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ABSTRACT 

Objective: To establish a practical method for discriminating dementia groups and healthy 
elderlies, by using scalp-recorded electroencephalograms (EEGs). Methods: 16-ch EEGs 
were recorded during resting state for 39 dementia groups and 11 healthy elderlies. The 
connectivity between any two electrodes was estimated by synchronization likelihood (SL). 
The brain networks were constructed by normalized SL values. The present leave-one-out 
cross validation (LOOCV) required the Euclidean distance between any two subjects having 
120-dimensional vectors concerned with the SL values for six frequency bands. In order to 
investigate factors which would affect the LOOCV results, principal component analysis 
(PCA) was applied to all the subjects. Results: The accuracy for the upper alpha yielded 
more than 80% and 70% in the dementia groups and the healthy elderlies, respectively. The 
LOOCV result could be explained in terms of brain networks such as executive control 
network (ECN) and default mode network (DMN) characterized by factor loadings of prin-
cipal components. Conclusions: Dementia groups and healthy elderlies could be characte-
rized by principal components of SL values between all the electrode pairs, even less con-
nections, which revealed disruption and preservation of DMN and ECN. Significance: This 
study will provide a simple and practical method for discriminating dementia groups from 
healthy elderlies by scalp-recorded EEGs. 
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1. INTRODUCTION 
Alzheimer’s disease (AD) is the most common form of dementia in the world. 50 million people are 

suffering from dementia and over 60 percent of dementia cases are Alzheimer’s disease. In addition, these 
patients are likely to reach about 152 million people by 2050 [1]. AD is an irreversible neurodegenerative 
disease characterized by progressive impairment of memory, and loss of cognitive functions that affect a 
person’s ability to perform daily activities. The evolution of the disease frequently follows some stages and 
symptoms gradually worsen over a number of years [2]. 

One of the difficult problems of AD is diagnosis. As things stand at the moment, there is no single 
test way for AD. Physicians are using several methods and tools to make a diagnosis, which included med-
ical and family history, cognitive tests and physical and neurologic examinations, and brain imaging [3]. 
Also, several days or weeks are needed to complete the required tests and for the physician to interpret the 
results and make a diagnosis [3]. Therefore, AD diagnosis using easy and inexpensive techniques will pro-
vide better care to patients. 

Current theories of AD postulate that in the brain networks the decline arises from alterations in 
functional integration of distributed brain systems or from structural disconnection between regions be-
cause of white matter damage. Such brain networks during resting states have been known as executive 
control network (ECN) [4], default mode network (DMN) [5] and salience network (SN) [6]. The ECN is a 
brain network responsible for high-level cognitive functions, notably the control of attention and working 
memory. The DMN is a large-scale network of brain areas that form an integrated system for self-related 
cognitive activity, including autobiographical, self-monitoring and social functions and the SN is a brain 
network involved in the orientation of attention to the most homeostatically relevant (salient) of ongoing 
intrapersonal and extrapersonal events [7]. 

The previous functional magnetic resonance imaging (fMRI) studies have reported disrupted connec-
tivity within the DMN [8, 9], the SN [9, 10], the ECN [9, 11] and the SN-ECN disconnection [12] in AD 
patients. However, there have been a few approaches using electroencephalography (EEG) [13-16], which 
is one of easier and cheaper methods, and magnetoencephalography (MEG) [17]. 

From the point of view of cognitive functions and tests, Alzheimer’s dementia has been known to be 
classified into the following five stages at least: preclinical stage, the second stage (Mild Cognitive Impair-
ment (MCI)), mild stage (MMSE (Mini Mental Status Examination) > 20), moderate stage (MMSE be-
tween 10 and 20) and severe stage [2]. In particular, an early diagnosis of Alzheimer’s disease in MCI and 
mild AD stages has become very important. 

In this study, we will find out scalp-recorded-EEG-based brain networks, by which dementia groups 
with MCI and mild, moderate and severe AD stages are compared with healthy elderlies. The brain net-
works are constructed from 16-ch EEGs in six frequency bands (delta (0 - 4 Hz), theta (4 - 8 Hz), lower 
alpha (8 - 10 Hz), upper alpha (10 - 13 Hz), beta (13 - 30 Hz), gamma (30 - 45 Hz)). Graphical representa-
tions of the brain networks based on graph theory are formed by a functional connectivity measure called 
synchronization likelihood (SL) [18] which is a generalized synchronization measure between any two 
electrodes. Then, each subject is characterized by an average of the SL values across all the electrode pairs. 
Next, in order to examine the possibility of AD diagnosis, we will try leave-one-out cross validation 
(LOOCV). Finally, we will discuss the LOOCV results in terms of existing brain networks such as ECN, 
DMN and SN. 

