
Computational Water, Energy, and Environmental Engineering, 2020, 9, 75-85
https://www.scirp.org/journal/cweee

ISSN Online: 2168-1570
ISSN Print: 2168-1562

DOI: 10.4236/cweee.2020.93006 Jul. 30, 2020 75 Computational Water, Energy, and Environmental Engineering

Development and Parallelization of an
Improved 2D Moving Window Standard
Deviation Python Routine for Image
Segmentation Purposes

Marcos R. de A. Conceição1, Luis F. F. de Mendonça1, Carlos A. D. Lentini2,3

1Oceanography Department, Geoscience Institute of the Federal University of Bahia (UFBA), Salvador, Brazil
2Earth and Environmental Physics Department, Physics Institute of the Federal University of Bahia (UFBA), Salvador, Brazil
3Tropical Oceanography Group (GOAT), Salvador, Brazil

Abstract
Two additional features are particularly useful in pixelwise satellite data seg-
mentation using neural networks: one results from local window averaging
around each pixel (MWA) and another uses a standard deviation estimator
(MWSD) instead of the average. While the former’s complexity has already
been solved to a satisfying minimum, the latter did not. This article proposes
a new algorithm that can substitute a naïve MWSD, by making the complexi-
ty of the computational process fall from O(N2n2) to O(N2n), where N is a
square input array side, and n is the moving window’s side length. The Num-
ba python compiler was used to make python a competitive high-performance
computing language in our optimizations. Our results show efficiency bench-
marks.

Keywords
Digital Image Processing, Image Segmentation, Standard Deviation, Python,
Machine Learning

1. Introduction

Image segmentation consists of partitioning image pixels into a set of regional
categories [1] [2]. This process can be significantly improved by using two addi-
tional images (image features) based on two fundamental statistical concepts, if
they are also input to neural networks [2], a technique that creates a fertile field
for segmentation solutions [3] [4] [5] [6]. These image features can be seen in

How to cite this paper: de A. Conceição,
M.R., de Mendonça, L.F.F. and Lentini,
C.A.D. (2020) Development and Paralleli-
zation of an Improved 2D Moving Window
Standard Deviation Python Routine for Image
Segmentation Purposes. Computational Wa-
ter, Energy, and Environmental Engineer-
ing, 9, 75-85.
https://doi.org/10.4236/cweee.2020.93006

Received: June 21, 2020
Accepted: July 27, 2020
Published: July 30, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/cweee
https://doi.org/10.4236/cweee.2020.93006
https://www.scirp.org/
https://doi.org/10.4236/cweee.2020.93006
http://creativecommons.org/licenses/by/4.0/

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 76 Computational Water, Energy, and Environmental Engineering

Figure 1 and are described as follows:
1) n × n moving window average (MWA): classical MWA, where the value of

the central pixel in the array is replaced by its n × n window average; and
1) n × n moving window standard deviation (MWSD): similar to the MWA,

but the value of the central pixel is replaced by the standard deviation of the
moving array.

Local window functions are not restricted to image segmentation: they are
routinely used for suppressing noise in filter operations [7] [8]. That aside, their
usage in segmentation is well established in the literature [2] [9] [10].

The first image attribute (MWA) is calculated by convolving the original im-
age with a specific kernel, which is a matrix filled by 1/n2. Furthermore, these
convolutions can be calculated in a faster way via products in a frequency do-
main. Likewise, this process can get even faster by integrating a method called
“overlap-and-add”. In this case, if the inputs are N × N arrays, the computation-
al time is given by O(N2 log2n) [11], which is much lesser than a naïve convolu-
tion algorithm’s: O(N2 n2).

Any process that can be written in convolutional terms (as MWA) can be im-
plemented in such a way to get these benefits. However, the MWSD has a re-
striction, since the standard deviation is not a linear operation itself, and has the
same computational complexity as a naïve convolution algorithm (O(N2 n2)).

As the square dependency with N cannot be solved in any of the mentioned
algorithms, the important variable to pay attention here is n: the moving win-
dow side length.

