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Abstract 

The Fourier equation explains the dynamics of heat transfer. But bringing 
this phenomenon closer to the notion of fibration seems difficult to achieve. 
This study then aims to find the solution of the one-dimensional Fourier eq-
uation and to interpret it in terms of bundle. And then apply the results ob-
tained at the Kankule site in Katana in South Kivu. To do this work, we re-
sorted to geometric or topological analysis of the Hopf fibration of the unit 
sphere S3 (identifiable in SU(2)). We had taken the temperatures of the ther-
mal waters and the soil of Kankule, from 2010 to 2014, in situ. And laboratory 
analyses had allowed us to know the physical and chemical properties of the 
soil and water at each of our 14 study sites in Kankule. The data of the geo-
magnetic field of each site, were taken in on the site NOAA, for our period of 
study. We then determined the integral curve (geotherm) of the Fourier equ-
ation and wrote it as a unit quaternion which is a bundle. The constants in-
tervened in the geotherm, for each site of Kankule, we had obtained them sta-
tistically. We have found that the geotherm of each Kankule site is a bundle. 
We have compared this model to the bundle model of the geomagnetic field. 
From there we realized that to determine the energy potential of Kankule, we 
should consider the thermal springs separately. We were able to find a con-
nection between the fibration of the geomagnetic field and the heat field for 
the Kankule site. 
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1. Conceptual Fame 
1.1. The Quaternions and the Sphere Unit S3 
1.1.1. Quaternions 

1) Definitions 
In 4 , consider ( ) ( ), , , ,a b cq d a== u  and ( ) ( ), , , ,a b c dq a′ ′ ′ ′ ′=′ = v ; for 
( ), ,b c d=u  and ( ), ,b c d′ ′ ′=v  in 3 . The addition and multiplication in 4

are defined by the relations below [1] [2] [3]:  

( ),q q a a′ ′+ = + +u v                       (1) 

with +u v  the vector addition in 3 , and 

(
)

( )

, ,

,

,

q q aa bb cc dd ab bb cd dc

ac ca bd db ad da bc cb

aa a a

′ ′ ′ ′ ′ ′ ′ ′ ′∗ = − − − + + −

′ ′ ′ ′ ′ ′ ′ ′+ − + + + −

′ ′= − ⋅ ⋅ + + ∧⋅u v v v u v

           (2) 

where ⋅u v  and ∧u v  are respectively the scalar product and the vector 
product in 3.  We verify that ( )4 , ,+ ∗  is a commutative body, called the 
quaternion body. We mark it H, in honor of Hamilton who built it first. 

We have ( ),q a= −u  as a conjugate of q, and ( ),q a− = − −u  being the op-
posite of q. The norm of q is 

2 2 2 2q q a b c dq= ∗ = + + +                  (3) 

The inverse of q is 

1q q
q

− =                            (4) 

We denote [4] [5] [6] 

( ) ( ) ( ) ( )1 1,0,0,0 , 0,1,0,0 , 0,0,1,0 and 0,0,0,1 .i j k= = = =       (5) 

and 
2 2 2 1i j k i j k= = = − = ∗ ∗                   (6) 

with ij k ji= = − ; jk i kj= = −  and ki j ik= = − . H is a vector space on R 
whose basis is ( )1, , ,i j k . Thus the quaternion 

( ), , ,q a b c d a b i c j d k= = + ∗ + ∗ + ∗               (7) 

The set of pure quaternions is 

( ) ( ){ }3/ 0; ; ; ; ; ;pur p H p b c d b c d= ∈ = ∈           (8) 

We identify pur  with 3 . We check that if purp∈ , then p p= − . So 
for p H∈  which is such that 2 1p = − , we will have 1p =  and p p= − , 
which implies that .purp∈  

2) Theorem 1 
Any quaternion q can be written as 

( )cos sinq q pθ θ= +                     (9) 
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with Rθ ∈  and purp∈  [1] [3]. 
Indeed, ( ); ; ;q q a b c d=  is a quaternion of module 1, then [ ]1;1a R∈ −   

because 2 2 2 2 1a b dq cq + + + == . There then exists Rθ ∈  such that  

cosa θ=  and 2 2 2 sinb c d θ+ + = . When θ is not a multiple of π, we set 

cos

sin

q
q

p
θ

θ

−
= , a pure quaternion of norm 1 and whose square is −1.  

When θ is a multiple of π, we immediately have the result stated by the theorem, 
whatever the pure quaternion considered.  

1.1.2. The S2 and S3 Spheres 
A) Definitions 
The unit sphere nS , of dimension n, of 1n+  is defined by [2] [7] [8]: 

( ){ }01 2
0 1 0; ; ; / 1n n

n iiS x x x x+
=

= ∈ =∑             (10) 

Thus 3S  is the part of 4  defined by 

( ){ }3 4 2 2 2 2, , , / 1S a b c d a b c d= ∈ + + + =          (11) 

and 2S  the part of 3  defined by 

( ){ }2 3 2 2 2, , / 1S x y z x y z= ∈ + + =             (12) 

Note ( )0,0, 1S ′ −  and ( )0,0,1N ′  are respectively the south and north poles 
of S2. Consider the open sets { }2 \N SU N′ ′=  and { }2 \S SU S′ = ′ . Let the ap-
plications, called stereographic projections, be as follows: 

( )2: , with , , ,
1 1N N N

x yU x y z
z z

ψ ψ′ ′ ′
 =  − −

→


 ;      (13) 

and 

( )2: , with , , ,
1 1S S S

x yU x y z
z z

ψ ψ′ ′ ′
 =  + +

→


 .       (14) 

We find ( ) ( ){ }, ; ,N N S SU Uψ ψ′ ′ ′ ′  a differentiable atlas of S2. 
This method, of stereographic projection, makes it possible to obtain a diffe-

rentiable structure for any sphere Sn.  
For n = 3, the stereographic projections give for S3 the atlas  
( ) ( ){ }, ; ,N N S SU Uϕ ϕ ; where ( ){ }3 \ 0,0,0;1NU S=  and ( ){ }3 \ 0,0,0; 1SU S= − . 

We have 

( ), , , , ,
1 1 1N

b c da b c d
a a a

ϕ  =  − − − 
             (15) 

and 

( ), , , , ,
1 1 1S

b c da b c d
a a a

ϕ  =  + + + 
             (16) 

B) Link between H and SU(2) 
1) Definitions 
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( ) ( ){ }

( )

( )

( )

( ){ }

2 2 2 2 4

1 2 2
1 2 1 2

2 1

4
1 2

2 2 / det 1

/ 1; , , ,

/ 1; , ,

; ; , , ,

2, 1 1t t

SU M U M

a ib c id
M a b c d a b c d

c id a ib

Z Z
M Z Z Z Z

Z Z

Z a ib Z c id a b c d

M GL MM M Met M

= ∈ =

 + +   = = + + + = ∈  − + −   
  = = + = ∈   −  


= + = + ∈ 



= ∈ = = =









  (17) 

[2] [4] [5]. 
SU(2) is then identified with group S3, quaternions of module 1. Indeed; con-

sider the homeomorphism f defined as below: 

( ) 3: 2f SU S→ ; 

with 

( ) ( )1 2 1 2 1 2
1 2

2 1 2 1 2 1

1 0
Z Z Z Z Z Z

f Z Z
Z Z Z Z Z Z

      
→ = =            − − −      

. 

