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Abstract 
In this current paper, the exposure time effects on four endocrine disruptors 
and teleost fishes were evaluated using the reduced life expectancy (RLE) 
model based on the effect concentration (EC50) of available literature pub-
lished. The result on the regression analysis over different exposure times has 
demonstrated that the EC50 of hepatic biomarkers falls with increasing expo-
sure times in a predictable manner. The slopes of the regression equations re-
flect the strength of the toxic effects on the various teleost fish. The EC50 re-
duction over time can be interpreted based on the bioconcentration process, 
which can be used to understand transfer routes of the compounds from wa-
ter to fish body. RLE model also provides useful information in assessing 
the toxic effects on fish life expectancy as a result of the occurrence of com-
pounds. 
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1. Introduction 

The endocrine disruptors are chemicals that may interfere with the body’s en-
docrine system and produce genotoxicity, reproductive toxicity, carcinogenic 
and metabolic disorders in both humans and wildlife [1] [2] [3] [4]. The chemi-
cals that are known endocrine disruptors include 17α-ethynylestradiol (EE2), bis-
phenol A (BPA) and nonylphenol (NP). Endocrine disruptors can be interfere or 
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block the way natural hormones (17β-estradiol, E2) binding to their receptors, or 
altering metabolism in the liver and vtg mRNA expression [4] [5]. Due to the 
low water solubilities and high octanol-water partition coefficients, endocrine 
disruptors are relatively stable in the environment [6] [7]. Therefore, it is im-
portant to study the estrogen effects of endocrine disruptors on organisms and 
to evaluate the potential risks of endocrine disruptors to the environment. 

The teleost fishes also has about high genetic homology to humans, which are 
a popular model organism for studying molecular toxicology in vitro and in vivo 
of the endocrine disrupters [8] [9]. The vtg genes or VTG protein can be used as 
hepatic biomarkers to appraise the effect of endocrine disrupters [10] [11]. Many 
toxicological studies usually focus on concentration-response relationship based 
on biomarker in risk assessments. Relatively fewer studies exposure time has 
been studied as a quantifiable variable of toxic effects [12]. Reduced life expec-
tancy (RLE) model which is based on the influence of exposure time has been 
developed to study time-response relationship [13]. Therefore, it is of significant 
for assessing the exposure time effect to hepatic biomarkers of teleost fishes due 
to the endocrine disrupters using the RLE model. 

In previous study with zebrafish [5] was evaluated the relationship between 
exposure time and the EC50 of hepatic biomarkers based on the analogy of RLE 
model. It was noted that the relationship between natural logarithm of exposure 
time (lnET50) and EC50 for zebrafish was linear. The RLE model allows the nor-
mal life expectancy (NLT) to be calculated from the toxicity data [12]. In pre-
vious study, the reported NLT and calculated NLT obtained were in general 
agreement [5]. The published literature has mainly focuses on the application of 
RLE model for the exposure time effect of a certain fish, but there are few studies 
on whether the relationship between EC50 and exposure time of different types of 
fishes can be described using the RLE model. 

The objectives of present study were to explore the RLE model for teleost fish 
based on the toxicological data of endocrine disruptors available in the literature 
published. The characteristics obtained from analogy of the RLE model would be 
used to analyze the relationship of exposure time with EC50 of hepatic biomark-
ers and for estimation of effects and routes of the EC50 reduction on fish life ex-
pectancy. The research results are of significance for the risk assessment of dif-
ferent types organisms as a result of endocrine disruptors in the environment. 

2. Methodology  
2.1. Organisms and Compounds Selected for Evaluations 

Teleost fish were selected as organisms for this study since lots of toxic effects 
data related to this fish are available. Teleost fish are key components of both 
marine and freshwater food chains and serve as one of the important source of 
food for human [14] [15]. Thus teleost fish have a key role to play in the trophic 
structure of aquatic ecosystems, vital for energy transfer between the trophic le-
vels [16]. It would be significant to evaluate the effects of exposure time on such 

https://doi.org/10.4236/jep.2020.117032


M. T. Sun et al. 
 

 

DOI: 10.4236/jep.2020.117032 542 Journal of Environmental Protection 
 

a key component of aquatic systems. Zebrafish, fathead minnow, brown trout, 
and rainbow trout are the organisms selected for study (Table 1). Toxicants 
having similar toxic mechanism are selected for this study and they included 
known endocrine disruptors (EE2, BPA and NP) and natural hormones (E2). 
Among these toxicants enter the environment through human activities [2] [17]. 

2.2. Sources and Collection of Data 

Toxic effects data related to teleost fish with these particular endocrine disrup-
tors were obtained from the literature published (Table 1). These data sets in-
clude EC50 for hepatic biomarkers (vtg genes or VTG protein) of teleost fish at 
different exposure times. The liver is an organ mainly characterized by metabolic 
function in the teleost fish [18] [19], so it is of significance to select hepatic bio-
markers as research targets. The data obtained from the literature are in various 
units for concentration such as ng/L-μg/L. For consistency all units were con-
verted into g/L. Similarly exposure time was also expressed in various units (hours 
and days) of time and all were converted into days (d). The NLT data of each 
organism was also obtained from literature published. 