Choosing useful n × n kernel dimensions for a specific process is usually made
as a heuristic trial and error process, and depends on the data properties, espe-
cially spatial resolution and noise signature. The growth of SAR spatial resolu-
tion in the last decades comes with downside of bigger image dimensions. At the
same proportion, the kernel window size search space is increased. As an exam-
ple, a 3 × 3 MWA applied over an old ENVISAT ASAR sensor data would get
similar results to applying a 45 × 45 MWA over new Sentinel-1 data, in spatial
terms, while in this last case the equivalent computation would be 225 times
slower.

Therefore, the core of this article is to propose a new methodology using an
algorithm that replaces the usual 2D MWSD, in order to decrease its computa-
tional complexity, as there are no other works dealing with this problem and a
researcher needs freedom to study various kernel sizes in a timely manner in

Figure 1. Original Sentinel-1 image and two image features.

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 77 Computational Water, Energy, and Environmental Engineering

order to find the one that best fits his models. The idea behind it is saving some
of the calculations done at the first pixel of a row to the next one and so on, after
an optimized analytical reformulation of the standard deviation calculation is
performed. Additionally, our algorithms were thought to be used in context of
CPU parallelism, being intelligently designed to take advantage with a faster
runtime.

Following strong open source global trends, and seeking to benefit the maxi-
mum of users, our codes were written in Python, as this language is commonly
used in the context of machine learning, and is available online in a public Gi-
tHub repository.

Python is indeed developed to be a high-level, interpreted language and as
consequence, generally slower than C or Fortran at runtime [12], but this prob-
lem is already addressed by free packages that allow python compilation and
lower level optimization of code.

The Numba package [13] is an example. Described as “a high-performance
Python compiler”, Numba is a Python library meant to compile Python func-
tions (even though it is an interpreted language by default). By doing this, they
gain C-like velocity, being generally compatible with NumPy—a widely used li-
near algebra package for Python.

This work was developed as part of a set of digital image processing routines,
to be an improved tool for automatic classifiers already used in remote sensing
studies, which aims to make a comparison between the usual performance of the
2D MWSD algorithm and ours, before and after being compiled with Numba.

2. Methodology

First, the methodological process was developed with three test algorithms: 1) a
“didactic” MWSD, 2) a “better” MWSD and 3) an “optimized” MWSD. These
algorithms are introduced and discussed below for a 1D matrix and a 1D win-
dow. After the first theoretical assessments stage, the first and last algorithms
were extended to the second dimension (2D input array and 2D window). They
were programmed and tested both theoretically and practically, before and after
being compiled, so that we can compare them in terms of computational effi-
ciency.

2.1. Didactic Algorithm

For didactic purposes, the standard deviation of a series of observations is de-
fined in terms of its variance—an average over all squared differences between
the observations and their average value—as in Equation (1):

()
0

x
en

i
i

e

x

n
σ =

−
=

∑
, (1)

where σ is the standard deviation of ne elements xi, and x is their mean value.
The standard deviation of a dataset serves as a measure of how disperse are its

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 78 Computational Water, Energy, and Environmental Engineering

elements. As x is part of the calculation, this process takes a total of 4ne + 1
operations.

The denominator ne is sometimes exchanged with ne − 1, what is called Bes-
sel’s correction [14] [15] and is useful to remove part of standard deviation esti-
mator bias when ne is small. We are not going to use Bessel’s correction in this
article, as it is not relevant for image segmentation.

From a generic 1D array of N elements, it’s possible to create another of simi-
lar shape, so that each element i therein is the standard deviation of 3 adjacent
values in the original array, making a window centered at the ith position. When
one of the values does not exist in these windows, we make it zero for the sake of
calculation. This array is the result of a one-dimensional MWSD over the origi-
nal array.

This process is equivalent to pad the older array with zeros, then slide a win-
dow of size, n = 3, through that array, method already proposed in the literature
[16]. Every time the window is updated, a standard deviation is calculated, and
the result stacked in the new array. This process takes then 13N operations, or in
a more general case, for any window size n, N(4n + 1).

This method is effective. However, in many cases, it has an extense processing
time. There are many faster ways to calculate MWSD, and an example is shown
in next section.

