerical values. The resolution must introduce a re-
conciliation such that taking just one more term should not result in any appre-
ciable difference for 1x = . 

Figure 1 presents a visual demonstration of the dual character of Grandi’s 
paradox for different truncation orders. Note that different truncations produce  
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Figure 1. Visual demonstration of the duality of Grandi’s pa-
radox for 1x = . Function ( )1 1 x+  (black line) and its stan-

dard series expansions truncated at different orders. 

 
respectively 0 and 1 for the threshold point 1x =  but not the correct value 1/2. 
For this reason, series representations diverge rapidly either to 0 or 1 from the 
actual function ( )1 1 x+  in the vicinity of 1x = . Equations (1) and (2) are 
used to plot the series expansions for 0 1x≤ ≤  and 1 4x≤ ≤ , respectively. 

To reconcile the results of expressions with different truncation orders we 
must combine Equations (3) and (4). Multiplying each expression with an arbi-
trary constant and adding side by side by is the only operation that would not 
alter the left hand side. Thus, Equation (3) is multiplied with α , Equation (4) 
with β  and added side by side. Setting 1x =  in this expression and imposing 

1α β+ =  for keeping the left-side unchanged give 1 2α β= = . This corres-
ponds to the case with odd highest power in the series. The same line of ap-
proach may be followed when the highest power is even. The resulting expres-
sions read:  

2 3 2 2 11 11
1 2

n nx x x x x
x

+= − + − + + −
+


                 (5) 

2 3 2 1 21 11
1 2

n nx x x x x
x

−= − + − + − +
+


                 (6) 

Accordingly, if the series is truncated by taking the one-half of the last term, 
the correct result 1/2 is obtained for the threshold point 1x = , regardless of the 
truncation order. The resolution presented may at first sight appear as an ad hoc 
approach specifically devised to obtain the desired result; nevertheless, its 
soundness shall be more evident with further ramifications and different appli-
cations, as d’Alembert (1717-1783) said on the defence of calculus: “Allez en 
avant, et la foi vous viendra1”. 

 

 

1Go forward, and faith shall come. 
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The consistent truncation introduces a corrective collocation which improves 
the numerically computed value of the function from the series expansion. For 
instance, setting 0.8x =  in the function ( )1 1 x+  and the usual series expan-
sion to the fourth-order gives respectively ( )1 1 0.8 0.556+ =  and  

( ) ( ) ( )2 3 41 0.8 0.8 0.8 0.8 0.738− + − + = . The corresponding relative error is 
( )0.738 0.556 0.556 0.327− = , which is 32.7%. On the other hand, using the  

consistent truncation gives ( ) ( ) ( )2 3 411 0.8 0.8 0.8 0.8 0.533
2

− + − + = , which is  

−4.1% in error. The improvement is appreciable but it is possible to do much 
better as described next. 

3. A Convergence Improvement Technique 

A technique for improving the convergence properties of truncated series is now 
introduced. The approach is demonstrated for the series expansion of ( )1 1 x+  
but it can be generalized quite easily and applied to any series expansion as 
shown later. The technique proceeds by taking successive averages of the consis-  

tent truncations of the first-order, 11
2

x− , of the second-order 211
2

x x− +  and  

of the higher-orders. Table 1 shows the method for the series expansion to the 
fourth-order.  

Procedure is carried out by averaging the consistently truncated expansions at 

successive orders; that is, 11
2

x−  is added to 211
2

x x− +  and the result is aver-

aged to get 23 11
4 4

x x− + . The ultimate result of this process is the fourth-order 

expansion 2 3 415 11 5 11
16 16 16 16

x x x x− + − + , which, like each individual expression  

in the table, satisfies the threshold condition 1/2 when 1x = . For the previously 
considered case of 0.8x = , the value rendered by this fourth-order expression 
is now 0.556 and identical with the exact value ( )1 1 0.8 0.556+ =  to the third 
decimal point. The improvement is virtually enormous. The approach demon-
strated in Table 1 for a definite number of terms can be generalized to an arbi-
trary number of terms.  
 
Table 1. Successive averaging of the consistently truncated series expansions of ( )1 1 x+ . 

