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Abstract 
Two-electron atoms have been investigated near threshold of double escape 
within the framework of hyperspherical coordinates. A particularly useful set 
of hyperspherical angles has been used. It is well known for many years that 
the hyperradial motion is nearly separable from the hyperspherical angular 
motion. Therefore, the Born-Oppenheimer separation method should be 
useful. However, the success of that method in molecular physics is based on 
the small mass ratio, electron mass to nuclear mass. In the atomic application 
such a small parameter does not exist. Nevertheless the method works sur-
prisingly well in the lower part of the spectrum. For increasing excitation en-
ergy the method becomes shaky. Near ionization threshold, it breaks even 
down. The author will present elsewhere an improved Born-Oppenheimer 
method. First pilot developments and comparison with the experimental sit-
uation are presented already here. Inclusion of a momentum-momentum ra-
dial coupling delivers an improved basis. We show that our extended 
Born-Oppenheimer approach leads to a deformation of the whole potential 
energy surface during the collision. In consequence of this deformation we 
outline a quantum derivation of the Wannier threshold cross section law, and 
we show that (e, 2e) angular distribution data are strongly influenced by that 
surface deformation. Finally, we present a mechanism for electron pair for-
mation and decay leading to a supercurrent independent of the temperature. 
Our framework can be extended to more than two electrons, say 3 or 4. We 
conclude that our improved Born-Oppenheimer method [1] is expected not 
only to deliver better numerical data, but it is expected to describe also the 
Wannier phenomenon. The idea of the new theory together with first qualita-
tive results is presented in this paper. 
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1. Introduction 

The theory of multi-electron atomic spectra is far from being well understood. 
Models by Bohr [2], and Hartree-Fock [3] deal with single electron configura-
tions, and neglect correlation. These models are based on the simple and well 
understood hydrogen atom.  

There is, however, strong evidence in the case of many-electron atoms that 
correlation becomes more and more important at increasing excitation energy. 
Near thresholds of multiple escape correlation become even dominant. A typical 
example is the threshold ionization of a hydrogen-like atom by electrons. The 
two-electron atom (or ion) shows already all difficulties of a many-electron at-
om. Therefore He-like atoms constitute a good candidate for theoretical work. 
Many years ago Wannier [4] has calculated using classical mechanics the total 
threshold cross-section σ  for the ionization process H e H 2e++ → + . He 
came to the surprising result 

( )1.127
0E Eσ ∝ −                         (1) 

There is strong experimental evidence for the fractional exponent in (1), see 
for instance [5] and references therein. The present paper outlines a quantum 
derivation of (1). 

Since the early days of quantum theory highly accurate variational calculations 
of the He ground state have been performed. The ground state is, however, not a 
suitable candidate to study correlation because correlation becomes important 
only at double excitation. 

Theoretical progress has been achieved using hyperspherical coordinates. Macek 
[6] has used a channel expansion method analogous to the Born-Oppenheimer ap-
proximation [7]. Klar et al. [8] have presented similar calculations employing more 
suitable angular coordinates. But both works have one common disadvantage. 
Their results are very good in the lower part of the spectrum. They become, 
however, shaky at increasing excitation energy, and their method breaks down 
near the threshold of double escape.  

It is the aim of the present paper to work out the reason for that shortcoming, 
see also [1]. We show that the familiar Born-Oppenheimer approximation con-
tains one fundamental mistake. That method employs a countable set of colli-
sion channels represented by static potentials. That description breaks down 
near threshold of double ionization where an infinity of channels converges to it. 
The present paper goes therefore beyond the usual Born Oppenheimer method, 
and takes a momentum-momentum coupling into account too. The latter was 
disregarded by Born and Oppenheimer [7]. 

The paper is organized as follows. §2 treats geometrical aspects, §3 develops 
an improved Born-Oppenheimer treatment for simplicity restricted to S states, 
§4 analyzes novel motions of the whole complex and compares results with ex-
perimental work, §5 presents a novel supercurrent based on the extended 
Born-Oppenheimer model, and §6 outlines possible generalizations to more 
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than two electrons. §7 summarizes our conclusions. An Appendix lists and ex-
plains all used symbols. 

