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Abstract 
Two additional features are particularly useful in pixelwise satellite data seg-
mentation using neural networks: one results from local window averaging 
around each pixel (MWA) and another uses a standard deviation estimator 
(MWSD) instead of the average. While the former’s complexity has already 
been solved to a satisfying minimum, the latter did not. This article proposes 
a new algorithm that can substitute a naïve MWSD, by making the complexi-
ty of the computational process fall from O(N2n2) to O(N2n), where N is a 
square input array side, and n is the moving window’s side length. The Num-
ba python compiler was used to make python a competitive high-performance 
computing language in our optimizations. Our results show efficiency bench-
marks. 
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1. Introduction 

Image segmentation consists of partitioning image pixels into a set of regional 
categories [1] [2]. This process can be significantly improved by using two addi-
tional images (image features) based on two fundamental statistical concepts, if 
they are also input to neural networks [2], a technique that creates a fertile field 
for segmentation solutions [3] [4] [5] [6]. These image features can be seen in 
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Figure 1 and are described as follows: 
1) n × n moving window average (MWA): classical MWA, where the value of 

the central pixel in the array is replaced by its n × n window average; and 
1) n × n moving window standard deviation (MWSD): similar to the MWA, 

but the value of the central pixel is replaced by the standard deviation of the 
moving array. 

Local window functions are not restricted to image segmentation: they are 
routinely used for suppressing noise in filter operations [7] [8]. That aside, their 
usage in segmentation is well established in the literature [2] [9] [10]. 

The first image attribute (MWA) is calculated by convolving the original im-
age with a specific kernel, which is a matrix filled by 1/n2. Furthermore, these 
convolutions can be calculated in a faster way via products in a frequency do-
main. Likewise, this process can get even faster by integrating a method called 
“overlap-and-add”. In this case, if the inputs are N × N arrays, the computation-
al time is given by O(N2 log2n) [11], which is much lesser than a naïve convolu-
tion algorithm’s: O(N2 n2). 

Any process that can be written in convolutional terms (as MWA) can be im-
plemented in such a way to get these benefits. However, the MWSD has a re-
striction, since the standard deviation is not a linear operation itself, and has the 
same computational complexity as a naïve convolution algorithm (O(N2 n2)). 

As the square dependency with N cannot be solved in any of the mentioned 
algorithms, the important variable to pay attention here is n: the moving win-
dow side length. 

Choosing useful n × n kernel dimensions for a specific process is usually made 
as a heuristic trial and error process, and depends on the data properties, espe-
cially spatial resolution and noise signature. The growth of SAR spatial resolu-
tion in the last decades comes with downside of bigger image dimensions. At the 
same proportion, the kernel window size search space is increased. As an exam-
ple, a 3 × 3 MWA applied over an old ENVISAT ASAR sensor data would get 
similar results to applying a 45 × 45 MWA over new Sentinel-1 data, in spatial 
terms, while in this last case the equivalent computation would be 225 times 
slower. 

Therefore, the core of this article is to propose a new methodology using an 
algorithm that replaces the usual 2D MWSD, in order to decrease its computa-
tional complexity, as there are no other works dealing with this problem and a 
researcher needs freedom to study various kernel sizes in a timely manner in 
 

 
Figure 1. Original Sentinel-1 image and two image features. 
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order to find the one that best fits his models. The idea behind it is saving some 
of the calculations done at the first pixel of a row to the next one and so on, after 
an optimized analytical reformulation of the standard deviation calculation is 
performed. Additionally, our algorithms were thought to be used in context of 
CPU parallelism, being intelligently designed to take advantage with a faster 
runtime. 

Following strong open source global trends, and seeking to benefit the maxi-
mum of users, our codes were written in Python, as this language is commonly 
used in the context of machine learning, and is available online in a public Gi-
tHub repository. 

Python is indeed developed to be a high-level, interpreted language and as 
consequence, generally slower than C or Fortran at runtime [12], but this prob-
lem is already addressed by free packages that allow python compilation and 
lower level optimization of code. 

The Numba package [13] is an example. Described as “a high-performance 
Python compiler”, Numba is a Python library meant to compile Python func-
tions (even though it is an interpreted language by default). By doing this, they 
gain C-like velocity, being generally compatible with NumPy—a widely used li-
near algebra package for Python. 