11
2

x−  211
2

x x− +  2 311
2

x x x− + −  2 3 411
2

x x x x− + − +  

23 11
4 4

x x− +       2 33 11
4 4

x x x− + −        2 3 43 11
4 4

x x x x− + − +  

2 37 4 11
8 8 8

x x x− + −     2 3 47 4 11
8 8 8

x x x x− + − +  

2 3 415 11 5 11
16 16 16 16

x x x x− + − +  
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 −        
= + + + + +        −+         

 −        
+ + + + + +        −        

 − −     
+ + +      −      

  
= + −  

  
∑ ∑



 

, for 1p x ≤

     (7) 

For 1x ≥  Equation (7) can be put into the following convergent form by the 
approach used in Equation (2):  

( )

( )

( ) ( )
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2
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n n x

n n n
n n nx x
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mx

−

+

= =

 −        
= + + + + +        −+         

 −        
+ + + + + +        −        

 − −     
+ + +      −      

  
= +   

 
∑ ∑



 

( ) 1
11 , for 1p
p x

x +


− ≥



     (8) 

in which the truncation order n may be selected as an odd or even integer. The 
most striking feature of the series expansions (7) and (8) is the change of coeffi-
cients depending on the truncation order. For a given truncation the coefficients 
are adjusted in a way to yield a highly accurate representation of the generating 
function. This special aspect is the principle novelty of the consistent truncation 
and successive averaging approach. 

Figure 2, which may be viewed as the counterpart of Figure 1, shows the plots  
 

 
Figure 2. Function ( )1 1 x+  and its consistently truncated 

and successively averaged series expansions. 
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of the series expansions given by Equations (7) for 0 1x≤ ≤  and (8) for 
1 4x≤ ≤ . Series of four different truncation orders are compared with the gene-
rating function ( )1 1 x+  within the range 0 4x≤ ≤ . Except for the second- 
order truncation, which stands out slightly, all the others are in virtually perfect 
agreement with the function ( )1 1 x+  itself for the entire range shown and ob-
viously it is so for x →∞ . Figure 2 actually represents a visible demonstration 
of the resolution of Grandi’s paradox. 

Integration of (7) and (8) would result in fast converging series representa-
tions of the natural logarithm function.  

( ) ( )

( )

( ) ( )

1 2
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1

1
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p m p
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− +
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+ = + + + + +        −        

 −        
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+ + +      − +      

  
= +  
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 
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1
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      (9) 
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+ + + + + +        −        

 − −     
+ + +      − −      
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

 

( ) 1 11 for 1p
p x

px
−  

− ≥  
  

   (10) 

Note that when x →∞ , ( )ln 1 x+  on the left grows boundlessly while the 
terms involving the powers of 1/x on the right go to zero. But ln x , arising from 
the integration of the first term 1/x on the right-side of Equation (8), takes care 
of this problem. An important point in using (9) and (10) together for computa-
tions is to dismiss the highest-order term 1nx +  in (9) completely to be consis-
tent with the highest-order term 1 nx  in (10). This crucial aspect is numerically 
demonstrated for 1x =  in Beji [2]. 

4. Mathematical Justification of Consistent Truncation and 
Convergence Improvement Techniques  

In order to resolve Grandi’s paradox in a suitable way, we have first introduced a 
consistent truncation approach and then a convergence improvement technique 
of successive averaging. While the satisfactory outcome of these procedures itself 
is a justification enough, relating both applications to a solid mathematical 
background is desirable. 
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Grandi’s function ( )1 1 x+  is now written in the extended form ( )1 1 f x+    
with ( ) exf x = . Carrying out a simple division gives  

2 3 41 1 e e e e
1 e

x x x x
x = − + − + −

+


                  (11) 

which obviously produces a paradoxical result for 0x = , exactly in line with 
Grandi’s case. Expressing all the exponential functions in Equation (11) as Mac-
laurin series truncated at the fourth-order gives  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3 4

2 3 4

2 3 4

2 3 4

1 1 1
2! 3! 4!1 e

2 2 2
1 2

2! 3! 4!

3 3 3
1 3

2! 3! 4!