2.2. Better Algorithm

In order to develop a more efficient algorithm, simple manipulation of Equation
(1) can lead to Equation (2):

2

0 0

2
e en n

i i
i i

e e

x x

n n
σ = =

 
 
 = −
 
  

∑ ∑
 (2)

With no more tricks, this formula makes computing the standard deviation of
an array of n e elements much faster: only 3ne + 3 operations are needed, as one
only loop must be used. Also, thinking about the problem just exposed in last
section about 1D MWSD calculation, we would only make N(3n + 3) operations
to get the same task done. In other words, when the window size, n, gets big, ap-
proximately 1/4 less operations are made. It’s important to observe that efficien-
cy and intelligibility do not go hand in hand: Equation (2) would not be a good
introduction formula to standard deviation.

2.3. Optimized Algorithm

Taking 1D MWSD is a problem that gets simplified if one takes a careful look on
how variables are used in Equation (2). Note that if summations are not calcu-
lated from scratch at each array element, but instead just updated when the
window moves, a python pseudo-code like “optimized_mwsd_1D” (in Code 1)
would be gotten.

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 79 Computational Water, Energy, and Environmental Engineering

Code 1. Optimized 1D MWSD.

And here is the advantage: what we had previously gotten with N(3n + 3) op-

erations now costs only 11N + 3n − 7 operations. When the array side (N) is suf-
ficiently big, the task complexity does not depend on the chosen window side, n.
As this number is usually an odd number greater or equal to 3—as the window
used is centered at a certain position, from the stated problem, it is right to say
that our new algorithm always performs faster than our previous one.

2.4. 2D Extension

When working with 2D input data arrays of N lines and M columns, it might be
useful to extend the concept of a moving window standard deviation algorithm,
in a way that a window represents a 2D array, and it will move through all the
array points, being once centered at each one of them. In this way, n could now
be a measure to the side of the window used.

Making such alterations to the didactic algorithm explained in section 2.1,
would give us a simple algorithm that needs NM(4n2 + 1) operations to be run.
It means that the computational time used for making these calculations would
sensibly depend on the window size used. As N and M are usually big numbers
in satellite remote sensing applications, this formula might be a problem.

As the optimized algorithm could make MWSD almost does not depend on n
when N is sufficiently big, the same logic was tried to be applied at the new 2D
case. What is essential about this code is that the algorithm behind it would do

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 80 Computational Water, Energy, and Environmental Engineering

exactly what our previous done, but only making use of N(M(6n + 5) + 3n2 − 6n
− 2) + 1: most part of the calculation is done by just updating (in the term
6NMn).

These numbers may be easily understood if we assume M


 N n ≥ 3. In
such case, the exposed formulas can be approximated to 4N2n2 and 6N2n, re-
spectively. The latest algorithm performs faster than the first, even in the limit
case, when n = 3. Another great advantage of this 2D algorithm is that, as it is
basically running the extended 1D algorithm at each row, we can then parallelize
loops over every column, as they only depend on previous operations therein.

There are many methods to parallelize Python code, for example: using
Numba [13], Cython [17], and mpi4py [18]. As Python’s differential is that it
conquers big results with little typing effort, Numba was chosen. It can fre-
quently get almost perfect results by just changing a couple lines of code.

While Python is usually slow for calculations because it is an interpreted lan-
guage, Numba is a Python library able to compile its codes, so that it runs in
C-like velocity.

Getting started to Numba is a simple task. Compiling code with parallel support
usually means importing the library and adding a decorator (a statement starting
with @) one line before a Python function. An example is served in Code 2.

This decorator is a “just in time” compiler. It means it compiles the code when
the function is first called. Although parallel argument is set to True, it just
means that parallel support is enabled at compilation time. To actually make use
of parallelization in our code we would need to go to the columns’ loop of our
algorithm, and, instead of writing a regular range, use numba.prange for a pa-
rallel range iterator.

There is just another thing needed to be done: we previously used a function
to pad the input array: “np.pad”. This function comes from NumPy library and
has no compatibility with Numba. A simple function was developed to pad an
array with zeros in order to finish the compilation process. There is a list of
NumPy supported features in Numba’s official documentation, and it might be
useful when debugging compilation.

3. Results and Discussion

The algorithms developed for preparing results bellow are publicly available on-
line at github.com/marcosrdac/mwsd. Theoretical efficiency results for 1D and
2D MWSD problems can be seen in Figure 2. Algorithms’ complexities were
described in Table 1. Real results can be seen in Figure 3. Each point was calcu-
lated five times, and error bars were plotted using standard deviation (with Bes-
sel’s correction) as dispersion estimator.