This work was developed as part of a set of digital image processing routines, 
to be an improved tool for automatic classifiers already used in remote sensing 
studies, which aims to make a comparison between the usual performance of the 
2D MWSD algorithm and ours, before and after being compiled with Numba. 

2. Methodology 

First, the methodological process was developed with three test algorithms: 1) a 
“didactic” MWSD, 2) a “better” MWSD and 3) an “optimized” MWSD. These 
algorithms are introduced and discussed below for a 1D matrix and a 1D win-
dow. After the first theoretical assessments stage, the first and last algorithms 
were extended to the second dimension (2D input array and 2D window). They 
were programmed and tested both theoretically and practically, before and after 
being compiled, so that we can compare them in terms of computational effi-
ciency. 

2.1. Didactic Algorithm 

For didactic purposes, the standard deviation of a series of observations is de-
fined in terms of its variance—an average over all squared differences between 
the observations and their average value—as in Equation (1): 
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where σ is the standard deviation of ne elements xi, and x  is their mean value. 
The standard deviation of a dataset serves as a measure of how disperse are its 
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elements. As x  is part of the calculation, this process takes a total of 4ne + 1 
operations. 

The denominator ne is sometimes exchanged with ne − 1, what is called Bes-
sel’s correction [14] [15] and is useful to remove part of standard deviation esti-
mator bias when ne is small. We are not going to use Bessel’s correction in this 
article, as it is not relevant for image segmentation. 

From a generic 1D array of N elements, it’s possible to create another of simi-
lar shape, so that each element i therein is the standard deviation of 3 adjacent 
values in the original array, making a window centered at the ith position. When 
one of the values does not exist in these windows, we make it zero for the sake of 
calculation. This array is the result of a one-dimensional MWSD over the origi-
nal array. 

This process is equivalent to pad the older array with zeros, then slide a win-
dow of size, n = 3, through that array, method already proposed in the literature 
[16]. Every time the window is updated, a standard deviation is calculated, and 
the result stacked in the new array. This process takes then 13N operations, or in 
a more general case, for any window size n, N(4n + 1). 

This method is effective. However, in many cases, it has an extense processing 
time. There are many faster ways to calculate MWSD, and an example is shown 
in next section. 

2.2. Better Algorithm 

In order to develop a more efficient algorithm, simple manipulation of Equation 
(1) can lead to Equation (2): 
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With no more tricks, this formula makes computing the standard deviation of 
an array of n e elements much faster: only 3ne + 3 operations are needed, as one 
only loop must be used. Also, thinking about the problem just exposed in last 
section about 1D MWSD calculation, we would only make N(3n + 3) operations 
to get the same task done. In other words, when the window size, n, gets big, ap-
proximately 1/4 less operations are made. It’s important to observe that efficien-
cy and intelligibility do not go hand in hand: Equation (2) would not be a good 
introduction formula to standard deviation. 

2.3. Optimized Algorithm 

Taking 1D MWSD is a problem that gets simplified if one takes a careful look on 
how variables are used in Equation (2). Note that if summations are not calcu-
lated from scratch at each array element, but instead just updated when the 
window moves, a python pseudo-code like “optimized_mwsd_1D” (in Code 1) 
would be gotten. 
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Code 1. Optimized 1D MWSD. 

 
And here is the advantage: what we had previously gotten with N(3n + 3) op-

erations now costs only 11N + 3n − 7 operations. When the array side (N) is suf-
ficiently big, the task complexity does not depend on the chosen window side, n. 
As this number is usually an odd number greater or equal to 3—as the window 
used is centered at a certain position, from the stated problem, it is right to say 
that our new algorithm always performs faster than our previous one. 

2.4. 2D Extension 

When working with 2D input data arrays of N lines and M columns, it might be 
useful to extend the concept of a moving window standard deviation algorithm, 
in a way that a window represents a 2D array, and it will move through all the 
array points, being once centered at each one of them. In this way, n could now 
be a measure to the side of the window used. 

Making such alterations to the didactic algorithm explained in section 2.1, 
would give us a simple algorithm that needs NM(4n2 + 1) operations to be run. 
It means that the computational time used for making these calculations would 
sensibly depend on the window size used. As N and M are usually big numbers 
in satellite remote sensing applications, this formula might be a problem. 

As the optimized algorithm could make MWSD almost does not depend on n 
when N is sufficiently big, the same logic was tried to be applied at the new 2D 
case. What is essential about this code is that the algorithm behind it would do 
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exactly what our previous done, but only making use of N(M(6n + 5) + 3n2 − 6n 
− 2) + 1: most part of the calculation is done by just updating (in the term 
6NMn). 