4 4 4
1 4

2! 3! 4!

x
x x xx

x x x
x

x x x
x

x x x
x

 
= − + + + + +  

 
 + + + + +
 
 
 
 − + + + +
 
 
 
 + + + + + −
 
 



            (12) 

After re-arranging the like-terms one obtains  

2 3 41 22 951 2 5
3 121 ex x x x x= + + + + +

+


               (13) 

which results in 1 2 1=  when 0x = . If Equation (11) is truncated after 3e x , 

Equation (13) turns out to be 2 3 410 232 3
3 8

x x x x− − − − − , which gives 1/2 = 0  

when 0x = . Again, just like Grandi’s paradox, depending on the number of 
terms kept, a duality of results is observed. However, despite all these similarities, 
the function ( )1 1 ex+  has a different property compared to ( )1 1 x+ . A direct 
expansion of ( )1 1 ex+  into a Maclaurin series produces  

2 3 41 1 1 10 0
2 4 481 ex x x x x= − + + + +

+


               (14) 

which correctly satisfies 1 2 1 2=  when 0x = . We are then facing an interest-
ing case of two different approaches aimed at the same end but producing con-
flicting results. Obviously, Equation (14) is the correct result and if it can be ob-
tained by employing the method applied to resolving Grandi’s paradox we can 
claim a solid background for our approach. Thus, we begin with Equation (11) 
but apply the consistent truncation procedure followed by successive averaging 
as exactly done for the sample calculation given in §3, Table 1. Without repeat-
ing all those steps we simply set ( ) exf x =  in place of x in Table 1 and obtain  

2 3 41 15 11 5 11 e e e e
16 16 16 161 e

x x x x
x = − + − +

+
              (15) 

which is strictly truncated at the fourth-order as all the coefficients are deter-
mined according to this truncation order. Substituting the fourth-order Maclau-
rin series for the exponential functions, as we did to Equation (11), gives  
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3 4

2 3 4

2 3 4

2 3 4

1 151 1
16 2! 3! 4!1 e

2 2 211 1 2
16 2! 3! 4!

3 3 35 1 3
16 2! 3! 4!

4 4 41 1 4
16 2! 3! 4!

x

x x xx

x x x
x

x x x
x

x x x
x

 
= − + + + + 

+  
 
 + + + + +
 
 
 
 − + + + +
 
 
 
 + + + + +
 
 

             (16) 

Collecting the terms of the same order together gives  

2 3 41 1 1 1 10
2 4 48 321 ex x x x x= − + + +

+
                (17) 

which, except for the fourth-order term, is essentially the same as Equation (14). 
The disagreement in the fourth-order terms originates from the difference be-
tween the classical infinite series formulation and the truncated approach em-
bedded in the present method. If a fifth-order expansion were carried out the 
fourth-order terms would be identical while the fifth-order terms are different. 
Only for infinitely many terms would the present approach be identical with the 
classical one as the coefficient of the highest-order term tends to zero. This 
demonstration has thus revealed a subtle connection between the classical Mac-
laurin series expansion of a function and the consistent truncation and succes-
sive averaging technique introduced here to resolve Grandi’s paradox. Such a 
far-fetched connection is unexpected but quite satisfying as it bolsters confi-
dence in the method by providing firm theoretical support.  

5. Grandi’s Paradox for Complex Valued Functions  

We now proceed to define complex valued functions which yield paradoxical 
results for definite x values when expanded into series just like ( )1 1 x+ . The 
function ( )21 1 x+  would serve as a good starting point for extending the pro-
cedure to the complex domain. First, we note that  

( )( )2

1 1 1 1
21
i

i x i x i x i xx
 = = − + − + + − ++  

              (18) 

where 1i = −  is the imaginary unit. Our primary aim here is to carry out a 
consistent truncation and convergence improvement of the series expansions of 
( )1 i x+  and ( )1 i x− + . Before proceeding towards this goal it is appropriate 

to apply these methods to ( )21 1 x+  so that the results can be used to establish 
the expansions of ( )1 i x+  and ( )1 i x− + . 

The standard series expansion of ( )21 1 x+  is  

2 4 6 8 10
2

1 1
1

x x x x x
x

= − + − + − +
+


                (19) 

Obviously, the right-hand side of Equation (19) produces paradoxical results 
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for 1x = . Without repeating the entire procedure the consistently truncated 
and convergence improved form of Equation (19) is obtained by simply setting 

2x  in place of x in Equation (7). Thus, the general formulations are  

( ) 2
2

1

1 11 1 for 1
1 2

n n p p
n

p m p

n
x x

mx = =

  
= + − ≤  +   

∑ ∑             (20) 