2. Geometrical Aspects 

Subject of the following investigation is the S-state two-electron atom, like He. 
That constitutes the simplest candidate of atoms suitable for correlation studies. 
For three-body Coulomb systems (nucleus + two electrons) are analytical solu-
tions neither of the classical equations of motion nor of the wave equation 
available. A key ingredient for the successful treatment of the equation of mo-
tion is the choice of appropriate coordinates. Basically there are two possibilities. 
First, single electron coordinates, or second collective coordinates. Single elec-
tron coordinates are useless in correlation studies. An example for collective co-
ordinates is hyperspherical coordinates in the case of few-electron atoms. See 
Wannier [4], Macek [6], Klar [8] and others, in the case of two electrons. 

The key idea of hypersphericals is to replace the single electron position vec-
tors 1r  and 2r  by one six-dimensional vector given by 

1

2

 
=  
 

r
R

r
                          (2) 

with R  

2 2
1 2R r r= +                         (3) 

where 1r  and 2r  are the electron positions. The hyper-radius R describes the 
size of the whole atom. In addition to R we need five angles on the hyperradius 
S5 to fix the electron positions. Macek [6] used the familiar polar angles { }i iϑϕ   

i = 1, 2 plus the pseudo angle given by 1 1

2

tan r
r

α −= . The disadvantage of these  

angles is that they don’t provide a clear separation between overall rotations and 
intrinsic motion. A more convenient choice to map the five sphere S5 uses Euler 
angles ( ), ,α β γ  to describe overall rotations plus two body-fixed angles ,ψ ϕ  
for intrinsic motions, see for instance [8] and references therein. Both [6] [8] 
employed a Born-Oppenheimer [7] approximation to solve the wave equation 
where the hyperadius is the adiabatic coordinate. 

A look to the potential surface of the electron pair in the nuclear field shows 
immediately why these Dragt [9] angles ( ), , , ,α β γ ψ ϕ  are superior. The elec-
trostatic potential of the two-electron atom reads 

1 2 12

1 1 1V Z
r r r

 
= − + + 

 
                     (4) 

where 12r  is the electron-electron separation, and Z is the nuclear charge. Be-
cause of overall rotational invariance the potential is independent of , ,α β γ  
and reads in terms of the Dragt coordinates simply 

( ) ( ),
, ,

C
V R

R
ψ ϕ

ψ ϕ =                      (5) 
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with the charge function given by 

( ) 1 1 1,
1 cos 2 sin 1 cos 2 sin 1 cos 2 cos

C Zψ ϕ
ψ ϕ ψ ϕ ψ ϕ

 
= − + + 

− + −  
  (6) 

The physical meaning of the angles ,ψ ϕ  is as follows. ψ  describes the ratio 
of two moments of inertia whose principal axes lie in the particle plane, i.e. 

11 tan
2

xx

yy

ψ − Θ
=

Θ
                        (7) 

For instance the value 0ψ =  describes all collinear configurations. The po-
tential is an even function of ψ . It is therefore sufficient to consider only one 
hemisphere; in this paper we use 0

4
ψ π

≤ ≤  to map the electron positions onto 
the northern hemisphere including the equator. 

The angle ϕ  was already introduced long ago by Sommerfeld [10] as 
2 2

1 1 2

1 2

tan
2 cos

r r
r r

ϕ − −
=

Θ
                       (8) 

which is the hyperspherical azimuth angle ( 0 2ϕ≤ < π ). The electron position 
vectors in the particle plane are then given by [8] 

1

1 3cos cos
2 2
1 3sin sin
2 2

R
ψ ϕ

ψ ϕ

 π  +  
  =

 π +  
  

r

 

                  (9) 

2

1 3cos cos
2 2
1 3sin sin
2 2

R
ψ ϕ

ψ ϕ

 π  −  
  

 π −  
  

=r                   (10) 

The two-body coincidences are located at the angles 0ψ = , 
2

ϕ π
=  ( 1 0r = ); 

0ψ = , 3
2

ϕ π
=  ( 2 0r = ); 0ψ = , 0ϕ =  ( 12 0r = ). 

