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Abstract 
This paper presents economized power series for the Gaussian function. The 
economization is accomplished by utilizing the “usual” and the “shifted” 
Chebyshev polynomials of the first kind. The resulting economized series are 
applied to the solution of the radial Schrödinger equation with the attractive 
Gaussian potential via the asymptotic iteration method (AIM). The obtained 
bound state energies are compared with those given by the same method 
when the Taylor expansion is used to approximate the Gaussian potential. 
We also compare them with those obtained from the exact Hamiltonian 
diagonalization on a finite basis of Coulomb Sturmian functions. 
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1. Introduction 

The easiest and most obvious way to obtain a polynomial approximation to a  

given function ( )f x  is to use a truncated Taylor series of the form 
0

N
j

j
j

a x
=
∑  

or more generally ( )0
0

N j
j

j
a x x

=

−∑  [1] [2]. In this truncated method, the more 
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the number of the retained terms, the higher the accuracy of the approximation.  
However, this method suffers from the uneven distribution of errors in the ap-
proximation. The closer the evaluated point to the origin of expansion, the 
higher the accuracy and vice versa. This means that for a desired level of accura-
cy, the points far from the origin will need substantially more terms than those 
close to the origin of expansion. For computational purposes, however, it may be 
undesirable to require as many as 1N +  terms when N is large. Indeed, it may 
be unnecessary to use more than a few terms, especially if interest in the func-
tion ( )f x  is restricted to a small range 0 1x x x≤ ≤  of the argument. 

The powers of a variable x appeared originally purely in algebraic problems 
[2]. With the development of calculus, the great importance of power expan-
sions became evident. The expansion discovered by Taylor in 1715 and by 
Maclaurin in 1742 allows predicting the evolution of a function from its value 
and all its derivatives in one particular point [3]. The “Taylor series” thus be-
came one of the cornerstones of analytical research and was particularly useful 
in establishing the existence of solutions of differential equations [2]. It should 
be recalled, however, that the Taylor expansion suffers from slow convergence 
speed for points far from the origin of expansion. This problem could be allevi-
ated by using minimization methods such as least square (LS) algorithm [3] [4]. 
In this case, the function ( )f x  is approximated with a finite degree polynomial  

0

N
k

k
k

c x
=
∑  whose coefficients kc  are selected such that 

( ) ( )
2

0
d

b N
k

k
ka

J w x f x c x x
=

 ≡ − 
 

∑∫                   (1) 

is minimum, where ( )w x  is an arbitrary weighting function and [ ],a b  is the 
interval in which the function is approximated. The minimization in Equation 
(1) yields [1] 

( ) ( ) ( )
0

d d , 0,1,2,
b bN

k n n
k

k a a

c w x x x x w x f x x x n
=

= =∑ ∫ ∫           (2) 

We have to indicate that the system of Equation (2) is difficult to solve be-
cause it requires the computation of a full two-dimensional matrix. The reason is 
that the function ( )f x  is approximated with non-orthogonal power series basis 

( )21, , ,x x  . This could be avoided if the function is approximated with an orthog-
onal basis. That is, if the orthogonal basis is given by ( ) ( ) ( )0 1 2, , ,P x P x P x  , then 
the coefficients kc  are determined by 

( ) ( ) ( ) ( ) ( )2
d d , 0,1,2,

b b

k k k
a a

c w x P x x w x f x P x x k= =  ∫ ∫         (3) 

Using an orthogonal basis will cause the off diagonal terms to be null, and can 
occasionally lead to the so-called “economized power series”. As a side note, we 
should indicate that much attention has also been paid to the problem of in-
venting methods of summing a series in such a way that it shall become conver-
gent, although the original series, if added term by term, increases to infinity [5]. 
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Economization of power series is a procedure that replaces a very accurate (or 

even exact) polynomial approximation 
0

N
j

j
j

a x
=
∑  of degree N by an “econo-

mized” polynomial 
0

n
j

j
j

e x
=
∑  of a smaller degree n such that, in the range of  

interest, the absolute error introduced by the replacement is less than some ac-
ceptable value E [6]: 

0 1
0 1

,
N n

j j
j j

j j
a x e x E x x x

= =

− < ≤ ≤∑ ∑                  (4) 

The procedure of economization, or telescoping as it is sometimes called [2] 
[6], is accomplished by utilizing the properties of Chebyshev polynomials of the 
first kind [2] [6] [7] [8], among which the minimax property [9] [10]. According 
to the minimax principle, Chebyshev approximations are associated with the 
approximations which minimize the maximum error. 