( )2 2 2 2
1

1 1 1 11 for 1
1 2

n n p
n p

p m p

n
x

mx x x +
= =

  
= + − ≥  +   

∑ ∑          (21) 

where n is an arbitrary truncation order. 
At this stage, it is tempting to compute estimated π values by use of the stan-

dard and improved series expansions of ( )21 1 x+ . Let us keep up to and in-
cluding the tenth power as in Equation (19) for the standard series. The corres-
ponding improved expansion is obtained from Equation (20) by setting 5n = :  

2 4 6 8 10
2

1 31 26 16 6 11
32 32 32 32 321

x x x x x
x

= − + − + −
+

            (22) 

Integrating (22) from 0 to 1 yields  

( ) ( )1

20

13 5 7 9 11

0

d arctan 1 arctan 0
1

31 26 16 6 1
32 3 32 5 32 7 32 9 32 11

x
x

x x x x xx

= −
+

 
− + − + − 

 

∫



         (23) 

Since ( )arctan 1 4= π  we get the following estimates from the standard and 
improved series  

1 1 1 1 14 1 2.976
3 5 7 9 11

 − + − + − = 
 

π                  (24) 

31 1 26 1 16 1 6 1 1 14 1 3.145
32 3 32 5 32 7 32 9 32 11

 − + − + − = 
 

π           (25) 

which have respectively −5.3% and 0.1% relative errors. The present improved 
series performs remarkably well compared to the standard approach. The same 
result could also be obtained from the integration of Equation (21), which is va-
lid for 1x ≥ . However, care should be observed in setting the integration limits 
from 1 to +∞  in the validity domain of the expansion. The left side then would 
be ( ) ( )arctan arctan 1 2 4 4π− = − π+ = π∞ . On the other hand, the right side 
at the upper limit would go to zero while at the lower limit would be multiplied 
by a minus sign, resulting in a correct positive estimate for π/4. Finally, of his-
toric significance, it must be indicated that Equation (24) is originally due to 
Leibniz (1646-1716) [3], p. 10. 

We now proceed to the treatment of ( )1 i x+ , one of the fractions making up 

( )21 1 x+  as given in (18). First note that  
( ) ( ) ( ) ( ) ( )2 2 21 1 1 1i x i x x x x i x+ = − + + = + − + , hence the problem can be 

carried out separately for the real and imaginary parts. Equations (20) and (21) 
already give the improved series of ( )21 1 x+ , which corresponds to the imagi-
nary part. Multiplying (20) and (21) by x  would simply produce the improved 
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series of ( )21x x+ , which corresponds to the real part. We must however ob-
serve that the real and imaginary parts have respectively odd and even powers of 
x and therefore truncation orders must be different for each part. Moreover, for 
exact result at the threshold point x i=  the truncation power of the real part 
must be less than the imaginary part for 1x ≤  and vice versa for 1x ≥ . This 
arrangement of truncation orders has the additional advantage of giving exact 
functional value for 1x = , just like a second threshold point. Bearing these pre-
cautions in mind we write down the consistently truncated and successively av-
eraged series representation of ( )1 i x+  as follows.  

( )

( )

1 1
2 1

1
1

2

1

11 1 1
2

1 for 1
2

n n p p
n

p m p

n n p p
n

p m p

n
x x

mi x

nii x x
m

− −
+

−
= =

= =

 −  
= + −  +   

  
− − − ≤  

  

∑ ∑

∑ ∑
                (26) 

( )

( )

2 1
1

1 1

2 1 2 2
1

1 1 1 11
2

1 11 for 1
2

n n p
n p

p m p

n n p
n p

p m p

n
mi x x x

ni i x
mx x

+
= =

− −

− +
= =

  
= + −  +   

 −  
− − − ≥  

  

∑ ∑

∑ ∑
         (27) 

The corresponding series for ( )1 i x− +  can be directly written down by re-
versing the sign of i in the above equations. Numerical examples of Equations 
(26) and (27) truncated at a definite n value are now presented for demonstra-
tion purposes. Setting 6n =  results in  

( )

( )

3 5 7 9 11

2 4 6 8 10 12

1 1 31 26 16 6
32

63 57 42 22 7 for 1
64

x x x x x x
i x

ii x x x x x x x

= + − + − + −
+

− − − + − + − + ≤
     (28) 

3 5 7 9 11 13

2 4 6 8 10 12

1 1 1 63 57 42 22 7 1
64

31 26 16 6 1 for 1
32

i x x x x x x x x
i i x

x x x x x x

 = + − + − + − + +  
 − − − + − + − ≥ 
 

          (29) 