Thanks to f we identify SU(2) with S3. We then consider SU(2) as a sub-body 
S3 of H, quaternions of module 1 

2) Links between SU(2) * U(1) and U(2) as well as between SO(3) and 
SU(2) 

a) Theorem2 "Links between SU(2) * U(1) and U(2)" 

( ) ( ) ( )
2

2 1
2

SU U
U

Z
∗

≈                     (18) 

With 2 2

1 0
0 1

I ×
 
 
 

= , 2 2

1 0
0 1

I ×

−
−

=


−  
 

 and ( ) ( ){ }2 2 2 2 2;,1 , 1Z I I× ×= −−  [2], 

[4] and [5]. 
Proof of Theorem 2 
We find that ( )2M SU∀ ∈  and 2q Z∀ ∈ : q M M q∗ = ∗ . We have 2Z  a 

distinguished (or normal) subgroup of SU(2) because 2q Z∀ ∈ ;  
( ) ( )12 2q SU q SU−∗ ∗ =  

i) Let 

( ) ( ) ( ): 2 1 2f SU U U∗ → ; ( ) ( ), e ,e ei i if M MM θ θ θ= ∗→  

We check that f is a surjective homomorphism, whose kernel is  

( ) ( ){ }2 2 2 2 2,1 , 1;Kerf Z I I× ×= −= −  and Imf = U(2). 
Consequently Imf is isomorphic to (SU(2) * U(1))/Kerf. I.e. U(2) ≈ (SU(2) * 

U(1))/(Kerf) 
b) Theorem 3 “Links between SO(3) and SU(2)” 
The group SO(3) is isomorphic to the quotient of SU(2) by its center. The 

center of SU(2) is { }2 2 2 2 2,Z I I× ×= − , with 2 2

1 0
0 1

I ×
 
 
 

=  and 2 2

1 0
0 1

I ×

−
−

=


−  
 

 

[2] [4]. 
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Let us demonstrate SO(3) ≈ (SU(2))/(Z2) in the following three steps: 
1st step: We will establish a homomorphism ( ) ( ): 2 3g SU SO→  
2nd step: We will prove that g is surjective 
3rd step: We will then show from Kerg = Z2 
Proof of Theorem 3 
ii) 

( ) ( ) { }
( )

* * *: ,. ,. with / 0 ;

and
q

q

R q q

p R p q p q
− → = ∈ ≠

→ = ∗ ∗

   
        (19) 

We find that qR  is a bijection. It is called conjugation by the element q of the 
multiplicative group * . We find that ( ),.pur  is a subgroup of ( )* ,. .  

We make the identification of pur ur and 3 , thanks to the following bi-
jection ζ: 

( ) ( )( ) ( )3: ; 0; ; ; 0; ; ; ; ;pur x y z x y z x y zζ ζ→ =→        (20) 

Thus ( )2q M SU∀ = ∈ , we verify that qR : 3
pur →   given by 

( ) 1
qm R m q m q q m q−→ = ∗ ∗ = ∗ ∗              (21) 

Let us show that this restriction of qR , to pur  or 3 , is a rotation. In-
deed: 

1˚) 1 2, purm m∀ ∈ ; and , Rα β∀ ∈ :  
( ) ( ) ( )1 2 1 2q q qR m m R m R mα β α β∗ + ∗ = ∗ + ∗  

2˚) ( )2q SU∀ ∈ ; purm∀ ∈ , we find m m= −  i.e. 0m m+ =  
So ( ) ( ) 0q qR m R m+ =  because  

( ) ( )
( )

* *

0 0
q qR m R q m q q m q q m q q m q

q m q q m q q m m q q q

m+ = + ∗ ∗ = ∗ ∗ + ∗ ∗

= ∗ ∗ + ∗ ∗ = ∗ + ∗ = ∗ ∗ =
 

The matrix of qR  is therefore a regular matrix 
3˚) Let on H be the standard map n  

( ): ;n p p p p+→ → = ∗ n               (22) 

We verify that  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1

qn R p q p q q p q p q q

p q q p p p

= ∗ ∗ = ∗ ∗ = ∗ ∗

= ∗ ∗ = ∗ = ∗ =

n n n n n n n

n n n n n n
 

Consequently ( )2q SU∀ ∈ , we find that qR  is an orthogonal isomorphism 
of H; and therefore its restriction to pur , (or 3 ) is an isometry. In other 
words: ( )2q SU∀ ∈ , we find ( )3qR O∈ . 

4˚) As ( )2q SU∀ ∈ , det 1qR = ; then qR  is a rotation of 3 ; i.e. 
/qR N SO∈  (3).  

Thus ( ) ( ): 2 3g SU SO→ ; ( ) qq Rg q→ = ; is an application which asso-
ciates each element q with its rotation matrix .qR   

Like ( )1 2, 2q q SU∀ ∈ , we have 
1 2 1 2

oq q q qR R R ∗=  and 

( )
1 2 1 21 2 oq q q qg q q R R R R∗ = = ∗ ;             (23) 

then g is a group morphism. 
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We find that { }2 2 2 2 2,Z I IKerg × ×= −= . 
And as ( )( ) ( )2 3Img g SU SO= = ; because ( )3q OR S∀ ∈ , ( )2q SU∃ ∈  

such that ( ) qg q R=  (that is to say g is surjective); then Img = (SU(2))/(Kerg). 
In other words ( ) ( )( ) { }( )2 2 2 23 2 / ,S S I IO U × ×−≈ . 

c) Theorem 4 “Links between U(1) and SU(2)” 
U(1) is a multiplicative subgroup of SU(2) [4] and [5].  
Proof of Theorem 4 
We have ( ) { }e1 / ,iU z C z Rθ θ= ∈ = ∈ . U(1) is a group of complex numbers 

of modules 1. We find the following isomorphisms 1f  and 2f : 

( ) ( )1

cos sin
: 1 2 ; with e

sin cos
,if U SO θ θ θ

θ θ
−

→
 

→  
 

        (24) 

and; 

( ) ( )1
2 : 1 ; with e , cos ,sinif U S θ θ θ→ →             (25) 

These isomorphisms identify U(1) with SO(2), or the unit sphere 1S  of 2 . 
The immersion of 1S  in 3S  allows to consider U(1) as a subgroup of SU(2).  

1.2. Rotation Dies and Sphere S3 
1.2.1. Geometric Interpretation of a Quaternion 

1) Theorem 5 
Let q be any non-zero quaternion; noted 

( )cos sinq q pθ θ= +                   (26) 

with Rθ ∈  and purp∈ . Then the application Rq u is a rotation of angle 2θ 
and of vector p [1] [3] [5] [6]. 

Proof of Theorem 5 
By demonstrating Theorem 3, we have seen that ( )2q M SU∀ = ∈ , we check 

that qR : 3
pur →   given by ( ) 1

q m q m qq mm R q−= ∗ ∗ = ∗ ∗→ ; qR  is a 
rotation, thanks to relations (21) and (22). 