Wannier [4] has stressed the importance of a saddle point at 0,ψ ϕ= = π . We 
will see below that this point plays a key role for high double excitation. 

3. Zero-Energy Wave Function 

This section presents an exact solution of the three-body system valid in the low 
energy Coulomb zone near the saddle point. We proceed as follows: 

At low energy we expect the three particles in consequence of the elec-
tron-electron repulsion in a collinear configuration (electron-nucleus-electron). 
The potential surface shows there two attractive Coulomb zones separated by a 
barrier. The top of this barrier corresponds to equal electron-nucleus distances, 
i.e. 1 2r r= , and its height coincides with the threshold energy for double escape. 

The present paper treats for simplicity only S states. The Hamiltonian for S 
states of the whole atom reads then in terms of Dragt coordinates [8] 
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( )

5 5
2

2

2 2

1 1 1 sin 4
2 sin 42

,4
cos 2

H R R
R R R

C
R

ψ
ψ ψ ψ

ψ ϕ
ψ ϕ

− ∂ ∂ ∂ ∂
= − − 

∂ ∂ ∂ ∂
∂

+ +
∂ 

        (11) 

with C given by (6). Unfortunately, (11) is not separable. Nevertheless we pre-
sent here an exact solution in the Coulomb zone near the saddle point of 
( ),C ψ ϕ  which controls high double excitation. To this end we generate the 

wave function in product form as follows. 
For the intrinsic motion we employ oscillator functions, { }2exp κψ−  for the 

stable bending motion and ( ){ }2exp iλ ϕ − π  for the unstable anti-oscillator of 
the radial correlation. For the hyper-radial motion we use an Eikonal description 
because the potential surface shows due to Coulomb forces only smooth varia-
tion. Thus we arrive at the following wave function of the atom 

( ) ( ){ } ( ){ }
5

222, , exp d exp
R

R R i K R R iψ ϕ κψ λ ϕ′ ′Ψ = ⋅ − + − π∫     (12) 

The function (12) appears suitable for the Hamiltonian near the saddle point. 
Its Taylor expansion reads there 

( )

2 2

2 2 2 2 2

220 1 2

1 1 1 2 15
2 2 8

2 2

H
R R R R

C C C
R R R

ψ
ψ ψ ψ ϕ

ψ ϕ

∂ ∂ ∂ ∂
= − − − +

∂ ∂∂ ∂

− + − − π

         (13) 

where also the charge function ( ),C ψ ϕ  has been Taylor expanded around the 
saddle point with the following coefficients: 

0
4 1

2
ZC −

=                          (14) 

represents the net charge on the top of the ridge in the (R, φ) subspace, and 

1
1

2 2
C =                           (15) 

is the frequency of the bending vibration, and 

2
12 1

4 2
ZC −

=                          (16) 

is the curvature across the ridge. 
Our problem, however, is still not separable. The key point is that the coordi-

nate R is not a constant but changes during the e + He+ collision. Remember that 
the Born-Oppenheimer approximation [7] works with constant values of R; that 
shortcoming has been removed now [1]. Because we describe the elec-
tron-electron interaction in a moving frame, the frequencies κ  and λ  must 
be treated as functions of R. That motion proceeds along the evolution coordi-
nate R. Substitution of (12) into (13) yields then the following relations 

2 9
2

15 2
82

iC
K E

R R

κ λ + − 
= + − 

  
 

                (17) 
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2
2 1 d

4 2 d
RC iKR

R
κκ = −                      (18) 

2
2 2 d

16 8 d
RC KR

R
λλ = −                      (19) 

We treat (18), (19) as follows: Beginning with (19) we use the zero-energy 

Coulomb zone approximation by putting E = 0 in (17), and conclude 02C
K

R
≅ ± ,  

since at zero energy the Coulomb zone extends to infinity. Further we conclude 
from (19) the R-dependence ( )R Rλ ∝ . Therefore the derivative term on the 
rhs of (19) is R∝ , and may be combined with the static curvature 

2 2C DC→ +  where D is independent of R. We observe that the derivative term 
has deformed the static curvature of the antioscillator. Dominant correlation has 
manifested itself by a deformation of the electrostatic potential energy surface. 
The analysis of (18) runs along the same lines. 