First, we set x i= +  the threshold point in both (28) and (29):  

( ) ( )1 1 31 26 16 6 63 57 42 22 7 1
32 64

1
2

ii i i i i i i
i i

i

= + + + + + − − + + + + +
+

= −
    (30) 

( ) ( )1 1 63 57 42 22 7 31 26 16 6 1
64 32

1
2

ii i i i i i i i
i i

i

= − + − − − − − − + − − − − − −
+

= −
  (31) 

which both are exact. Next we try 1x = :  

( ) ( )1 11 31 26 16 6 1 63 57 42 22 7 1
1 32 64

1 1
2 2

ii
i

i

= + − + − + − − − − + − + − +
+

= −
    (32) 
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( ) ( )1 11 63 57 42 22 7 1 31 26 16 6 1
1 64 32

1 1
2 2

ii
i

i

= + − + − + − + − − − + − + −
+

= −
   (33) 

which both are exact again. Thus, both expansions for 1x ≤  and 1x ≥  pro-
duce identical and correct results for the imaginary threshold point x i= +  and 
additionally for what might be termed the real threshold point 1x = . On the 
other hand, the standard expansion obtained by division or Maclaurin series  

2 3 4 5 6 71 i x ix x ix x ix x
i x

= − + + − − + + − −
+


            (34) 

would produce various paradoxical results for x i= +  and 1x = , depending on 
the truncation order. 

Figure 3 depicts the function ( )1 i x+  (red line), its standard series expan-
sion, Equation (34) for 1x ≤  and its manipulated form for 1x ≥ , (green line), 
and consistently truncated and successively averaged series expansion (blue line) 
given by Equations (28) for 1x ≤  and (29) for 1x ≥ . In drawing the graphs x 
is given only real numbers within the range 0 3x≤ ≤  in the vertical axis and 
the corresponding real and imaginary functional values are marked in the hori-
zontal axes. The most remarkable aspect of the figure is that the graph of the func-
tion itself ( )1 i x+  drawn in red colour is virtually inseparable from the graph of 
(28) and (29) drawn in blue colour. The standard expansion drawn in green on the 
other hand exhibits its discontinuous character at 1x =  as in Figure 1. 
 

 
Figure 3. Function ( )1 i x+  (red), its standard series expansion (green), 

and consistently truncated and successively averaged series expansion 
(blue). Series expansions are computed for 6n = . 
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We end this section by establishing the Fagnano (1682-1766) formula [1] 
( )2 ln 1 1i i i=π − +  from Equation (28) and its variant. Integrating (28) from 0 

to 1 yields  

( ) ( )ln 1 ln

1 1 1 1 1 1 131 26 16 6
2 32 4 6 8 10 12

3 7 2 2 1 16 5 4 2 7
64 13 15 17 19 11 13

i i

ii

+ −

 = + − + − + − 
 
 − − − + − + − + 
 

            (35) 

( )ln 1 i−  can be obtained by changing the sign of i in (35):  

( ) ( )ln 1 ln

1 1 1 1 1 1 131 26 16 6
2 32 4 6 8 10 12

1 1 1 1 1 163 57 42 22 7
64 3 5 7 9 11 13

i i

ii

− − −

 = + − + − + − 
 
 + + − + − + − + 
 

           (36) 

Subtracting Equation (35) from (36) side by side gives  

( )1ln ln 1
1

2 1 1 1 1 1 12 63 57 42 22 7
64 3 5 7 9 11 13

i
i
ii

−  + − + 
 = + − + − + − + 
 

           (37) 

Recalling that ( )ln 1 i− = π  and evaluating the right-hand side numerically, 
Equation (37) becomes  

1ln 1.571406372
1

i i i
i

π
−  + = + 

                   (38) 

Multiplying both sides by 2i and rearranging give  

12 ln 3.140372563
1

ii
i

−  = + 
                    (39) 

in which the right-hand side is in 0.04% error compared to π. The absolute error 
is approximately π/2500 and the convergence rate of the series expansion with 
only 6n =  terms is excellent. Notice that the calculation of π in Equation (25) 
is actually 5n =  case of (37). 