These numbers may be easily understood if we assume M 


 N n ≥ 3. In 
such case, the exposed formulas can be approximated to 4N2n2 and 6N2n, re-
spectively. The latest algorithm performs faster than the first, even in the limit 
case, when n = 3. Another great advantage of this 2D algorithm is that, as it is 
basically running the extended 1D algorithm at each row, we can then parallelize 
loops over every column, as they only depend on previous operations therein. 

There are many methods to parallelize Python code, for example: using 
Numba [13], Cython [17], and mpi4py [18]. As Python’s differential is that it 
conquers big results with little typing effort, Numba was chosen. It can fre-
quently get almost perfect results by just changing a couple lines of code. 

While Python is usually slow for calculations because it is an interpreted lan-
guage, Numba is a Python library able to compile its codes, so that it runs in 
C-like velocity. 

Getting started to Numba is a simple task. Compiling code with parallel support 
usually means importing the library and adding a decorator (a statement starting 
with @) one line before a Python function. An example is served in Code 2. 

This decorator is a “just in time” compiler. It means it compiles the code when 
the function is first called. Although parallel argument is set to True, it just 
means that parallel support is enabled at compilation time. To actually make use 
of parallelization in our code we would need to go to the columns’ loop of our 
algorithm, and, instead of writing a regular range, use numba.prange for a pa-
rallel range iterator. 

There is just another thing needed to be done: we previously used a function 
to pad the input array: “np.pad”. This function comes from NumPy library and 
has no compatibility with Numba. A simple function was developed to pad an 
array with zeros in order to finish the compilation process. There is a list of 
NumPy supported features in Numba’s official documentation, and it might be 
useful when debugging compilation. 

3. Results and Discussion 

The algorithms developed for preparing results bellow are publicly available on-
line at github.com/marcosrdac/mwsd. Theoretical efficiency results for 1D and 
2D MWSD problems can be seen in Figure 2. Algorithms’ complexities were 
described in Table 1. Real results can be seen in Figure 3. Each point was calcu-
lated five times, and error bars were plotted using standard deviation (with Bes-
sel’s correction) as dispersion estimator. 
 

 
Code 2. @numba.jit decorator usage. 
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Table 1. Algorithms and their complexities. 

Algorithm 
Algorithm complexity 

1D 2D 

Didactic/Better O(Nn) O(NMn2) 

Optimized O(N + 0.3n) O(NMn) 

 

 
Figure 2. Theoretical performance (in operations) vs. n plot for 1D and 2D algorithms 
(indicated by different line styles) and different values of N (indicated by different line 
colors). 

 

 
Figure 3. Real performance (in time) vs. n plot for 2D algorithms (indicated by different 
line styles) and different values of N (indicated by different line colors). 

 
It is useful to know that an MWSD algorithm made with Numpy’s “std” (the 

standard way a Python user would calculate standard deviation) function be-
haved just like “didactic” algorithm in terms of computational time. 

Our results were plotted in log-log plots, so that the reader can explore how 
the number of operations scales with respect to n, in orders of magnitude. Dif-
ferent line colors mean curves made with different values of array side, N. On 
the other hand, the different line styles distinguish curves by the algorithm used. 
The established conventions for colors were: 
• Red line: N = 100; 
• Green line: N = 200; 
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• Orange line: N = 300; and 
• Blue line: N = 400. 

Also, these were the line style conventions: 
• dotted line: means curve was calculated using didactic MWSD; 
• dashed line: means curve was calculated using better MWSD; 
• and continuous line: means curve was calculated using optimized MWSD. 

The 1D optimized algorithm’s theoretical performance can be seen as the con-
tinuous lines at the first plot in Figure 2, and is visually almost independent 
from n, as expected. For n = 29, it does the same job than usual didactic 1D 
MWSD in an amount of time one order of magnitude bellow (compare conti-
nuous and dotted lines of the same colors). 

The theoretical results get yet more interesting when talking about 2D algo-
rithms (second plot of Figure 2). Our new algorithm is indeed faster than usual 
2D MWSD, while performing the same accuracy. For a 19 pixels side window, 
these algorithms’ performance differs by one order of magnitude in time, and 
almost two of them, when window size gets to 59. Also, it’s important to know 
that, for greater values of N (or bigger array sizes), this difference gets even 
higher. 