Code 2. @numba.jit decorator usage.

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 81 Computational Water, Energy, and Environmental Engineering

Table 1. Algorithms and their complexities.

Algorithm
Algorithm complexity

1D 2D

Didactic/Better O(Nn) O(NMn2)

Optimized O(N + 0.3n) O(NMn)

Figure 2. Theoretical performance (in operations) vs. n plot for 1D and 2D algorithms
(indicated by different line styles) and different values of N (indicated by different line
colors).

Figure 3. Real performance (in time) vs. n plot for 2D algorithms (indicated by different
line styles) and different values of N (indicated by different line colors).

It is useful to know that an MWSD algorithm made with Numpy’s “std” (the

standard way a Python user would calculate standard deviation) function be-
haved just like “didactic” algorithm in terms of computational time.

Our results were plotted in log-log plots, so that the reader can explore how
the number of operations scales with respect to n, in orders of magnitude. Dif-
ferent line colors mean curves made with different values of array side, N. On
the other hand, the different line styles distinguish curves by the algorithm used.
The established conventions for colors were:
• Red line: N = 100;
• Green line: N = 200;

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 82 Computational Water, Energy, and Environmental Engineering

• Orange line: N = 300; and
• Blue line: N = 400.

Also, these were the line style conventions:
• dotted line: means curve was calculated using didactic MWSD;
• dashed line: means curve was calculated using better MWSD;
• and continuous line: means curve was calculated using optimized MWSD.

The 1D optimized algorithm’s theoretical performance can be seen as the con-
tinuous lines at the first plot in Figure 2, and is visually almost independent
from n, as expected. For n = 29, it does the same job than usual didactic 1D
MWSD in an amount of time one order of magnitude bellow (compare conti-
nuous and dotted lines of the same colors).

The theoretical results get yet more interesting when talking about 2D algo-
rithms (second plot of Figure 2). Our new algorithm is indeed faster than usual
2D MWSD, while performing the same accuracy. For a 19 pixels side window,
these algorithms’ performance differs by one order of magnitude in time, and
almost two of them, when window size gets to 59. Also, it’s important to know
that, for greater values of N (or bigger array sizes), this difference gets even
higher.

Real tests were only made for 2D algorithms, as they are useful for image seg-
mentation. Their results were plotted in Figure 3. The first plot is a pure Py-
thon/NumPy code and could only be calculated for a small range of n’s: 3, 5, 7
and 9 as they were too time consuming. The time magnitude order is in seconds,
and this happens because how non-compiled Python loops are highly inefficient.
Although spent times do scale with n, this variation is not big enough when
compared to the intrinsic slowness of python in the case of a small window and
array sides. Our results show that the proposed algorithm (continuous line)
consumes less computation time than the didactic MWSD even before compila-
tion.

Some important effects are heavily seen in the bottom plot of Figure 3. The
fundamental reason for them is that most part of the data stands near to the end
of the plot, in consequence of the log-log plotting choice. It means that the curve
trend must be visually estimated from there. Moreover, it’s known from basic
calculus that polynomial curves are dominated by their term of highest expo-
nent; the other terms’ effect is not important when abscissa get big [19]. In a
log-log plot, different exponent terms are viewed as different line slopes. Based
on that, the bottom plot of Figure 3 is remarkably similar to the expected plot in
Figure 2’s right: the ending slopes of all curves are both visually and numerically
tending to equality when n increases. It means that both didactic and optimized
MWSD algorithms have the computational complexity that was previously ex-
pected in theory.

The difference between the behavior of these two plots is better visible at the
first three points of the curves (n ≤ 9), and is completely understandable: theo-
retical formulas only account for MWSD, not for the previous process of pad-
ding the input array (that only exists to assert input and output arrays are of the

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 83 Computational Water, Energy, and Environmental Engineering

same sizes) and allocating memory for output. This consumes a significant time
for slow values of n and can be seen as a different, lesser slope at the beginning
of the second plot of Figure 3. Besides this effect, its resemblance to the second
plot of Figure 2 is clear and validates this article. We emphasize here the impor-
tance of computational time to the compiled algorithms’; their magnitude is in
ms.