6. A General Complex Valued Function and Its Special Cases  

A complex valued function of a quite general form is now introduced:  

( ) ( )

( ) ( )

1

1

1 1 2 2 2 3 3 3

1

1

1 e
e 1 e

e 1 e e e

1 cos 1 cos 1

sin 1 sin 1 for

i

i s i s

i i s i s i s

ps
p

p

ps
p s

p

x x

x x x

x p

i x p x

θ

θ θ

θ θ θ θ

ρ
ρ ρ

ρ ρ ρ ρ

θ θ
ρ ρ

θ θ ρ
ρ ρ

− −

− −

− − − − − − − −

∞

=

∞

=

=
+ +

 = − + − + 
  
 = + − + 
   
  
 − + − + ≤ 
   

∑

∑



    (40) 
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( ) ( )

( ) ( )

2 2 2 3 3 3

1

1

1

1

1
e 1 e

1 e e e

1 1 1 cos

1 sin for

s

i s i s

s i s i s i s

p
p

s s
p

p
p s

s
p

x
x x

x x x x

p
x x

i p x
x

θ θ

θ θ θ

ρ ρ

ρ ρ ρ

ρ θ
ρ

ρ θ ρ
ρ

−

−

− − − −

+∞

=

+∞

=

=
+ +

 = − + − + 
  = + −  

   
  + − ≥  

   

∑

∑



       (41) 

where ρ  and θ  are real quantities defining a given complex constant, 1s ≥  
is a positive integer, and x is the independent variable which may be real, imagi-
nary or complex. Obviously, Equations (40) and (41) result in a Grandi-type pa-
radox, the series expansions producing values in conflict with the function for 
the threshold point es ix θρ= . We resolve the paradox by applying the consis-
tent truncation approach and then carry out successive averaging technique for 
improving the convergence characteristics of the series. The resulting expres-
sions, which correspond to (40) and (41), are  

( ) ( )

( ) ( )

1

=1

1
e

1 1cos 1 cos 1
2

1sin 1 sin 1 for
2

i s

psn n p
n

p m p

psn n p s
n

p m p

x

n x p
m

ni x p x
m

θρ

θ θ
ρ ρ

θ θ ρ
ρ ρ

= =

=

+

     
 = + − +   
      
     
 − + − + ≤   
      

∑ ∑

∑ ∑

    (42) 

( ) ( )

( ) ( )

1

1

1

1

1
e

1 1 1 1 cos
2

1 1 sin for
2

i s

pn n p
s n s

p m p

pn n p s
n s

p m p

x

n
p

mx x

ni p x
m x

θρ

ρ θ
ρ

ρ θ ρ
ρ

+

= =

+

= =

+

     = + −     
     

     + − ≥     
     

∑ ∑

∑ ∑

       (43) 

Equations (42) and (43), having the unusual features of power series inter-
laced with Fourier series, contain all the previously treated forms as special cases; 
however, care must be observed for terms alternately multiplied by zero values 
of cosine and sine functions. These regular zero multiplications, which occur for 
pure imaginary eiθρ  values, must be excluded from the successive averaging 
process of a definite p value; instead, the next non-zero term must be taken in its 
place. These points are demonstrated clearly in the following examples. 

6.1. Grandi’s Function ( )x1 1+  and ( )x21 1+  

First, the improved series expansions of Grandi’s function ( )1 1 x+  are ob-
tained from Equations (42) and (43) as special cases. Setting 1ρ = , 0θ = , and 

1s =  in (42) and (43) yields respectively  
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( )
1

1 11 1 for 1
1 2

n n p p
n

p m p

n
x x

mx = =

  
= + − ≤  +   

∑ ∑                (44) 

( ) 1
1

1 1 1 11 for 1
1 2

n n p
n p

p m p

n
x

mx x x +
= =

  
= + − ≥  +   

∑ ∑              45) 

which are identical with Equations (7) and (8). The series corresponding to 

( )21 1 x+  can be readily obtained by setting 2s =  instead of 1s = . Simply, 
replacing x by 2x  in (44) and (45) results in (20) and (21). 