Let us use relations (2), (9), (21) and (22) to determine the angle of rotation 

qR  and his axis. 
According to (9), we have ( )cos sin cos sinq q p pθ θ θ θ= + = + , because 

3Sq∀ ∈ , 1q =  and that purp∈ , then 2 1p p p= ∗ = − , Thus 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

2 2

cos sin cos sin

cos 2 sin cos л – sin 2
qR q q p m p

m p m m p m

m q m m

p

q θ θ θ θ

θ θ θ θ

− = + −

=

= ∗ ∗ = ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗+ − ⋅  
   (27) 

Since ( ), л л
2 л

m p m p m p m p m p
p m m p p m
∗

∗ ∗

 = − ⋅ = − ⋅ +


− =
, then 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2 2

2

cos sin 2 л 2sin sin

cos 2 sin 2 л 2sin

qR m m p m p m p m

m p m p m p

θ θ θ θ

θ θ θ

= + + ⋅ −∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

 

= + + ⋅  
(28) 

Which allows to deduce: 
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a) If m p= , then ( ) ( )q qR m R p p= =  since 

л 0
1

p m
p m m p

=
⋅ = ⋅ =





                      (29) 

As p is invariant by qR , then p is a vector of the axis of rotation of qR  
b) If p is perpendicular to m, then 0p m⋅ = . It then comes that  

( ) ( ) ( ) ( )cos 2 sin 2 лqR m m p mθ θ+∗ ∗=             (30) 

By comparing this relation to (9), we conclude that qR  is a rotation of angle 
2θ, and of axis p. 

Theorem 5 is therefore proven. 
We therefore observe that a quaternion q is also a rotation of angle θ, and of 

axis p.  
2) Matrix of a rotation Rq of an element q of SU(2) or S3 
Consider the following matrices in SU (2) [5] [6] [9] [10] [11]: 

0

1 0
0 1

σ
 

=  
 

; 1

0 1
1 0

σ
 

=  
 

; 2

0
0
i

i
σ

− 
=  
 

; and 3

1 0
0 1

σ
 

=  − 
, the last 3 of 

which are Pauli matrices. Note ( )1 2 3 1 2 3; ;ji kσ σ σ σ σ σ== + +σ . Since u  is a 
unitary matrix of SU(2), and properties of the Pauli matrices, we find 

( ) ( )2 2
0

nσ⋅ = ⋅=u uσ σ  and ( )2 1n+ ⋅=⋅u uσ σ ; n N∀ ∈ . Consequently  

{ }

( )( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 3
2 3

0

0

2! 3

exp

cos sin

!

,
!

n
n

i

i
n

q i

i

i U

θ

θ

θ θ θ

σ θ θ

θ

σ

⋅

⋅ ⋅
⋅ +

⋅
+ +

=

+

= ⋅

−

= − −

− =

 

u

u u

u

u u

u

σ

σ σ
σ

σ

σ

 

We then find that a rotation q of angle θ in ( )3 2S SU=  corresponds to a 
rotation of angle 2θ in 2S . The matrix form of this rotation q is given by the 
relation: 

( )
( )

( )
cos sin sin

,
sin cos sin

z x y

x y z

iu iu u
q U

iu u iu

θ θ θ
θ

θ θ θ

− − +
= =

−

 



 + +




u         (31) 

With u  unit vector of 4  along the axis p of the relation (29). We also 
have in 3  the following unit vectors ( ) 1;0;0x =u , ( )  0;1;0y =u , ( )  0;0;1z =u ; 
with i imaginary unity. The relation (31) indicates to us that a quaternion is a 
rotation, in the space of 1/2-spinner. It is a rotation in space of rank 1 spinners.  

1.2.2. Euler Angles of a Quaternion 
Any matrix q of SU(2) or S3 can be decomposed, using Euler angles, as below [2] 
[4] [6]: 

( ) ( )

( ) ( )

cos sine 0 e 0
sin cos0 e 0 e

cos e sin e

sin e cos e

i i

i i

i i

i i

i
q

i

i

i

ψ ϕ

ψ ϕ

ψ ϕ ψ ϕ

ψ ϕ ψ ϕ

θ θ
θ θ

θ θ

θ θ

− −

+ −

− − − +

    
= ∗ ∗    

   
 
 

=
 





          (32) 
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with 0 2θ≤ ≤ π ; 0 ϕ≤ ≤ π  and ψ−π ≤ ≤ π.  
The approach formulated by relations (31) and (32) is used in Quantum Me-

chanics, in the theory of angular momentum. 

1.3. Fibration 
1.3.1. Prelude 
The total space P = SU(2) from the topological point of view is identifiable with 
S3. Consider a group U(1), and perform a class decomposition of SU(2) with re-
spect to U(1). For Let ( ) ( )2 \ 1g SU U∈ . We consider the set  

( ) ( ){ }1 / 1g g U g w w U= ∗ = ∗ ∈ . Then we consider an element k of SU(2), 
which is neither in U(1), nor in g . We build the set  

( ) ( ){ }1 / 1k k U k h h U= ∗ = ∗ ∈ . We continue the process of class construction 
in SU(2)\U(1). In order to account, we succeed in writing SU(2) as an infinite 
union of classes of the type ( )1g g U= ∗ . The quotient set SU(2)/U(1) obtained 
is identified at 2S . The group ( ) 32P SSU= =  is considered to be an infinite 
union of circles ( ) 11U S= ; parameterized by the sphere  
( ) ( ) ( )22 2 / 1U SU US= =  [Courses and Seminars (1)] (Figure 1). 
The structural group U(1) acts by multiplication on the right, on the total 

space SU(2). We have chosen U(1) as a distinguished subgroup of SU(2). This 
fibration in circles of ( )3 2S SU=  is called Hopf fibration of ( )3 2S SU=  
(Figure 2). 
 

 
Figure 1. Fibration of SU(2) in circles. 

 

 
Figure 2. Hopf’s fibration [12]. 
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1.3.2. Hopf Fiber of a Lie G Group 
1) Algebraic formulation 
Let G be a Lie group, and H a Lie subgroup of G. We assume that H is closed 

in G, so that the topology of the quotient group G/H is separated. We consider 
the equivalence relation R defining the classes to the left of H. Thus two ele-
ments g and k of G are in relation R, if and only if k gg H∈ = ∗ . Consider the 
application h; defined as below [2] [13]: 

( ): / ; .h G G H g h g g Hg→ → = = ∗              (33) 

The application h defines a main fibration. Any group G is thus a principal fi-
bered space above G/H. The structural group being H. The quotient set G/H, 
which is the basis of the bundle, is only a group if H is distinguished in G. 

We use the notation H → G → G/H, to characterize a fibration h of G above 
G/H. In the previous paragraph, we then introduced this fibration U(1) → SU(2) 
→ SU(2)/U(1) (Figure 3). 

2) Geometric and topological formulation 
a) Definitions of this formulation 

( )
: is a differential variety

Consider ; ; where : is a differential variety
the projection of  onto 

P
P M M

P M
π

π





 ∶

   (34) 

We say that P is a vector bundled space of base M, of projection π and of fi-
ber-type n  if: 

i) m M∀ ∈ ; ( )1 mπ −  is a vector space 
ii) m M∀ ∈ ; ∃  a neighborhood U of m and a diffeomorphism        (35) 

( )1: nU Uψ π −∗ →  such that 
( )

( )
(a) o ;

(b) ; is linear on the 2nd argument

m m

m

π ψ

ψ

=



v

v
 

[2] [7] [13].  
Consider (P; M; π; F; G), where P, M and F are differential varieties. π: the 

projection of P on M, a differential manifold. G: a diffeomorphism group from F 
to F. We will say that P is a fibered space of base M, of projection π, of fiber type 
F and of structural group G if: 

i) m M∀ ∈ ; ( )1 mπ −  is a manifold differentiable at F 
ii) m M∀ ∈ ; ∃  an open neighborhood U of m in M and a diffeomorphism 

( )1:U UFψ π −→∗  
 

 
Figure 3. Fibration of G. 
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Such that 
( )( )

( )1

(a) o ;

(b) The applications o determine the elements of m

m m

Gβα β α

π ψ

ψ ψ ψ−

 =


=

v
 

(U; ψ) being called a local trivialization (Figure 4). 
b) Definitions 
Consider the point ( )1;0;0oP  of 2S , a point that we identify with the qua-

ternion ( )0;1;0;0i . The Hopf fibration h in terms of rotation is defined as be-
low [1] [3]: 

( ) ( )
( ) ( )( )

( ) ( )

3 2

2 2 2 2

: ;

;2 ;2

; ; ; with ; ; ;

qh S S q h q R i q i q

a b c d ad bc bd ac

x y z p q a b c d

→ → = = ∗ ∗

= + − − + −

= = =

          (36) 

1.3.3. Fiber over P = (x; y; z) of S2 
Let us determine the fiber above a point ( ); ;P x y z p=  of 2S . In other words 
let us determine the set of points ( ); ; ;Q a b c d q= =  of 3S  which verify h(q) 
= p; i.e. ( )1h p q− =  [1] and [3]. 