Equations (18) and (19) constitute nonlinear Riccati differential equations. 
Long ago Peterkop [11] assumed in a WKB treatment constant values for ,κ λ . 
That corresponds to an adiabatic approximation, equivalent to a standard 
Born-Oppenheimer approximation. We avoid here such an approximation, and 
solve exactly the Riccati equations. That step corresponds to the inclusion of a 
new momentum-momentum coupling in the Hamiltonian [1]. Actually the de-
rivative terms on the rhs of (18, 19) change the frequency of the bending vibra-
tion, see (18), and the curvature of the antioscillator, see (19). Moreover, the to-
tal energy E enters through the radial momentum K. We stress that K carries two 
alternative signs describing incoming and outgoing waves. Therefore we expect 
different wave propagations in the two cases of motion, see the next section. 

So far we have treated singlet events (spin zero). The wave function is then 
even with respect to electron exchange. In terms of our coordinates exchange is 
provided by the transformation 2ϕ ϕ→ π− , R and ψ  unchanged. The odd 
wave function 

( ){ }( ) ( ){ }25 2 2Ψ exp d exp
R

R i K R R iϕ κψ λ ϕ′ ′= − π − + − π∫        (20) 

describes therefore triplets in the collinear configuration. Substitution into the 
wave Equation (13) delivers then the same relations (17)-(19) as for singlets. I.e. 
the potential deformation is spin-independent. 

4. Analysis of the Potential Deformation 

In Equations (17)-(19) appear three unusual quantities. In (17) appears the term  

2 2

3 3 1
15 2 2

8 2R R

 + 
 = . That looks like a squared orbital angular momentum divided  

by a moment of inertia. That conclusion, however, is wrong. We study here pure 
S states; there is no rotation at all. The term under consideration stems from the 
six dimensional description of the electrons. Only in the space 3  occurs no 
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pseudo centrifugal term. That term has therefore purely geometrical origin. 
However, we will see below that our angles are useful and necessary because this 
term is essential for the description of the formation of electron pairs and their 
decay, see §5 of this paper. 

Equation (19) has the following interpretation: If we would assume a constant 
value λ  the solution would be the adiabatic one given by 2

1
4

RCλ = ± . We 
stress, however, that we describe here the electron-electron interaction in a 
moving frame. The motion runs along the evolution coordinate R. It is well 
known that in moving frames fictitious forces may occur. The R-dependence of 
λ  may be attributed to such a fictitious force. We compare now the exact solu-
tion of (19) with the adiabatic one. To this end we remember that the depend-
ence of λ  on R is simply ( )R Rλ λ=  with λ  independent of R, see above. 
This reduces (19) to an algebraic equation with two real solutions.  

In (18) we find an analogous situation. The adiabatic solution 1
1
2

RCκ = ±  
has been corrected by a complex value of κ . 

The dynamical contributions from correlation presented here are not negligi-
ble. We will see below that they may be quite important, and depend explicitly 
on the momentum vector K. Therefore, they are different for shrinking and ex-
panding modes of motion of the whole complex. 

Equation (19) is closely related to the escape of two slow electrons after ioni-
zation near threshold. For small values of ψ  this angle is equal to the solid an-
gle Θ  between the two escaping electrons. In consequence of the electrostatic 
repulsion between the electrons we should expect a peak in the angular distribu-
tion at Θψ ≅ ≅ π , i.e. the electrons escape into opposite directions. 

In the triply differential cross section measurements the data by the Erhardt 
group [12] however don’t show such a peak. The angular distribution is more or 
less flat. This is not a contradiction to the Wannier theory, but it is a wrong in-
terpretation of the theory. To clear the situation we look into the exact solution 
of (18). To this end we put ( )R Rκ κ= , κ  is then independent of R, and we 
arrive at the algebraic equation  

2 0 1 0
2 4

C Ciκ κ− − =                     (21) 

This equation has exclusively imaginary roots. The distribution 

{ } 22exp κψ−                         (22) 

is therefore uniform rather than peaked at ψ = π  in agreement with Erhardt’s 
observation. This is a convincing manifestation of a dominant correlation effect 
due to a fictitious force in electron-atom scattering. 