6.2. Complex Valued Arbitrary Functions ( )i x1 +  and 

( )i x41 3 + +   

We first recover the series expansions of ( )1 i x+  given by (26) and (27) from 
(42) and (43) as special cases. Substituting 1ρ = , 2θ = π , and 1s =  in (42) 
and (43) gives  

( ) ( )

( ) ( )

2
1

1

1 1cos 1 cos 1
2 2e 2

sin 1 sin 1 for 1
2 22

n n p p
i n

p m p

n n p p
n

p m p

n
x p

mx

nii x p x
m

= =

= =

π

  
= + − +  +   

  
−

π π 
 
 

π π 
 


− − + ≤  
  

∑ ∑

∑ ∑
   (46) 

( )

( )

2 1
1

1
1

1 1 1 11 cos
2e 2

11 sin for 1
22

n n p
i n p

p m p

n n p
n p

p m p

n
p

mxx x

ni p x
m x

+
= =

+
= =

π

    = + −    +    
    + − ≥    

  

π

π



∑ ∑

∑ ∑
        (47) 

For 5n =  Equations (46) and (47) become  

( ) ( )

( ) ( )

( ) ( )

2 3 4

5 2

3 4 5

1 1 3 50 31 cos 26 cos 16 cos 2 6 cos
32 2 2

3cos 3 31 sin 26 sin
32 2

516 sin 2 6 sin sin 3 for 1
2

x x x x
i x

ix i x x

x x x x

 π π   = + − π + − π +   +    
  π − π − − − π +     

π  − π + − π ≤    

  (48) 

( ) ( )

( )

( )

2 3 4 5

6 2 3 4

5 6

1 1 1 31 26 16 3 6cos cos cos cos 2
32 2 2

1 5 31 26 16 3cos sin sin sin
2 32 2 2

6 1 5sin 2 sin for 1
2

i x x x x x x

i
x x x x

x
x x

 π π   = + − + π − + π   +    
π   π π     − + − + π −            

π  + π − ≥  

    (49) 

It can easily be verified that both (48) and (49) render the threshold value −i/2 
exactly for the threshold point x i= + . Convergence improved series expansion 
of a function with a pure imaginary threshold point such as 2e ei i iθρ π= =  is 
not unique and a different arrangement of Equations (46) and (47) is possible. 
First, the terms multiplied by zero can be skipped; specifically, those multiplied 
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by cos 2π , cos 23π , etc. and sin π , sin 2π , etc. as appear in (48) and (49). 
Also, since the first term ( )cos 2π  in (48) is zero the first non-zero term of the  

summation ( ) ( )1 11 cos 1 1
2

x x − + = 
 

π
 is taken out as the leading term with av-  

eraging coefficient of unity in accord with Table 1. With this particular term out, 
the first summation in (48) must now end at ( )1n −  instead of n to keep the 
truncation orders the same. Then applying a similar approach to (49) and prop-
erly changing the indices to skip the terms with zero coefficients results exactly 
in Equations (26) and (27). As shown before these equations have the advantage 
of yielding the correct functional value for 1x =  besides x i= + . The case 
( )1 i x− +  can be handled similarly by setting 2θ = −π  instead of 2+π . 
Finally, we consider a function in which the constant eiθρ  is not real or pure 

imaginary but complex; that is, 2ρ =  and 6θ = π  hence 62e 3i iπ = + , and 
we set 4s =  so that the function is ( )41 3 i x+ + . Using Equations (42) and 
(43) gives  

( ) ( )

( ) ( )

4

6 4
1

4

1

4

1 1 1cos 1 cos 1
2 6 2 62e 2

1sin 1 sin 1
2 6 2 62

for 2

pn n p
i n

p m p

pn n p
n

p m p

n x p
mx

ni x p
m

x

= =

= =

π

     
 = + − +   +       
     
 − + − +   
     

π π

π π



≤

∑ ∑

∑ ∑      (50) 

( )

( )

1

6 4 4 4
1

1

4
1

4

1 1 2 1 21 cos
2 62e 2

1 21 sin
2 62

for 2

pn n p
i n

p m p

pn n p
n

p m p

n
p

mx x x

ni p
m x

x

+

= =

+

= =

π

     = + −     +      

π 
 
 

π       + −       
       

≥

∑ ∑

∑ ∑         (51) 

Truncating the above expansions at 3n =  results in  
2 34 4 4

4

2 34 4 4

4

1 1 3 18 7 cos 2 4 cos3 cos 4
2 2 2 6 2 6 2 63

1 1 7 sin 2 4 sin 3 sin 4
2 2 8 2 6 2 6 2 6

for 2

x x x
i x

i x x x

x

       π π π  = + − + −       + +        
       π π π  − + − + −              

≤

(52) 