1) For ( )1;0;0oP i= ; we have ( ) ( )1 ; ; ;i a b dh c− =  such that  
2 2 2 2 1

0
0

a b c d
ad bc
bd ac

+ − − =
+ =
− =







. 

Hence 
2 2 1

0
a b
b c

+ =
= =





. There are [ ]0;2 Rθ ∈ π   which checks 
cos
sin

a
b

θ
θ

=
 =

 

Thus 

( ) ( ) ( ); ; ; cos ;sin ;0;0 or eiq a b c d q θθ θ= = ≡           (37) 

describes a circle of 3S . 
2) For ( )1;0;0P i− = − ; we have ( ) ( )1 ; ; ;i ah b c d− − =  such that  
2 2 2 2 1

0
0

a b c d
ad bc
bd ac

+ − − = −
+ =
− =







. 

 

 
Figure 4. Fiber above the open U. 
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Hence 
2 2 1

0
c d
a b
+ =
= =





. There are [ ]0;2 Rθ ∈ π   which checks 
sin
cos

c
d

θ
θ

=
=





 

Thus 

( ) ( ); ; ; 0;0;sin ;cosq a b c d θ θ= =               (38) 

describes a circle 3S . 
3) For ( ) ( ) ( ){ }2; ; \ 1;0;0 ; 1;0;0P x y z p S= ∈ − . Let us look for q such that 

( ) ( )1 qR i iR= . We then find 
( ) ( )

1 ;0; ;
2 2 1 2 1

x z yq
x x

 + − =
 + + 

. Indeed;  

( )1;0;0o i= =OP , and ( ); ;x y z=OP  such that cos 2o xθ⋅ = =OP OP , by ex-

ploiting the relation (26); and ( )л лo i xi yj zk zj yk= + + = − +OP OP . Thus 

л sin 2 sin 2o o θ θ= ⋅ ⋅ =OP OP OP OP . We then find  
2 2 21лo y z x+ −= =OP OP  because 2 2 2 1x y z++ = . Thus  

1os
2

c xθ =
+  and 1in

2
s xθ =

− . Consequently a following unit vector  

лoOP OP  is ( )л
л

1
1

o

o

zj yk
x

− +
−

= =
OP OP
OP OP

u . This unitary vector of axis of 

rotation, makes it possible to bring oP  in P. Consequently, according to (26), 
we finds cos sinq θ θ= + u . We therefore have 

( ) ( ) ( )
1 1 ;0; ;

2 22 1 2 1 2 1
x zj yk x z yq

x x x

 + − + + − = + =
 + + + 

   (39) 

The relation (37), allows us to affirm that the relation (39) is given by quater-
nions q describing a circle of 3S . Indeed; let 1q  and 2q  in 3S , such that 

( ) ( ) ( )
1 2

; ;q qi iR P x zR y= = .  
From relation (23), it comes then that ( ) ( )

12 2 1
o qq q qR R i i R i

∗
= = . And ac-

cording to the relation (37), we obtain 2 1 eiq q θ∗ = ; with [ ]0;2θ ∈ π . We 
therefore deduce that 

[ ]1 2 e ; with 0;2 ,iq q θ θ ∈∗= π                 (40) 

describes a circle 3S . 

1.3.4. Local Trivialization of Fibration h 
The local trivialization of the h fibration is obtained from relations (39) and (40) 
below [1] [3]: 

The fiber above ( ) 2; ;p x y z S∈ , is the circle parameterized by 

[ ] ( )
( )

( )( )3 1: 0;2 ; e ; with 1 .
2 1

iS q q i yj zk
x

βκ β κ βπ → → = ∗ = + + +
+

 (41) 

Indeed; from (9) we have 1cos sinq pθ θ= +  with 1 purp ∈ . And from 
(26), q induces a rotation of angle 2θ; around the axis 1p . We can then study the 
rotation around ( ) 2; ;p x y z S∈  as two rotations 1r  and 2r ; bringing respec-
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tively q in i, and i in p. In other words ( ) ( )1 2oqR ri p qr= = . The axis of this 
rotation is then the vector line perpendicular to the middle of the segment 

( )1;0;0oP i=  and ( ); ;P x y z p= . This axis has the equation:  

( ) ( )( )2 1 2i xi yj zk x i yj zk+ + + = + + +=w  

We find that ( ) ( )2 2 21 11 2 1
2 2

x y z x= + + + = +w  because  

2 2 2 1x y z+ + = . We have 1
2

x+
=w . Consequently the unit vector, along 

this axis, is ( )12
1 2

x i yj zk
x

+ + + 
= =  +  

wu
w

. 

Thus 
( ) ( )( )11

2 1
x i yj z

x
k+ += +

+
u . Consequently  

( )
( )( )

1
11

2
x i yj zq

x
k= + +

+
+ = u , which give 

( ) ( ) ( )( ) ( )cos 2 sin 2 1 1q x i yj zk x i yj zk= + + + + + + +    π π  ; 

which is a quaternion of the fiber above p. And according to (40), this fiber is of 
the form { }eiq β∗  with [ ]0;2 Rβ ∈ π  . 

Therefore the application 

( ) ( )( ) ( )
( )

1 3 1 1
: \ , ; ; ;e e

2 1
i ix i yj zk

U S S h i x y z
x

β βψ − + + +
∗ → − → ∗

+
;   (42) 

allows us to obtain local trivialization (U; ψ). 

1.4. Stereographic Projection Visualizing the Fibration of HOPF  
from the Lie SU(2) Group 

Stereographic projection is a method of representing a sphere, deprived of a 
point, on a plane. [1] [3] [5] [7] [8] [12].  

The relation (13) gives us 

( ) ( ) ( )( )2: , with , , 1 , 1N N NU x y z x z y zψ ψ′ ′ ′ = −→ −        (43) 

presents the stereographic projection. This sends the point ( ); ;P x y z , from 

( ){ }2 \ 0;0;1S , is sent in P’ from the plane Π = Γ. Straight line NP cut Π in P’ 
(Figure 5). 

A circle of 2S  which passes through the north pole ( )0;0;1N ; being in a 
plane ′Γ , is sent by Nψ ′  to the intersection line of Γ and ′Γ . 
 

 
Figure 5. Stereographic projection of the north pole on a non-equatorial plane [1]. 
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A circle of 2S  which does not pass through the north pole N, is projected in-
to a circle of Γ by Nψ ′ . 