Real tests were only made for 2D algorithms, as they are useful for image seg-
mentation. Their results were plotted in Figure 3. The first plot is a pure Py-
thon/NumPy code and could only be calculated for a small range of n’s: 3, 5, 7 
and 9 as they were too time consuming. The time magnitude order is in seconds, 
and this happens because how non-compiled Python loops are highly inefficient. 
Although spent times do scale with n, this variation is not big enough when 
compared to the intrinsic slowness of python in the case of a small window and 
array sides. Our results show that the proposed algorithm (continuous line) 
consumes less computation time than the didactic MWSD even before compila-
tion. 

Some important effects are heavily seen in the bottom plot of Figure 3. The 
fundamental reason for them is that most part of the data stands near to the end 
of the plot, in consequence of the log-log plotting choice. It means that the curve 
trend must be visually estimated from there. Moreover, it’s known from basic 
calculus that polynomial curves are dominated by their term of highest expo-
nent; the other terms’ effect is not important when abscissa get big [19]. In a 
log-log plot, different exponent terms are viewed as different line slopes. Based 
on that, the bottom plot of Figure 3 is remarkably similar to the expected plot in 
Figure 2’s right: the ending slopes of all curves are both visually and numerically 
tending to equality when n increases. It means that both didactic and optimized 
MWSD algorithms have the computational complexity that was previously ex-
pected in theory. 

The difference between the behavior of these two plots is better visible at the 
first three points of the curves (n ≤ 9), and is completely understandable: theo-
retical formulas only account for MWSD, not for the previous process of pad-
ding the input array (that only exists to assert input and output arrays are of the 
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same sizes) and allocating memory for output. This consumes a significant time 
for slow values of n and can be seen as a different, lesser slope at the beginning 
of the second plot of Figure 3. Besides this effect, its resemblance to the second 
plot of Figure 2 is clear and validates this article. We emphasize here the impor-
tance of computational time to the compiled algorithms’; their magnitude is in 
ms. 

This technique is very useful in satellite remote sensing studies, as it can esti-
mate textural characteristics of an image, being convenient to robust methods of 
segmentation, such as neural networks. As an example, oil slicks are easily seen 
in RADAR images. In number, “Interferometric Wide Single Look Complex” 
images are arrays of enormous dimensions, such as 13,169 × 17,241 px2. Apply-
ing this process to an 8192 × 8192 px2 subset using a didactic algorithm and n = 
5 took 25 minutes to complete the process using four cores of an Intel i9 proces-
sor. After Numba compilation, this processing time went down to 11 seconds. 
Using our method we only needed 0.7 seconds to perform the same job. There-
fore, if five images are needed to be processed by an MWSD algorithm, our me-
thod would run it in 45 seconds instead of the 12 minutes of the didactic algo-
rithm, or 28 hours with the same algorithm without the Numba compilation. 

4. Conclusions 

In this paper, we demonstrated that moving window standard deviation func-
tions can have their efficiency improved with two simple steps: 1) useful refor-
mulation of analytic formula at the cost of losing certain amount of intuitive in-
telligibility and 2) reusing previous calculations in future iterations. 

Our “optimized” (both 1D and 2D) code ran significantly faster than a naïve, 
completely “didactic” one, or even another that would be made using default 
NumPy functions. Pure Python is indeed very slow when evaluating loops and 
numerical results, as could be seen at our results, but this was solved by using 
Numba, with compilation and parallelization of code. 

Image segmentation is useful in many areas but is of core knowledge when it 
comes to environmental control. Defining areas of significant atmospheric pol-
lution, urban occupation levels, geologic faults, and ocean phenomena are key 
examples of its utilities. The proposed improvement is especially useful when 
working with satellite data, where images compose arrays of large dimensions, 
and even auxiliary processes can frequently take considerable amount of time. 

Once our algorithm has a linear time dependency with the window side used, 
scientists can now feel free to study a higher variety spatial window sizes in order 
to produce their best models. 

Future developments and implementations of this piece of code will be added 
to our investigations to study machine learning pixelwise segmentation of oil 
spills in satellite data. 

Although MWA and MWSD were the only local window functions studied 
here, many other textural descriptors such as fractal dimension and entropy 
would be useful in window functions if more efficiently implemented. New 
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works can also rethink this article achievement in a GPU parallelism perspective, 
as it grows to become a standard technique in high performance computing. 
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