2. MATERIALS AND METHODS 
2.1. EEG Measurement 

The present subjects consist of 39 dementias and 11 healthy elderlies, Table 1 shows those subjects 
information. EEG measurements were performed at Teikyo University School of Medicine, through a Ni-
hon Kohden EEG-1224 for the subjects. The device was equipped with 16 Ag/AgCl electrodes (a Nihon 
Kohden H503A) were attached at Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, and T6 on 
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the basis of the International 10 - 20 System (Figure 1). The sampling rate was set to be 500 Hz. The filter 
setting was high pass filter (=120 Hz). All the subjects were instructed to lie on their back in the resting 
state with their closed eyes for 5 minutes at least. The study protocol illustrated in Figure 2, including all 
EEG data analyses, was approved by The Ethics Committee for Human Subject Researches, Faculty of 
Computer Science and Systems Engineering, Kyushu Institute of Technology. All EEG data was checked in 
the EEG lab (provided by Swartz Center for Computational Neuroscience) and deleted at least 1 minute 
from the starting time and the EEG data after 1 minute were used for the data analyses as use stable EEG 
data. 

All the EEG data was passed through band pass filter that separated the EEG data into six frequency 
bands: delta (0 - 4 Hz), theta (4 - 8 Hz), lower alpha (8 - 10 Hz), upper alpha (10 - 13 Hz), beta (13 - 30 
Hz), gamma (30 - 45 Hz) (Figure 2). 

 

 
Figure 1. Electrode positions. 

 

 
Figure 2. Flow of from EEG recording to data analysis. 
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Table 1. Subject information. 

 Dementia groups Healthy elderlies 
N* 39*** 11 

Age (mean) 71 - 96 (85.28) 67 - 89 (81.36) 
Sex F/M** 17/22 3/8 

*The number of subjects, **F = female, M = male, ***: 23 (10 ≤ MMSE ≤ 20); 3 (MMSE > 20); 13 (MCI). 

2.2. Synchronization Likelihood (SL) 

After the EEG measurement, SL was calculated between any two electrodes. The SL is a measure of 
synchronization between two times series that is sensitive to linear and non-linear independencies. The 
basic principle of the SL is to divide each time series into a series of “pattern” (roughly, brief pieces of time 
series containing a few cycles of the dominant frequency) and to search for a recurrence of these patterns. 
Figure 3 [19] illustrated the state vectors and synchronization likelihood parameters (L, m, W1, W2 and s) 
with respect to the time series of channels A and B. Figure 4 [19] shows the SL between two channels in 
terms of state vectors and critical distances. The reference vector of channel A is denoted XA,i (thick line 
square) here chosen to have embedding dimension m = 3 samples (small ticks) and lag L = 2 samples 
(dots). The reference vector is compared with state vectors (squares) XA,j (j = ±1, 2 … n) within a window 
of W2. State vectors starting at times j in the time interval outside the window W1 and within the window 
W2 (windows centered at time i) are compared with the reference vector. The time series is indicated with 
a solid horizontal line and the time intervals are indicated with a dashed line. The vectors XA,j, which are 
closer to the reference vector XA,i than the critical distance, rA (Figure 4) are represented in white. Whereas 
the vectors that are not within the critical distance are represented in grey, and termed recurrences are 
represented with white squares. Similarly to channel A, a reference vector XB,i is compared with all state 
vectors XB,j (j = 1, 2 … n). If the vectors are closer to XB,i than rB then they are represented in white, other-
wise in grey. The SL value is the number of simultaneous recurrences in channels A and B divided by the 
total number of recurrences within channels. In this situation, the SL value is 0.5. These procedures which 
convert the SL values between the 16 electrodes into the adjacency matrix are illustrated in Figure 2. The 
Lab_SL2 which is the Matlab script for calculating the SL was used in this study.  

2.3. Brain Network Construction 

SL values show strength of connectivity of each of the two electrodes (Figure 4) [19]. For each elec-
trode pair, averages of SL values in the healthy controls were calculated, and then SL values in the AD pa-
tients were divided by the healthy averages. Thus, from the brain network of the healthy group, that of the 
AD group was constructed, as shown in Figure 5. 

 

 
Figure 3. State vectors describing two time series in channels A 
and B (XA,i, XB,i), and pameters for calculating SL (W1, W2). 
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Figure 4. Representation of SL between two channels A and B by 
state vectors and critical distances (rA, rB). 

 

 
Figure 5. Construction of AD network by normalized SL values. 