The generalization of stereographic projection to all dimensions being possi-
ble, let us take again the relation (15). He comes 

( ){ }
( ) ( ) ( ) ( )( )

3 3: \ 0,0,0;1 ,

with , , , 1 , 1 , 1
N N

N

U S

a b c d b a c a d a

ϕ

ϕ

= →

= − − −



          (44) 

Let us determine the images of the fibers above the elements of 2S , by means 
of this stereographic projection Nϕ . We find 

1) 

( ) ( ) ( )( ) ( )
( ) ( )( )

1 1 1 1
0o o o 1;0;0

cos ;sin ;0;0 from relation 37

cossin 2,0,0 ,0,0 cot ,0,0
1 cos 2sin

2

N N N N

N

h P h i h h iϕ ϕ ϕ ϕ

ϕ θ θ

θ
θ θ

θθ

− − − −= = =

=   
 
    = = =    − 

 

 
 





     (45) 

which is the x-axis of the plane (x, y) or (x; z) of ( )3 ; ;x y z= ; that is to say a 
circle of infinite radius.  

2) 

( ) ( ) ( )( ) ( )
( ) ( )( )

( )

1 1 1 1o o o 1;0;0

0;0;sin ;cos from relation 38

0;sin ;cos

N N N N

N

h P h i h h iϕ ϕ ϕ ϕ

ϕ θ θ

θ θ

− − − − = − = − = − 
=   
=

  (46) 

which is a circle of the plane (y; z) of ( )3 ; ; .x y z=  
3) 

( ) ( )( )

( )( )

( ) ( )

1 1

2 2

2 2

2 2

o o ; ;

sin sincos ;0; ; from relation 39
1 1

sin sin0; ;
1 cos 1 1 cos 1

1cos cot cot2 2 2with 0; ;
1 1 1sin

2

N N

N

h P h p x y z

z y

x x

z y

x x

x
z y

x x x

ϕ ϕ

θ θϕ θ

θ θ

θ θ

θ θθ

θ

− −=

  − ∗ ∗
=     − −  
 − ∗ ∗ =
 − ∗ − − ∗ − 

 +  = − ∗ ∗  =  
− − −   =  

      (47) 

and according to the relation (40) is a circle of space ( )3 ; ; .x y z=  
These different images of the circles, by stereographic projection Nϕ , give 

circles which are linked in chains like those of the Olympic games (Figure 6). 

1.5. Heat Transfer Equation 
1.5.1. Transport Phenomena 

1) What do we mean by transport phenomenon? 
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Figure 6. The stereographic projection transforms the circles of the sphere into circles of 
the projection plane [7] [8]. 
 

In thermo-statistics, we group together a set of physical phenomena of 
movement of molecules in fluids or solids in transport phenomena. Transport 
phenomena are the processes in which there is a global transfer (or transport) of 
matter, energy or momentum on a macroscopic scale. The essential physical as-
pects of these phenomena can be described by similar methods and are characte-
rized by an equation which links the variation in time and in space of a quantity 
which describes the phenomenon. In the simplest case this equation is of the 
form [14] [15] [16] [17]: 

2
2

2a
t x
ξ ξ∂ ∂
=

∂ ∂
                      (48) 

where a is a constant characteristic of each physical situation and ξ is a quantity 
corresponding to the particular phenomenon of transport studied like the diffu-
sion of the molecules, the viscosity and the conduction of heat. In this work, we 
will focus on the last case of these types of transport phenomena whose mathe-
matical solutions relate to a temperature distribution. 

The phenomenon of energy and/or material transport is of great importance 
in statistical physics. This phenomenon for heat is described by the Fourier equ-
ation which we will solve for a spatial dimension before modeling this solution 
for the Kankule site. The solution of this equation is called the geotherm 

2) One-dimensional Fourier equation 
The Fourier equation for the conduction of heat in the ground, when this 

energy varies as a function of time t and depth z is: 
2

2

1 0T T
tz α

∂ ∂
− =

∂∂
                      (49) 

[5] [14] [15] [16] [18] [19] [20] [21] [22]. 
With α  the coefficient of thermal diffusivity of the soil, z the depth and T 

the temperature characterizing the heat transported. 
With the boundary conditions of the first species (Dirichlet problem), where 

the surface temperature is known at all times, this equation admits a sinusoidal 
solution of progressive wave of the form: 

( ) ( ), ei kz tT z t ω−=                      (50) 
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whose 
ω : is the pulsation of the waves 

v
k
ω
= : is the phase velocity of these waves 

i: the imaginary unit (with i2 = −1) 
Introduce the values of (50) in (49), we find: 

2 0k iω
α

− + =                        (51) 

So, 
2i kω α=                          (52) 

As a result 

( )1
2

k i ω
α

= ± +                       (53) 

is 

( )1 i
k

d
± +

=                        (54) 

by asking 

2d α
ω

=                         (55) 

d: is called the depth of penetration of the waves (or also the depth of damp-
ing). 

Starting from (49), according to Wu and Nofziger [22], taking into account 
the boundary conditions, the previous solution can be written: 

( ) ( )0
0 0

2
, e sin

365 2

z
d

t t zT z t T A
d

−  π − π
= + ⋅ − −  

 
          (56) 

Using solution of (49), we looked for the gradient, for each site, with the rela-
tion ( )T z f z∂ ∂ =  and deduce the depth of exploration to the Kankule site 
studies 

3) Exploitation of geothermy 
The Geoscience review of March 16, 2013, shows the operating conditions of 

geothermal energy to produce electricity. Having active tectonic or volcanic 
zones in which a surface heat source makes it possible to have a geothermal fluid 
at a temperature sufficient to produce electricity [23]. On page 14, Figure 8 [23], 
already shows that with a temperature of 50˚C at 1 km deep, we can consider the 
production of electricity. It will then be necessary to dig for this to more than 3 
km deep, in order to trap the geothermal fluid at more than 150˚C. The same ar-
ticle presents a world map where high energy geothermal energy is likely to be 
exploited. Eastern DR. Congo is there, as in all the countries of the Albertine Rift 
(or Valley). From the ground temperature down to 90˚C, electricity can already 
be produced [24]. 

The latest study distinguishes between surface and deep geothermal energy as 
follows: 
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­ <30˚C and <500 m: surface geothermal energy. This takes up the very low 
temperatures (enthalpy). 

­ between 25˚C - 30˚C and 150˚C and >500 m: deep geothermal energy. This 
takes over the low and medium temperatures (enthalpy). 

Still the same study, specifies that if the geothermal reservoir reaches a tem-
perature above 150˚C and is encountered at shallow depths, the resource must 
therefore be in a region where the geothermal gradient is normal (~30˚C/km) or 
beyond normal. This is for the production of electricity. This classification is 
consistent with that suggested by Lindal for France [25]. 

The exploitation of high energy geothermal energy is favorable in areas which 
knows geodynamic contexts, showing some form of volcanism. At these points, 
a significant part of the internal energy of the globe is released. The history of 
mountain chain formations and terrestrial magmatism allows us to understand 
the genesis of magma chambers. The latter are foci, zones with strong thermal 
gradient [26]. 

1.5.2. Hopf Fiber of the Heat Transfer Phenomenon 
Relations (50) or (56) determine solutions of Equation (49). 

Take 
( )
( )

( ) ( ) [ ],
cos ;sin ;0;0 ; with 0;2

,
T z t

q z d t R
T z t

θ θ θ ω= = = ± − ∈ π    (57) 

By comparing to relation (38), we observe that q is a fiber above the north 
pole. Our q being a solution of (50) or (56); we conclude that each solution of 
these equations is associated with a fiber in ( ) 32SU S= . 