2.3. Reduction Life Expectancy (RLE) Model 

The linear RLE model [20] was developed with the use of the concept of reduc-
tion in life expectancy and the model equation is given below: 
 
Table 1. Reported values based on the EC50 values of VTG or vtg gene expressions for 
endocrine disrupters with different types of teleost fishes. 

Compounds Fish Observed EC50 Exposure time (day) Reference 

E2 (ng/L) 

zebrafish 41.2 8 [30] 

brown trout 
15.1 12 [31] 

15 14 [32] 

fathead minnow 25 14 [33] 

EE2 (ng/L) 

zebrafish 

60.7 5 [34] 

30.46 5 [35] 

2.51 8 [30] 

brown trout 5.2 12 [31] 

fathead minnow 0.9 14 [33] 

BPA (μg/L) 

zebrafish 

248.11 6 

[5] 193.88 9 

183.26 12 

fathead minnow 158 14 [33] 

zebrafish 166.29 15 [5] 

NP (μg/L) 

rainbow trout 14.14 8 [36] 

brown trout 6.9 12 [31] 

fathead minnow 7.02 14 [33] 
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50 50LC ln LTa b= − +                          (1) 

Equation (1) is where LC50 is the lethal concentration, LT50 is the exposure 
time, NLT50 is the normal life expectancy of the organism, d is a constant, a is 
1/d and b is lnNLT50/d. 

Consistent with previous studies, LC50 and EC50 are frequently used in various 
tissues as toxicity endpoints, which is related to nominal concentration and 
logKow (octanol partition coefficient) [21]. Consequently, the relationship could 
be extended from the LC50 to the EC50 in the RLE model. Based on this extension 
a RLE model [5] for estrogenic effect was proposed and may be described by the 
equation given below: 

50 50EC ln ETa b= − +                        (2) 

Equation (2) is where EC50 is the effective concentration, ET50 is the exposure 
time, NLT50 is the normal life expectancy of the organism, and a and b are con-
stants as prefiously defined. 

Equation (3) is when EC50 is zero the organism will have a normal life expec-
tancy and it is related to the model constants as follows:  

50ln NLT b a=                          (3) 

2.4. Processing of Data 

The data sets for each teleost fish were used to evaluate the relationship between 
EC50 and lnET50 with the RLE model expressed in Equation (2). Thus EC50 was 
plotted against lnET50 and linear regression analysis was used to obtain the re-
gression equation and the correlation coefficient (R2) using Origin software 
(Microcal Software Inc., Northampton, Massachusetts, USA). The values of the 
slope (a) and intercept (b) were obtained from the regression equation (Table 
2). These values were then used to obtain the calculated NLT of each organism 
by the use of Equation (3) (Table 3).  

3. Results and Discussions 
3.1. Relationship of Exposure Time with Toxic Effects Based on  

the EC50 Values 

The plots of lnET50 against EC50 based on Equation (2) are shown in Figure 1,  
 
Table 2. Characteristics of the regression equation relating EC50 to lnET50 for the endo-
crine disrupters. 

Compounds Slop (a)1 Intercept (b)2 Regression coefficient (R2) 

E2 −3.91E−08 1.20E−07 0.5530 

EE2 −4.43E−08 1.12E−07 0.5735 

BPA −9.18E−05 4.07E−04 0.9264 

NP −1.37E−05 4.22E−05 0.8425 

The slope (a) and intercept (b) were obtained from the regression equations. 1For EC50 = −alnET50 + b. 2For 
lnNLT50 = b/a. 
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Table 3. Comparative analysis of calculated normal life expectancy and reported normal 
life expectancy. 

Fish Compounds Calculated NLT (d)1 Reported NLT (d) Slop (a) 
Regression 

coefficient (R2) 

teleost fish 

E2 22 Zebrafish 930 - 1350 
[37] [38] [39] 

Fathead minnow 
540 - 1095 [40] 

Brown trout 
1000 - 1400 [41] 
Rainbow Trout 
730 - 1095 [42] 

176.92 0.9202 

EE2 13 177.67 0.9180 

BPA 84 171.75 0.9349 

NP 22 176.92 0.9202 

1For lnNLT50 = b/a. 

 

 
Figure 1. Plots of EC50 versus lnET50 for teleost fish with linear regression lines for E2 and 
EE2 data sets. Normal life expectancy (NLT) is indicated, where black dots on x-axis 
represents reported NLT range of different types of teleost fishes. The orange and green 
lines are displayed as regression lines for E2 and EE2. The horizontal and vertical dash 
lines indicate specific EC50 values and corresponding ET50 values. 