This technique is very useful in satellite remote sensing studies, as it can esti-
mate textural characteristics of an image, being convenient to robust methods of
segmentation, such as neural networks. As an example, oil slicks are easily seen
in RADAR images. In number, “Interferometric Wide Single Look Complex”
images are arrays of enormous dimensions, such as 13,169 × 17,241 px2. Apply-
ing this process to an 8192 × 8192 px2 subset using a didactic algorithm and n =
5 took 25 minutes to complete the process using four cores of an Intel i9 proces-
sor. After Numba compilation, this processing time went down to 11 seconds.
Using our method we only needed 0.7 seconds to perform the same job. There-
fore, if five images are needed to be processed by an MWSD algorithm, our me-
thod would run it in 45 seconds instead of the 12 minutes of the didactic algo-
rithm, or 28 hours with the same algorithm without the Numba compilation.

4. Conclusions

In this paper, we demonstrated that moving window standard deviation func-
tions can have their efficiency improved with two simple steps: 1) useful refor-
mulation of analytic formula at the cost of losing certain amount of intuitive in-
telligibility and 2) reusing previous calculations in future iterations.

Our “optimized” (both 1D and 2D) code ran significantly faster than a naïve,
completely “didactic” one, or even another that would be made using default
NumPy functions. Pure Python is indeed very slow when evaluating loops and
numerical results, as could be seen at our results, but this was solved by using
Numba, with compilation and parallelization of code.

Image segmentation is useful in many areas but is of core knowledge when it
comes to environmental control. Defining areas of significant atmospheric pol-
lution, urban occupation levels, geologic faults, and ocean phenomena are key
examples of its utilities. The proposed improvement is especially useful when
working with satellite data, where images compose arrays of large dimensions,
and even auxiliary processes can frequently take considerable amount of time.

Once our algorithm has a linear time dependency with the window side used,
scientists can now feel free to study a higher variety spatial window sizes in order
to produce their best models.

Future developments and implementations of this piece of code will be added
to our investigations to study machine learning pixelwise segmentation of oil
spills in satellite data.

Although MWA and MWSD were the only local window functions studied
here, many other textural descriptors such as fractal dimension and entropy
would be useful in window functions if more efficiently implemented. New

https://doi.org/10.4236/cweee.2020.93006

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 84 Computational Water, Energy, and Environmental Engineering

works can also rethink this article achievement in a GPU parallelism perspective,
as it grows to become a standard technique in high performance computing.

Acknowledgements

We are grateful to the Satellite Oceanography Laboratory (LOS) of the Geo-sciences
Institute (IGEO) of the Federal University of Bahia (UFBA) for providing the fa-
cilities for the conduction of the experiments and data analysis. LOS is partially
financially supported by the National Council for Scientific and Technological
Development (CNPq—Research Grant #424495/2018-0). The first author also
would like to thank the Undergraduate Research Mentorship Program at UFBA
for his scholarship under the same research grant.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Shapiro, L.G. and Stockman, G.C. (2001) Computer Vision. Prentice Hall, Upper

Saddle River.

[2] Singha, S., Bellerby, T.J. and Trieschmann, O. (2013) Satellite Oil Spill Detection
Using Artificial Neural Networks. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 6, 2355-2363.
https://doi.org/10.1109/JSTARS.2013.2251864

[3] Garcia-Pineda, O., MacDonald, I.R., Li, X., Jackson, C.R. and Pichel, W.G. (2013)
Oil Spill Mapping and Measurement in the Gulf of Mexico with Textural Classifier
Neural Network Algorithm (TCNNA). IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 6, 2517-2525.
https://doi.org/10.1109/JSTARS.2013.2244061

[4] Awad, M. (2010) An Unsupervised Artificial Neural Network Method for Satellite
Image Segmentation. The International Arab Journal of Information Technology, 7,
199-205.

[5] Liu, Y., Zhang, M.H., Xu, P. and Guo, Z.W. (2017) SAR Ship Detection Using Sea-Land
Segmentation-Based Convolutional Neural Network. 2017 IEEE International
Workshop on Remote Sensing with Intelligent Processing, Shanghai, 18-21 May
2017, 1-4. https://doi.org/10.1109/RSIP.2017.7958806

[6] Wang, S.-H., et al. (2018) Polarimetric Synthetic Aperture Radar Image Segmenta-
tion by Convolutional Neural Network Using Graphical Processing Units. Journal
of Real-Time Image Processing, 15, 631-642.
https://doi.org/10.1007/s11554-017-0717-0

[7] Prabhu, K.M. (2013) Window Functions and Their Applications in Signal Processing.
CRC Press.