For the three-dimensional Fourier equation 
2 2 2

2 2 2; withT T
t x y xz

α∂ ∂ ∂ ∂
= ∆ ∆ = + +

∂ ∂ ∂ ∂
            (58) 

the Laplacian; there is always a quaternion of the type (56) which is a solution; 
by means of a modification of x by a three-dimensional vector. In short, there is 
always a quaternion unit, which is a fiber. From the above, we conclude that for 
each solution of the Fourier heat transfer equation, there is an associated fiber in 

( ) 32SU S= . This result is analogous to what in classical electromagnetism is 
called magnetic field lines. What we can visualize as below (Figure 7). 
 

 
Figure 7. Model of a heat fiber [7] [12]. 
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This model is analogous to that obtained by T.M. and Dirk Bouwmeester [27], 
for the modeling of lights (electromagnetic waves of the visible spectrum) with 
Hopf fibration. Indeed, each fiber appears as a line of Earth’s magnetic field. 
And since two distinct lines of fields don’t join, so do two fibers in circles that 
don’t cut. And since two distinct lines of fields don’t join, so do two fibers in cir-
cles that don’t cut. As a result each geomagnetic field line is representative of a 
heat fiber. By exploiting Maxwell’s equations of the Terrestrial geomagnetic 
field, we find that 

( )21
0 e ei k x tk xB B ω−−∗=  [28],                (59) 

which is a solution of the same type as (50). 

2. Methodology 

To do this work, we used the following methodological approach: 

2.1. Analytic 

To do this we sought: 
­ Let us relate it between Quaternions units and the Lie group SU(2); 
­ determining the coefficients of the geotherm; 
­ The links between the Geotherm of the one-dimensional Fourier equation 

with the Hopf fibration of the sphere 3S ; 
­ See how to visualize Hopf fibration using stereographic projection; 
­ The significance in terms of bundle of the geotherm. 

2.2. Experimental 

1) From 8 h to 14 h, with the ground thermometer, we took samples from 14 
sites, called Kankule I, Kankule II,…, and Kankule XIV: 

We took soil temperatures up to 15 centimeters deep, every day, in 52 weeks. 
This in order to characterize each site by the average temperature of the surface 
soil; 

Also took the temperatures of the thermal waters, over the same period from 
September 2010 to December 2014, in order to see how to also differentiate the 
sites from the electrolytic properties of its waters. The analysis of which was car-
ried out at the Lwiro Natural Sciences Research Center (CNRS/Lwiro) in Katana. 

2) With a Garmin brand GPS, we determined the geographic coordinates of 
each site. Using these coordinates we had: 
­ Geo referenced each site 
­ Downloaded on the NOAA site, the geomagnetic fields of each site, for the 

same years of our temperature samples [29]. 

2.3. Comparative 

To do this, we compared our results from the ground geotherm with various ac-
cepted results, in order to see if each thermal source can be compared to a bundle. 

https://doi.org/10.4236/jamp.2020.87105


A. Mulenda Mbuto et al. 
 

 

DOI: 10.4236/jamp.2020.87105 1391 Journal of Applied Mathematics and Physics 
 

2.4. Statistical 

Using statistics we were able to: 
­ Determine different coefficients involved in the geotherm of each site.  
­ Perform the linear regression of the geomagnetic field for each site according 

to the temperature field of the same site. 

3. Results and Analysis 

1) Our study rather leads to the result: 

( ) ( )0
0 0

2 3, e sin
365 4

z
d

t t zT z t T A
d

−  π − π
= + − +


⋅ 


            (60) 

as solution of Equation (49). 
Indeed, consider the depreciated waves real parts of the solution (50), which 

are ( )1 , e cos
z
d zU z t t

d
ω

−  = − 
 

 and ( )2 , e sin
z
d zU z t t

d
ω

−  = − + 
 

. Superposing 

the two waves, we find the solution: 
( ) ( ) ( )3 1 2, , ,

e cos e sin

e cos sin

e cos sin

e cos cos
2

z z
d d

z
d

z
d

z
d

U z t U z t U z t

z zt t
d d

z zt t
d d

z zt t
d d

z zt t
d d

ω ω

ω ω

ω ω

ω ω

− −

−

−

−

= +

   = − + − +   
   
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 π π    = − ∗ − −        
 π = − ∗ − −  

  

π = π + − − 
 

π= − +



 



 

Multiplying ( )3 ,U z t  by a real constant A, we still get a solution  
( ) ( )4 3, ,U z t A U z t= ∗  of Equation (49). By posing 0 2A A= ∗ , then we write  

( )4 0
3, e sin
4

z
d zU z t A t

d
ω

− π = ∗ − + 
 

. We have a particular solution of (49)  

which is ( )5 00,U t T= , with 0T  a real constant. Finally by supposing the waves 
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( )4 ,U z t  and ( )5 0,U t , we get the solution (60). In other words, we have:  

( ) ( ) ( ) ( )0
5 4 0 0

2 3, 0, , e sin
365 4

z
d

t t zT z t U t U z t T A
d

−  π − π
= + = + ⋅ − +  

 
 

Using statistical methods, we obtained, for each Kankule site, the coefficients 
of the geotherm (56) or ((56)-bis) given by Table 1. 

2) By seeking the linear regression of the geomagnetic field B, expressed in 
micron-tesla, as a function of the temperature field T of the soil, expressed in 
degrees Celsius, we have obtained the relation of the type B = aT + b. The results 
of this regression are summarized in Table 2. 

In this table, Ho is the null hypothesis. It translates the acceptance of the li-
near dependence between B and T. On each column, where Ho appears, the val-
ue 1 means acceptance of the null hypothesis. On the other hand the value 0, 
implies the rejection of the null hypothesis. 

In order to better understand whether each site should be considered sepa-
rately, we have analyzed which ions are found in different thermal waters, per 
site. Table 3 gives us a summary of the results found. 

3) The geotherm (60) gives us the gradient 

( ) ( )00 2
grad , 2 e cos

365 2

z
d

t tA zz t
d d

−  π − π
= − − − +  

 
         (61) 

Is 

( ) ( )

( )

00

00

2 3e sin
365 4

2 3e cos
365 4

z
d

z
d

t tAT zg z
z z d

t tA z
z d

−

−

 π −∂ π
= = − − + ∂  

 π − π
− − + 

 

 a function that varies with 

depth z. 
 
Table 1. The coefficients of the geotherm by Kankule thermal spring. 

Sites A0 T0 D α σ 

KANKULE I 13.5 23.88333 1.5600934 0.0000024 3.9105 

KANKULE II 7.2 21.56666 0.6734899 0.0000005 1.688189 

KANKULE III 6 21.5083333 0.7197964 0.0000005 1.804262 

KANKULE IV 10.9 22.266666 1.0212474 0.000001 2.559888 

KANKULE V 21.3 24.391666 1.9056126 0.0000036 4.776662 

KANKULE VI 9.1 23.1833333 1.2840186 0.0000016 3.218557 

KANKULE VII 26.5 21.15 2.6853818 0.0000072 6.731254 

KANKULE VIII 24 22.7583333 2.1953011 0.0000048 5.502804 

KANKULE IX 33.5 21.5916666 3.2440723 0.0000105 8.131683 

KANKULE X 22.2 24.3916666 1.9716666 0.0000039 4.943021 

KANKULE XI 15.4 24.85 1.3300099 0.0000018 3.333841 

KANKULE XII 23.8 26.6416666 2.5989733 0.0000067 6.51466 

KANKULE XIII 21.6 24.7583333 2.6707744 0.0000071 6.694639 

KANKULE XIV 26.1 26.3583333 2.1395155 0.0000046 5.36297 

An array where the coefficients of the two parallel lines differ. 
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Table 2. Reduction of the magnetic field B as a function of the soil temperature. 