 
Figure 2. These plots utilize data from Table 2 on teleost fish for EC50 due to 
short-term exposure to endocrine disruptors. Plots for the E2 and EE2 are shown 
in Figure 1 and the corresponding plots for BPA and NP are shown in Figure 2. 
The characteristics of the relationships established using the regression equation 
can be used to compare the toxic effects of the E2, EE2, BPA and NP to teleost 
fish based on EC50 of hepatic biomarkers (Table 2). Table 2 indicates that 
slopes of E2, EE2, BPA and NP between −9.18E−05 and −3.91E−08 and R2 value 
between 0.5530 and 0.9264. The slopes of the regression equations reflect the 
strength of the toxic effects on the various teleost fish. Since the range of slopes 
obtained for the E2 and EE2 is from −4.43E−08 to −3.91E−08 while for the BPA  
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Figure 2. Plots of EC50 versus lnET50 for teleost fish with linear regression lines for BPA 
and NP data sets. Normal life expectancy (NLT) is indicated, where black dots on x-axis 
represents reported NLT range of different types of teleost fishes. The magenta and blue 
lines are displayed as regression lines for BPA and NP. The horizontal and vertical dash 
lines indicate specific EC50 values and corresponding ET50 values. 
 
and NP is from −9.18E−05 to −1.37E−05. The difference between the slopes is 
larger. Different toxic mechanisms involved with phenols and steroids may be 
responsible for this difference [22] [23]. Firstly, the observed EC50 of E2 and EE2 
are often at the level of ng/L, and the observed EC50 of BPA and NP are often at 
the level of μg/L (Table 1). Secondly, the interaction potential of E2 was the most 
potent, followed by BPA and NP [5]; the estrogenic activity of E2 was much 
higher than that of BPA and NP [24]; the estrogenic potential of EE2 was much 
higher than that of E2, and the lowest observed effect concentration (LOEC) of 
E2 and EE2 is lower than BPA and NP [25]. And thus, the slops is comparatively 
higher for the BPA and NP than for the E2 and EE2, and the slops of E2 and EE2 is 
extremely small. 

3.2. Interpretation of the EC50 Reduction over Time Based on the  
Bioconcentration Process 

All the regression relationships have negative slopes (Table 2) which indicates 
that the EC50 of hepatic biomarkers is related to the exposure time and declines 
as the exposure time increases. These results are in accord which were studying 
the time dependent effects of E2, BPA and NP to zebrafish hepatic vtg1 gene [5]. 
Other researchers also reached the same conclusion while studying the toxic ef-
fects of organic pollutants to fish [12]. The transfer of compounds from water to 
fish is the first step in the development of toxic effects [26]. In fish the routes of 
compounds uptake are from gills, food and outer body surface but uptake of 
compounds takes place mainly via gills [27]. In Figure 3, compounds in water  
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Figure 3. Diagram of routes of endocrine disrupters in teleost fishes. 
 
can transfer from respiratory surfaces and gastrointestinal tract through circula-
tory fluid to liver in fish. In the process, some effect loss of the compounds, the 
compound continues to accumulate in the fish liver, and the increased metabol-
ism of the hepatocytes and then the liver injury became exacerbated, these fac-
tors could be used to explain the decrease in the toxic effects over time. This was 
consistent with in previously studies [5] [28]. 

3.3. Correlation between the Toxic Effects and Fish Life  
Expectancy Based on the Reported and Calculated NLT 

Calculated NLT is compared with reported NLT and calculated NLT differs 
from reported NLT (Table 3). Reported NLT and calculated NLT of teleost fish 
are in the range of 540 - 1400 d and 13 - 84 d respectively. The ratio of averages 
of reported NLT and calculated NLT is 1006/35 and the standard deviation is 
311/33. The correlation coefficient (R2) obtained from the plots of reported NLT 
against calculated NLT was greater than 0.91 in a general accord (Table 3). The 
results show that the correlation between reported NLT and calculated NLT is 
better. The NLT introduces a fixed limiting point for a teleost fish and it is a ref-
erence point for the reduced life expectancy in fish exposed to the compound 
[12]. In Figure 1, Figure 2, from the cross point of regression line and x-axis to 
the roported NLT range, the trend changes of toxic effects based on the EC50 of 
hepatic biomarkers can be predicted by the RLE model when no data available 
for these extended exposure times. In other words, the toxic effects of a com-
pound can be described using the RLE model and be corrected the experimental 
data to a specific time point. It is noteworthy that the days from the each expo-
sure time point to the roported NLT range is the days in which fish life expec-
tancy reduced after exposure to the compound (Figure 1, Figure 2 x-axis). 
These analyses were also referred in the previously RLE model studies [13] [29]. 

4. Conclusion 

This study investigated the RLE model for teleost fish based on the toxicological 
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data of endocrine disruptors available in the literature. Analogy of the RLE 
model can be useful to analyze the exposure time effects of teleost fish by using 
EC50 as toxicity endpoint and to understand routes of the EC50 reduction over 
time and effects of the toxic effects on fish life expectancy. The study method 
used may be extended to other fish species and even other organisms as well. 
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