Also the quantity ( )Rλ  shows the simple behavior ( )R Rλ λ= ±  with λ  
independent of R, see above. The equation analogous to (21) has now two real 
solutions. That implies that incoming and outgoing flux are different, a phe-
nomenon entirely foreign in two-body collisions. The terms “incoming” and 
“outgoing” have now in the three-body system the meaning of “shrinking” and 
“expanding” modes of the whole complex. The derivative term in (19) is respon-
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sible for electron-electron attraction and for pair formation analogous to Cooper 
[13] pairs, see §5 of this paper. Moreover, the squared ratio of the radial ex-
panding current divided by the shrinking one delivers the Wannier Formula (1). 

5. Supercurrent 

We present here a vision study of a linear cluster whose ingredients are atoms 
with two valence electrons irrespective if such a target is available or not. In that 
situation the wave function (12) is no longer applicable. Due to the confinement 
we must replace (12) by  

( ) ( ){ } ( ){ }25 2 2Ψ , , exp d expR R K R Rψ ϕ κψ λ ϕ′ ′= − − − − π∫      (25) 

Putting (25) into (13) we rediscover except for an imaginary factor of i Equa-
tions (17)-(19). We conclude that the confinement does not change correlation 
contributions. 

Therefore a current in a linear arrangement of atoms may run as follows. In 
consequence of the electrostatic repulsion the three bodies (core + two valence 
electrons) enter into a collinear configuration (electron-core-electron). In that 
configuration the fictitious force attracts the electrons. That force transports the 
electrons to the top of the antioscillator. This part of the process was referred to 
by Wannier [4] as converging trajectory. The pair is now born, and is electro-
statically attracted by the core. The electron pair, however, does neither pene-
trate into the core nor do the electrons fall into the nucleus. The pair as a whole  

will be reflected by the pseudo centrifugal barrier given by 2

15
8R

. At this step  

of the electrons motion the force between the core and the pair changes sign. 
During the electrons were on the ridge top they jump now onto Wannier’s di-
verging trajectory. The pair motion is now unstable. The electron pair falls down 
from the ridge top, i.e. the pair dies because the correlation-induced force be-
tween the electrons is now repulsive, see (19). Nevertheless the electrons don’t 
escape to the universe because of the confinement. One electron will be trapped 
into a Rydberg orbital of the positive core. The other electron experiences a re-
pulsive force with respect to the mother core. But in the frame of the next 
neighbour atom that force is attractive. A neighbor core attracts the electron, 
and the whole procedure repeats. Along these lines one electron is transported 
along the whole chain of atoms and constitutes a current. On that path there is 
no inelastic collision in which the electron would lose energy. The charge 
transport is provided here exclusively by electron wave diffraction. That implies 
we have a current without any resistance. Finally we stress that the pair present-
ed here is not a Cooper pair [13] because in our case the binding does not result 
from an electron-phonon interaction but from dominant correlation at thresh-
old for double ionization. 

6. Generalization to More Than Two Electrons 

Recently the author has shown that also atoms with N = 3 or 4 electrons possess 
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unstable equilibrium configurations [14]. Three highly excited electrons may 
form an equilateral triangle configuration with one electron in each corner. In-
stead of a pair formation we predict now the production of an electron triple. To 
this end we consider for instance a high doubly excited resonance He** located 
slightly below the double ionization threshold (ca. 79 eV). A further slow elec-
tron will be attracted to that target, and the complex will enter into a triangular 
equilibrium configuration. After reflection from a pseudo centrifugal barrier 
now given by 6/R2 the triple decays into three individual electrons. One of them 
is ejected, and the other two fall down into a lower doubly excited helium state 
He**. The situation of N = 4 electrons runs along similar lines. 