 
A B Ho 0.001 Ho 0.01 Ho 0.05 Grad max 

Kankule I 5.196e−02 4.964e−15 1 1 1 0.09419068 

Kankule II 3.888e−01 −2.561e−14 1 0 0 0.12567529 

Kankule III 5.017e−01 −6.483e−14 0 0 0 0.09799187 

Kankule IV 4.610e−01 −5.989e−14 0 0 0 0.1254712 

Kankule V 2.117e−01 6.208e−15 1 1 1 0.13139944 

Kankule VI 1.917e−03 2.475e−16 1 1 1 0.08331411 

Kankule VII 2.438e−01 8.349e−15 1 1 1 0.11600811 

Kankule VIII 2.049e−01 6.800e−15 1 1 1 0.1285185 

Kankule IX 2.932e−01 9.414e−15 1 1 0 0.12139556 

Kankule X 3.176e−01 −9.710e−15 1 1 0 0.13234238 

Kankule XI 2.495e−01 −2.501e−14 1 1 1 0.136118 

Kankule XII 4.278e−01 −4.870e−14 1 0 0 0.10765238 

Kankule XIII 3.515e−01 2.281e−14 1 1 0 0.09507472 

Kankule XIV −1.140e−01 −1.060e−14 1 1 1 0.143408 

 
Table 3. Thermal water electrolysis data and associated thermal field. 

Sites T_sol T_eau 
Champ 

B 
Cl− 

(mg/L) 
SO− 

4  
(mg/L) 

HCO− 
3  

(mg/L) 
PO− 

4  
(μmole/L) 

NH+ 
4  

(μmole/L) 
NO− 

3  
(μmole/L) 

Kank I 29.817 54.3096 33.05609 7 492 322.5 0.133 76.5 5.1 

Kank II 22.74 54.3625 33.05585 6.4 484.32 330 0.071 44.2 8.5 

Kank III 22.54 45.3692 33.05509 6.3 539.52 310 0.062 28.9 34 

Kank IV 26.031 66.2077 33.05529 6.3 460.8 360 0.111 28.9 32.3 

Kank V 36.012 62.9192 33.05565 7.1 542.4 337.5 0.071 137.7 18.7 

Kank VI 27.45 47.6058 33.05584 7 537.12 350 0.093 54.4 18.7 

Kank VII 39.46 64.1539 33.05584 7.25 549.6 335 0.084 49.3 45.9 

Kank VIII 31.898 50.701 33.05574 7 540 347.5 0.089 96.9 11.9 

Kank IX 31.335 64.1885 33.05604 8 520.8 321 0.089 64.6 17 

Kank X 35.923 63.8846 33.05599 7.1 497.28 347.5 0.097 34 18.7 

Kank XI 35.231 69.8817 33.05592 6.8 508.8 352.5 0.093 102 15.3 

Kank XII 37.006 64.9212 33.05557 6.1 530.4 300 0.111 64.6 6.8 

Kank XIII 37.81 63.3144 33.05539 6.5 528 298 0.111 105.4 20.4 

Kank XIV 41.49 62.5039 33.05609 5.5 508.8 285 0.129 71.4 51 

 
Let’s determine the maximum values of this function, using differential calcu-

lus. It comes at a given depth 
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 (62) 

With 0z
d
> , the first value of z which makes the gradient maximum, is ob-

tained for k = −1. 
We then find the following results for the Kankule IV site: 
(Abscissa of the maximum) ( )1.25 60 365 4.537828208 mz d= ∗π + =  and 

the maximum gradient 

( ) 0.125471195 C mg z T z= ∂ ∂ =                (63) 

For all site of Kankule the average maxima gradient give 

[ ]0.117 C mm =                        (64) 

4. Discussion of the Results 
4.1. Which of the Geotherms (56) and (60) Verify (49)? 

To find out, we then introduce these results into Equation (49) and see more. 
For Equation (49) for which Wu and Nofziger find the solution. 

( ) ( )0
0

2
, e sin

365 2

z
d

a

t t zT T z t T A
d

−  π − π
= = + − − 

 
, 

with 2d α
ω

=  and 2 365.ω = π  

He then comes 
1) 

( ) ( )

( )

0
0

00

21 1 2; e cos
365 365 2

2
e cos

365 2

t

z
d

z
d

t tT zT z t A
t d

t tA z
d

α α

ω
α

−

−

 π −∂ π π′ = = − − ∂  
 π − π

= − − 
 

          (65) 
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(66) 

Comparing solutions (65) and (66), we find that the two results differ. We 
then conclude that solution (56), given by Wu and Nofziger is not suitable as 
solution of (49). 

The result (60) that we found for the geotherm being 
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2) 
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                           (68) 

Comparing solutions (67) and (68), we find that the two results are equal. We 
then conclude that the relation (60), is suitable as solution of (49).  

This analysis of the solution used by Wu and Nofziger shows that it is not the 
integral of the one-dimensional Fourier Equation (49). This is why it has not 
been exploited by Alonso/Finn [15]. The result of the latter verifies the Fourier 
equation. Its only problem is that some constants of the geotheme are not well 
specified 

4.2. Does Each Thermal Water Site Represent a Bundle? 

As a result, the geotherm (50) takes the form: ( )
1

, e
ii z t

dT z t
ω +  ± −  

  = ; a quaternion 

of module ( )
e

,
e

z
d

z
d

T z t

−
= 



. 

The solutions which have a physical meaning are those for which  

( ), e
z

dT z t
−

= , corresponding to the propagation of the heat-absorbed waves. 
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Always starting from (50), we get the following real solution for (60): 
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0 0

2 3, e sin
365 4

z
d

t t zT z t T A
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 π − π
= + − +  
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Result called integral curve of (49) or geothermal. It is this result that Adelin 
MULENDA [1] applies for the Kankule site. 

If we introduce the values of Table 1, in the geotherms (60) or (67), then in 
(57), we find that we are dealing with a bundle, and this for each site. The coeffi-
cients obtained from the geotherm of each, are different from another site in 
Kankule. We can then say that each site is a different bundle than that of a site 
from the same environment. Paragraph 2.1.4: The visualization of bundles by 
means of stereographic projection, allows us to say that two different bundles in 
circles, do not meet. Such a situation should be verified with the physical or 
chemical properties of the thermal waters of the sites. For that, we will have to 
check if at least one same source feeds two different sites. This could help us un-
derstand why each thermal bath in the world’s largest power plant, The Geysers 
in the United States, exploits each source to generate electric current [25]. It is 
the same for the geothermal power station of Soultz for Alsace in France. 