2.4. Brain Network Modularization 

The graph structure of the brain network was represented by the nodes and edges that correspond to 
the electrode positions and the SL values, respectively, where the present network was undirected and un-
weighted (binary) in this research (Figure 5). The brain network was divided into some community 
groups, which could predict any cognitive function. The network constructed by SL average values was 
divided into two graphs, so that one is lower than the healthy group and other higher than the healthy 
group (Figure 6). Moreover, the optimal community structure of a graph was found by maximizing the 
modularity measure over all possible partitions [20]. 
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Figure 6. Modularization of brain network using graph theory. 

2.5. Leave-One-Out Cross Validation (LOOCV) 

LOOCV uses a single test data from the original samples as the validation data, and the remaining 
data as the training data (Figure 2). Firstly, we picked one test data, and calculated “AD and healthy aver-
ages” for the remaining data. The “AD and healthy averages” are defined to be averages across subjects in 
each group for each electrode pair.  

For one test data, 120 (=16 × 15/2)-dimensional Euclidean distance between the subject and “the de-
mentia or healthy average” was calculated. If the Euclidean distance in the dementia group is smaller than 
that in the healthy group, the test data is determined to be from “dementia”, otherwise from “healthy”. 
This procedure was repeated for all the test data. 

2.6. Principal Component Analysis (PCA) 

In order to investigate factors (brain networks) which could affect the above LOOCV results, princip-
al component analysis (PCA) is applied to all the subjects in terms of all the electrode pairs (Figure 2). 

3. RESULTS 
3.1. Brain Network Construction 

Figure 7 shows the dementia group networks for each frequency band compared with the healthy el-
derly controls. The SL values are averaged for all the time-series data in the dementia group and the 
healthy elderly group. 

Figure 7 also visualizes whether the SL average value between the nodes is higher or lower than the 
healthy control value. In all the frequency bands except for delta, the connections between Fp1-Fp2 in the 
dementia group are weaker than the elderly control group. In theta and gamma bands, the connectivity of 
the dementia groups is lower than that of the elderly controls. 

From non-overlapping community detection, nodes consisting of the same community could have 
high functional relevance. Figure 8 and Figure 9 show that the alpha band network of dementia groups is 
distributed in the whole of the brain, indicating that SL values in dementia group are higher than those in 
elderly controls. Moreover, the gamma band network of dementia groups is separated between the left and 
right sides of the brain. In the theta band, the connectivity in the dementia groups is almost completely 
lower than that in the elderly controls. 
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Figure 7. Brain networks of dementia groups for six frequency bands after the nor-
malization where all the SL values for the healthy controls are assumed to be one. 

 

 
Figure 8. Non-overlapping community when elderly controls > dementia groups. 
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Figure 9. Non-overlapping community when dementia groups > elderly controls. 

3.2. LOOCV 

Table 2 shows the accuracy rate for “dementia” and “healthy”. In the dementia group, three bands 
(lower alpha, upper alpha and beta) show the high accuracy, and also in the healthy group, two bands 
(theta and upper alpha) also show the high rate. So, the upper alpha band was applied to PCA. 

Figure 10 shows plots of all the subjects by the first two principal components (PC1 and PC2) in the 
upper alpha band. Table 3 depicts the cumulative proportion of the PCs. It follows that PC1 and PC2 ex-
plain only 56% of the SL value variation. In Figure 10, orange dots represent healthy controls, and blue 
dots represent dementia groups. This figure shows that the dementia groups and healthy groups might be 
separated (as mentioned in Discussion). To find which components affected the PCA results, factor load-
ings were calculated for all the electrode pairs (Figure 11). Figure 11 also depicts three lines indicating 
main axes of factor loading variation in PC1 and PC2 by inspection. These lines are represented by PC1 
factor loading values with larger than 0.85, PC2 factor loading values with larger than 0.4 and those with 
less than −0.4. And, Figures 12-14 show brain networks which were characterized by the three constraints. 

4. DISCUSSION 
The frontal cortex helps mediate the working memory that is used for temporary storage and mani-

pulation of information and involved in many higher cognitive functions [21]. Therefore, well-known 
symptoms of AD are related with functions of the frontal cortex [22]. Because our results (Figure 7) indi-
cated low connectivity in the frontal cortex, the brain networks might reveal dysfunction of the frontal 
cortex. Figure 8 and Figure 9 suggested that the networks of the AD group might have some characteris-
tics so that the network of AD patients could distinguish from that of the healthy elderly controls.  
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Figure 10. Plots of all the subjects in terms of the first two principal components. 

 

 
Figure 11. Plots of all the electrode pairs in terms of factor 
loadings of PC1 and PC2. 
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Figure 12. Brain network with PC1 factor 
loadings of larger than 0.85. 

 

 

Figure 13. Brain network with PC2 factor 
loadings of less than −0.4. 