[8] Mastriani, M. and Giraldez, A.E. (2016) Enhanced Directional Smoothing Algo-
rithm for Edge-Preserving Smoothing of Synthetic-Aperture Radar Images.

[9] Maussang, F., Chanussot, J., Hétet, A. and Amate, M. (2007) Mean-Standard Devia-
tion Representation of Sonar Images for Echo Detection: Application to SAS Im-
ages. IEEE Journal of Oceanic Engineering, 32, 956-970.

https://doi.org/10.4236/cweee.2020.93006
https://doi.org/10.1109/JSTARS.2013.2251864
https://doi.org/10.1109/JSTARS.2013.2244061
https://doi.org/10.1109/RSIP.2017.7958806
https://doi.org/10.1007/s11554-017-0717-0

M. R. de A. Conceição et al.

DOI: 10.4236/cweee.2020.93006 85 Computational Water, Energy, and Environmental Engineering

https://doi.org/10.1109/JOE.2007.907936

[10] Li, H. and Cao, J. (2010) Detection and Segmentation of Moving Objects Based on
Support Vector Machine. 2010 IEEE Third International Symposium on Informa-
tion Processing, Qingdao, 15-17 October 2010, 193-197.
https://doi.org/10.1109/ISIP.2010.35

[11] Highlander, T. and Rodriguez, A. (2016) Very Efficient Training of Convolutional
Neural Networks Using Fast Fourier Transform and Overlap-and-Add. In: Xie,
X.H., Jones, M.W. and Tam, G.K.L., Eds., Proceedings of the British Machine Vi-
sion Conference (BMVC), BMVA Press, Guildford, 160.1-160.9.
https://doi.org/10.5244/C.29.160

[12] Lubin, M. and Dunning, I. (2015) Computing in Operations Research Using Julia.
INFORMS Journal on Computing, 27, 238-248.
https://doi.org/10.1287/ijoc.2014.0623

[13] Lam, S.K., Pitrou, A. and Seibert, S. (2015) Numba: A LLVM-Based Python JIT
Compiler. Proceedings of the Second Workshop on the LLVM Compiler Infra-
structure in HPC, November 2015, 1-6. https://doi.org/10.1145/2833157.2833162

[14] So, S. (2008) Why Is the Sample Variance a Biased Estimator? Griffith University,
Brisbane, Tech. Rep. 9.

[15] Ma, Y.Z. (2019) Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir
Characterization and Modeling. Springer International Publishing, Berlin.
https://doi.org/10.1007/978-3-030-17860-4

[16] Murray, M.R. and Baker, D.E. (1991) MWINDOW: An Interactive FORTRAN-77
Program for Calculating Moving-Window Statistics. Computers & Geosciences, 17,
423-430. https://doi.org/10.1016/0098-3004(91)90049-J

[17] Behnel, S., et al. (2011) Cython: The Best of Both Worlds. Computing in Science &
Engineering, IEEE Computer Society, 13, 31-39.
https://doi.org/10.1109/MCSE.2010.118

[18] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S. and Smith, K. (2011)
Cython: The Best of Both Worlds. Computing in Science & Engineering, 13, 31-39.
https://doi.org/10.1109/MCSE.2010.118

[19] Guidorizzi, H.L. (2012) Um curso de cálculo, Vol. 1, 5ª edição. Grupo Gen-LTC.

https://doi.org/10.4236/cweee.2020.93006
https://doi.org/10.1109/JOE.2007.907936
https://doi.org/10.1109/ISIP.2010.35
https://doi.org/10.5244/C.29.160
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1007/978-3-030-17860-4
https://doi.org/10.1016/0098-3004(91)90049-J
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118

	Development and Parallelization of an Improved 2D Moving Window Standard Deviation Python Routine for Image Segmentation Purposes
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	2.1. Didactic Algorithm
	2.2. Better Algorithm
	2.3. Optimized Algorithm
	2.4. 2D Extension

	3. Results and Discussion
	4. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