4.3. Comparison of Ion Density Values in Site Thermal Baths 

Can we say that the same source of thermal water supplies two different sites? 
Here is the result which seems to appear from the study of Table 3. We have the 
same ions in all thermal waters: Cl− (mg/L), SO− 

4  (mg/L), HCO− 
3  (mg/L), PO− 

4  
(μmol/L), NH+ 

4  (μmole/L) and NO− 
3  (μmol/L), which suggests that we have the 

same source everywhere. However, the analysis of the geological map of the 
DRC [30] or that of Kivu [31], what can we say? We are in the presence of the 
same recent basic lava. What our first impressions can only translate is that our 
Kankule thermal springs have only been in contact with the same source rock. 
To realize this, we divide the numerical data of the two parallel lines each time. 
If the results found give a value of 1 everywhere, then two different sites should 
be supplied by the same groundwater source. What we find as a result of the 
calculations, for example between Kankule I and II, are really different. We find 
that the ion concentrations or densities are very different between two different 
sites. We come to the conclusion that in depth, two different sources do not 
meet after being in contact with the heat coming from the magma chamber (or 
hot rock). In other words, deep heat islands of the same basalt, but differently 
heated at two different points, are sources of energy observable in Kankule 
through the thermal waters. This corroborates the idea of bundles discussed in 
the previous paragraph. In fibration language, what are we going to call the 
thermal water sites and the magma chambers that supply them? The visualiza-
tion of fibration by stereographic projection, from paragraph 2.4.3., allows us to 
say that the deep magma chamber is the point above which the bundle is made. 
This hot rock is a source of heat, so we call it the heat core. The thermal water 
site, which is a bundle above the magma chamber, we call it bundle of heat. 
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Are there parallels between the heat bundles and the magnetic field lines? 
The Hopf fibration of electromagnetic waves obtained by [27] and the one we 

obtained using relations (33), (36), (37) and (57), lead us to think that these two 
structures on S3, have links. In an electromagnetic wave there is always an inte-
raction between a magnetic field and an electric field. And this at all times. The 
results in Table 3 help us to see that the heat from each Kankule site has contri-
buted to the ionization of the thermal waters. There can then exist a certain 
bond between the geomagnetic field in a site with the field created by heat, 
represented by the temperature of the ground of the site of thermal baths. This 
observation leads us to discuss the results of Table 2. Is there a linear regression 
of the geomagnetic field B in temperature of the soil of the corresponding site? 
We are tempted to answer with yes when the null hypothesis Ho is accepted, and 
with no when this null hypothesis is rejected. In all cases, we arrive at a non-zero 
correlation between the temperature and the Earth’s magnetic field of the cor-
responding site. We have found by way of illustration for Kankule I, using the R 
software, and exploiting the statistics, the following results: 

>summary (dt1) 
Call: 
lm (formula = zmatrix.temp.champ1[, 1] ~ zmatrix.temp.champ1[, 2]) 
Residuals: 
Min 1Q Median 3Q Max 
−1.9712 −0.6506 0.0449 0.5635 3.7750 
Coefficients: 
Estimate Std. Error t value Pr (>|t|) 
(Intercept) 4.964e−15 1.399e−01 0.000 1.000 
zmatrix.temp.champ1[, 2] 5.196e−02 1.412e−01 0.368 0.714 
Residual standard error: 1.009 on 50 degrees of freedom 
Multiple R-squared: 0.0027, Adjusted R-squared: −0.01725 
F-statistic: 0.1354 on 1 and 50 DF, p-value: 0.7145 
Result that we can write 

5.196th 02 4.964th 15B T= − − − ; 5%.            (69) 

In other words, the linear dependency hypothesis between B and T is accepted 
up to the 5% threshold. The B magnetic field is expressed in micron-Tesla and 
the temperature T in degrees Celsius. Matching the site’s magnetic field with soil 
temperature in situ helps us understand how the geomagnetic field can model 
heat fiber. In this passage we bypassed the topological approach. Introducing 
(69) in (49), we find:  

2

2

1 0B B
tz α

∂ ∂
− =

∂∂
                       (70) 

This equation is that of Fourier, applied to the terrestrial geomagnetic field. 
She explains that the Earth’s magnetic field is increasing from the surface of the 
ground to the center of the Earth, fact which is justified by the nonzero thermal 
gradient, or then the nonzero geomagnetic gradient, phenomenon that allows 
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various applications of geothermal energy [16]. From Maxwell’s equations of the 
classical electromagnetic field, Faraday-Henry’s law gives us: 

rot BE
t

∂
= −

∂
                       (71) 

Equation expresses that the variation of the magnetic field in time generates 
the electric field. The integral solution of (70), being of type (50) or (57), then 
the earth’s magnetic field is really a bundle. It is a Hopf fibration generated by 
Charge movements, according to Maxwell’s equations. Our approach allows us 
to validate the Hopf fibration model that we carried out in paragraphs 2.1.3 and 
2.1.4. Thus the electromagnetic waves are then modeled as a Hopf Fibration. 
This is also the result of the work of William T.M. and Dirk Bouwmeester [27]. 
And reciprocally, the linear links between B and T, allows us to corroborate the 
notion of fibration of the field T, for the site of Kankule I. 

For the other Kankule sites, we had obtained similar results. Even if the null 
hypothesis is rejected, as in Kankule IV. There is always a certain linearity, as 
weak as it is, between the magnetic field of the site and the geomagnetic field. 
This implies that there is an interaction between the magnetic field of the site 
and the soil of the corresponding site, however small. Indeed, the ionization of 
thermal waters observed with the results of Table 3, allows the creation of the 
electromagnetic field in place [16]. And this field in thermal waters interacts 
with the geomagnetic field of the place. In view of the above, we can say that the 
geomagnetic field allows us to detect the state of electrification at any Kankule 
geothermal site. There is therefore parallelism, in terms of interaction, between 
the B and T fields of a given Kankule site. 

4.4. Which Geothermy Could Be Exploited in Kankule? 

The average Kankule thermal gradient of 0.117˚C/m differs from the global av-
erage thermal gradient of 0.033˚C/m. This Kankule gradient is 3.5 times greater 
than the global average thermal gradient. With this average Kankule thermal 
gradient, we should be able to exploit different types of geothermal energy as in-
dicated [24]. The different types of geothermal energy that can be used in Kan-
kule are: 
 <30˚C and <500 m: surface geothermal energy. This takes up the very low 

temperatures (enthalpy). Because at 257 m deep, we will have temperatures 
of at most 30˚C. 

 between 25˚C - 30˚C and 150˚C and >500 m: deep geothermal energy. Be-
cause at a depth of 500 m, we will already have a temperature of 58.5˚C. In 
order to generate electricity, it would have to be over 100˚C. By digging up to 
1500 m, or 1.5 km, deep, we will have temperatures reaching 175.5˚C. Going 
up to 2000 m deep, we will have a temperature of 234˚C. The production of 
electricity is then possible from 50˚C as already pointed out [23]. 

 For Kankule IV, with a gradient of 125, 471, 195˚C/km. You can reach de-
sired temperatures by drawing water more than 2 km deep, reaching temper-
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atures of 234˚C. A good result when we already compare them to that of 
Soultz in France [25] [26]. 

5. Conclusions 

In the present work, we have found that: 
­ Each thermal water site is represented by the temperatures of the soil or of its 

waters; 
­ Each site is a heat beam taken as a fibrous equivalent to a line of the magnetic 

field of the place; 
­ There is interaction between the bundle of the site’s geomagnetic field and 

the bundle of heat. 
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Symbols Used 

q: quaternion 
(a, b, c, d): unit quaternion 
Sn: sphere unit of dimension n  

Nψ ′ : stereographic projection in R2 from the North Pole N' 

Nϕ : stereographic projection in R3 from North Pole N 
i: imaginary unit 
T: temperature 

0T : average annual soil temperature 

0A : the annual average thermal amplitude 
d: damping depth 
α: thermal diffusivity coefficient 
z: depth in the ground 
ω: annual pulse of thermal waves 
B: module of the Earth’s geomagnetic field  
t: time 
σ: temperature variance  
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