2 3 4

4 4 4 44

2 3 4

4 4 4

4

1 1 2 1 2 2 27 cos 4 cos 2 cos3
2 8 6 6 63

1 2 2 27 sin 4 sin 2 sin 3
2 8 6 6 6

for 2

x x x xi x

i
x x x

x

  π π π     = + − + −        + +         
  π π π     + − + −                

≥

 (53) 

The threshold value es ix θρ= , which is 4 62e 3ix iπ= = +  for the present 
case, is now substituted into (52) and (53):  
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( )
2 3

2 3

4

1 1 3 1 3 1 3 3 17 4 0
2 2 8 2 2 2 2 22 3

1 1 3 3 3 3 37 4 1
2 2 8 2 2 2 2 2

for 2

i i i
i

i i i i

x

       + + +    = + − + − −               +        
       + + +  − + − + −                   

≤

  (54) 

( )
2 3 4

2 3 4

4

1 1 2 1 2 3 2 1 27 4 0
2 8 2 23 3 3 32 3

1 2 1 2 3 27 4 1
2 8 2 23 3 3

for 2

i i i ii

i
i i i

x

        = + − + −       + + + + +        

        + − + −       + + +        

≥

 (55) 

Right-hand sides of Equations (54) and (55) both yield the correct functional 
value ( )1 2 3 3 8 8i i+ = − . 

7. An Unorthodox Application of Successive Averaging  
Method  

Successive averaging method, which has been used for improving the conver-
gence characteristics of the series is now applied to a polynomial to generate a 
family of polynomials with equal and lower orders that approximate the generic 
one to varying degrees in the neighbourhood of 0x = . 

The method can be best explained by an example. Let us consider a fourth- 
order polynomial with known roots  
( ) ( )( )( )( ) 4 3 2

4 3 1 2 2 2 3P x x x x i x i x x x x= + − + − = + − + − . The averaging process 
shown in Table 2 is exactly in line with Table 1; only now the terms making up 
the polynomial are used.  

We have then generated the family of four polynomials ( )1 2 3P x x= − ,  

( ) 2
2 2 3P x x x= − + − , ( ) 3 2

3
1 3 2 3
2 2

P x x x x= − + − , and  

( ) 4 3 2
4

1 7 2 3
8 4

P x x x x x= + − + −  from the polynomial  

( ) 4 3 2
4 2 2 2 3P x x x x x= + − + −  by successive averaging method. Figure 4 de-

picts all these polynomials, including the generating fourth-order polynomial. As 
observed, the newly generated polynomials are establishing a family of polynomials 
approximating to the generic polynomial in the neighbourhood of 0x = .  

Use of the lower-order polynomials to estimate at least a root of the generic 
polynomial might be a conceivable idea. In the present case for instance  

( )1 2 3P x x= − , corresponding to the last two terms of the generic polynomial, 
gives 1.5x = , which is 50% in error compared to the true root 1x = ; hence not 
good at all. Nevertheless, the averaging approach may be used to obtain better ap-
proximations in a definite neighbourhood to a series representation of a given func-
tion as demonstrated in [2]; its further applications may be discovered in the future. 
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Table 2. Successive averaging of a fourth-order polynomial for generating a family of po-
lynomials. 

3 2x− +  23 2 2x x− + −  2 33 2 2 2x x x− + − +  2 3 43 2 2 2x x x x− + − + +  

23 2x x− + −  2 33 2 2x x x− + − +  2 3 413 2 2 2
2

x x x x− + − + +  

2 33 13 2
2 2

x x x− + − +  2 3 43 13 2 2
2 4

x x x x− + − + +  

2 3 47 13 2
4 8

x x x x− + − + +  

 

 
Figure 4. Polynomial ( ) 4 3 2

4 2 2 2 3P x x x x x= + − + −  (black) 

and the family of polynomials generated from. 

8. Concluding Remarks 

Resolution of the paradox originally posed for the series expansion of ( )1 1 x+  
has been extended to Grandi-type complex valued functions of the form  

( )1 ei sxθρ + . The method begins with a consistent truncation followed by suc-
cessive averaging for improving the convergence characteristics of the power se-
ries considered. Theoretical support for this methodology is provided via a 
demonstration using different series expansions of the function ( )1 1 ex+ . Fag-
nano’s formula is recovered in a non-trivial way by making use of the consis-
tently-truncated and convergence-improved series expansions of ( )1 i x+  and 
( )1 i x− + . In closing, an unorthodox use of the successive averaging method to 

polynomials is presented for suggesting diverse application areas. 
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