 

 
Figure 14. Brain network with PC2 factor 
loadings of larger than 0.4. 
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Table 2. Results on LOOCV using the Euclidean distances in six frequency bands. 

 delta theta lower α upper α beta gamma 
Dementia group 72% 64% 82% 82% 82% 51% 

Healthy 64% 82% 36% 73% 64% 91% 
 
Table 3. Cumulative proportion of the upper alpha band. 

 PC1 PC2 PC3 PC4 PC5 
Standard deviation 7.5527 3.25905 3.10177 2.74594 2.23793 

Proportion of variance 0.4754 0.08851 0.08018 0.06283 0.04174 
Cumulative proportion 0.4754 0.56387 0.64404 0.70688 0.74861 

 
The present LOOCV result yielded over 80% accuracy in the upper alpha band, which is the same as 

accuracy in classification tasks comparing AD patients and aged-matched healthy controls [23-28]. In or-
der to investigate factors which could affect the present accuracy, PCA was applied to SL values in terms of 
any two electrodes. Figure 10 characterized each subject in terms of the first two principal components. 
Visual inspection of this figure roughly suggests that the dementia groups could be characterized only by 
the PC1 and the healthy controls by a combination of the PC1 and the PC2. Actually, the coefficients of 
correlation were 0.1233 and −0.6188 for the dementia groups and the healthy controls, respectively 
(Figure 10). Moreover, Figures 12-14 show brain networks determined by factor loadings of the two PCs 
(PC1 and PC2), which were defined to be the PC1 factor loadings of more than 0.85, the PC2 factor load-
ing of less than −0.4 and the PC2 factor loading of larger than 0.4, respectively, with reference to Figure 
11. 

Generally, brain networks during resting state can be defined on the basis of structural connectivity 
or functional interdependence from some large scale ones such as DMN, ECN and SN. The ECN is cha-
racterized by the dorsal prefronto-parietal network mainly involving the lateral prefrontal cortex (LPC) 
and the posterior parietal cortex (PPC) [21, 29]. The DMN contains the medial prefrontal cortex (MPC), 
the posterior cingulate cortex (PCC), the inferior parietal lobe (IPL), the lateral temporal cortex (LTC) and 
the hippocampal formation (HF) [30], each of which organizes a different functional area. The two net-
works during resting states do not always conflict, sometimes cooperate between them [31] and affect each 
other. In particular, it has been reported that the synchronization of the fast alpha reflects the DMN func-
tion and is responsible for top-down processing [32]. 

Figure 12 seems to reveal the connection of DMN. The PCC, an occipital-core area of DMN, corres-
ponds to the P3-P4-T5-T6, and the MPFC to the Fp1-Fp2-F3-F4 in the present experiment. Because, in 
this study, the EEGs were recorded during resting state with closed eyes, the brain networks such as DMN 
and ECN are likely to be formed. 

In contrast, Figure 13 seems to reveal the brain network with the connection of ECN according to the 
PC2 factor loadings. The DMN is predominant in the absence of any external tasks, while the ECN is a 
resting-state-task-related network [7, 33-37]. Moreover, it has been well known that the DMN and the 
ECN have negative correlation (e. g., [36, 38-44]). This could be a reason why it is difficult to divide into 
dementia group and healthy one in the PC2. Additionally, Figure 14 shows occipitally dominant networks 
in the upper alpha band, which is supported by alpha activity in the occipital cortex (e.g., [45]). 

Finally, dementia groups and healthy elderlies could be characterized by principal components of SL 
values between all the electrode pairs, revealing disruption and preservation of DMN and ECN. LOOCV 
using much less between-electrode connections yielded the same accuracy (85% and 73% for dementia 
groups and healthy elderlies, respectively) as Table 1. This reduction was executed by a model by AIC 
(Akaike information criterion) in a stepwise algorithm (e.g., [46]). The resultant reduction is shown in 
Figure 15. Thus, this study will provide an easy and practical method for discriminating dementia groups 
from healthy elderlies by scalp-recorded EEGs. 
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Figure 15. Distribution of between-electrode connections 
reduced by a model by AIC in a stepwise algorithm. 

5. CONCLUSION 
We obtained brain functional connectivity networks (BFCNs) for dementia groups including AD and 

MCI and elderly controls using scalp-recorded EEGs. The BFCNs were constructed from connectivity 
strength described by SL values at each electrode pair. Principal components of the SL values characterized 
the subjects in terms of disruption and preservation of default mode network (DMN) and executive con-
trol network (ECN) for the dementia groups and the elderly controls, respectively. Thus, this study will 
provide an easy and practical method for discriminating dementia groups from healthy elderlies using 
scalp-recorded EEGs. 
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