7. Conclusion 

For nearly a century the atomic and molecular community relies on the Born 
Oppenheimer approximation [7]. Unfortunately the BO method has 
inadvertently disregarded one important portion of the Hamiltonian, namely 
a momentum-momentum coupling. The present paper has tried to figure out 
what the rejected energy term may deliver. The result of the present pilot in-
vestigation is encouraging. Therefore a forthcoming paper will be dedicated 
to a systematic representation of an amended Born-Oppenheimer theory [1]. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Klar, H. (2020) The Born-Oppenheimer Approximation Revisited. Journal of Ap-

plied Mathematics and Physics, In Press.  

[2] Bohr, N. (1913) On the Constitution of Atoms and Molecules. Philosophival 
Magazine, 26, 857-875. https://doi.org/10.1080/14786441308634955 

[3] Haken, H. and Wolf, H. (1994) Molekülphysik und Quantenchemie. Springer, Ber-
lin. https://doi.org/10.1007/978-3-662-08830-2 

[4] Wannier, G. (1953) Ionization of an H Atom by Electrons at Threshold. Physical 
Review, 90, 817-825. https://doi.org/10.1103/PhysRev.90.817 

[5] Cvejanovic, S. and Read, F.S. (1974) Studies of the Electron Impact Ionzation of He-
lium. Journal of Physics B, 7, 1841. https://doi.org/10.1088/0022-3700/7/14/008 

[6] Macek, J.H. (1968) Properties of Autoionizing States of Helium. Journal of Physics 
B, 1, 811-818. https://doi.org/10.1088/0022-3700/1/5/309 

[7] Born, M. and Oppenheimer, R. (1927) Zur Quantentheorie der Molekeln. Annalen 
der Physik, 389, 457-484. https://doi.org/10.1002/andp.19273892002 

[8] Klar, M. and Klar, H. (1980) An Accurate Treatment of Two-Electron Systems Us-
ing Hyperpherical Coordinates. Journal of Physics B, 13, 1057.  
https://doi.org/10.1088/0022-3700/13/6/014 

[9] Dragt, A.J. (1965) Classification of Three-Particle States According to SU3. Journal 
of Mathematical Physics, 6, 533. https://doi.org/10.1063/1.1704306 

[10] Sommerfeld, A. (1944) Atombau und Spektrallinien. Springer, Berlin.  

https://doi.org/10.4236/jamp.2020.87108
https://doi.org/10.1080/14786441308634955
https://doi.org/10.1007/978-3-662-08830-2
https://doi.org/10.1103/PhysRev.90.817
https://doi.org/10.1088/0022-3700/7/14/008
https://doi.org/10.1088/0022-3700/1/5/309
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1088/0022-3700/13/6/014
https://doi.org/10.1063/1.1704306


H. Klar 
 

 
DOI: 10.4236/jamp.2020.87108 1433 Journal of Applied Mathematics and Physics 
 

[11] Peterkop, K.R. (1970) Semiclassical Ionization of Atoms by Electrons Impact Ioni-
zation of Atoms. Journal of Experimental and Theoretical Physics, 31, 699.  

[12] Rösel, T., Schemmer, P., Röder, J., Frost, K., Jung, K. and Ehrhardt, H. (1982) Ioni-
zation of H near Threshold by Electron Impact. Zeitschrift für Physik D, 23, 359.  

[13] Bardeen, J., Cooper, L.N. and Schriefer, J.R. (1957) Theory of Superconductivity. 
Physical Review, 108, 1175. https://doi.org/10.1103/PhysRev.108.1175 

[14] Klar, H. (2018) Wave Propagation near a Potential Ridge. Physical Review Letters, 
120, Article ID: 053401. https://doi.org/10.1103/PhysRevLett.120.053401 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 

List of Symbols 
σ = Total ionization cross section 
E = Total Energy 
E0 = Ionization threshold 
R = Hyperradius 

1 2,r r  = Elctron positions 
V = Potenialenergy 

12r  = Electron-electron separation 
Z = Nuclear charge 
C(ψ, φ) = Charge function 
ψ, φ = Body-fixed hyperspherical angles 

iiΘ  = Moment of inertia around the x-axis  
H = Hamiltonian 
Ψ = Wavefunction 
K = Radial momentum 

0C  = Electron net charge on the top of the ridge 

1C  = Bending frequency 

2C  = Curvature of the potential ridge 
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