We have to emphasize that the economization algorithm has many distinct 
phases [6] [11] [12]. More precisely, the economization of power series has four 
basic steps: 

Step 1. Expand ( )f x  in a Taylor series valid on the interval [ ]1,1− . Trun-
cate this series to obtain a polynomial 

( ) 0 1
N

N NP x a a x a x= + + + ,                   (5) 

which approximates ( )f x  within a prescribed tolerance error E for all x in 
[ ]1,1− . 

Step 2. Expand ( )NP x  in a Chebyshev series, 

( ) ( ) ( )0 1 1
1
2N N NP x c c T x c T x= + + + ,               (6) 

making use of the following matrix equation [8]: 

( )
( )
( )
( )
( )
( )
( )
( )
( )

0
0

1
1 2

2
2 3

3
3 4

4
4 5

5
5 6

6
6 7

7
7 8

8

1 2 1 1 2
2 0 1
2 2 0 1
2 0 3 0 1
2 6 0 4 0 1
2 0 10 0 5 0 1
2 20 0 15 0 6 0 1
2 0 35 0 21 0 7 0 1
2 70 0 56 0 28 0 8 0 1

T x
x T x

x T x
x T x
x T x
x T x
x T x
x T x
x T x

   
   
   
   
   
   
   

   =
   
   
   
   
   
   
                 











 
 
 
 
 
 
 
 

     (7) 

Step 3. Truncate this Chebyshev series to a smaller number of terms by re-
taining the first n terms, choosing n so that the maximum error given by 

( ) ( ) 1n n Nf x M x E c c+− ≤ + + +                 (8) 

is acceptable, where ( )nM x  designs the resulting small Chebyshev series: 
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( ) 0 1 1
1
2n n nM x c c T c T= + + + .                  (9) 

Step 4. Replace ( ) ( )0,1, ,jT x j n=   by its polynomial form, which leads to 

( ) 0 1
n

nf x e e x e x≈ + + + ,                   (10) 

using the following matrix equation [8]: 

( )
( )
( )
( )
( )
( )
( )
( )

1
0

0

1 1 2

2 2 3

3 3 4

4 4 5

5 5 6

6 6 7

7 7 8

8

1 1 2
2

0 1 2
2 0 1 2

0 3 0 1 2
2 0 4 0 1 2
0 5 0 5 0 1 2
2 0 9 0 6 0 1 2

0 7 0 14 0 7 0 1 2
2 0 16 0 20 0 8 0 1 2

T
xT x

xT x
xT x
xT x
xT x
xT x
xT x
xT x

−            −     −    −   =  −      − −   − −      − −        
         






 
 
 
 
 
 
 
 
 
 
 
 
 
  

    (11) 

If necessary in step 1, i.e., when we have an interval [ ],a b  other than [ ]1,1− , 
make a transformation of independent variables so that the expansion is valid on 
that interval, by means of the expression [6] [11] 

( )
( )

2
2

x b a
y

b a
− +

=
−

.                       (12) 

In this case, it is necessary to change variable back to x after step 4, making 
use of the expression [13] 

( ) ( )1 1 .
2 2

x b a y b a= − + +                    (13) 

For the special domain 0 1x≤ ≤ , we can write 

( )1 2, 2 1x y y x= + = −                     (14) 

In this domain, the Chebyshev polynomials are denoted ( )nT x∗  and defined 

by [14]: ( )0
1
2

T x∗ =  and ( ) ( )* 2 1n nT x T x= −  for 1n ≥ , 0 1x≤ ≤ . They are 

called shifted Chebyshev polynomials of the first kind. 
Note that Equations (7) and (11) can, in general, be summarized as [8] 

x CT=


                          (15) 

and 

T Px=
 

                           (16) 

respectively, where: 
• T


 and x


 are the ( )1n + -element vectors, i.e., 

( ) ( ) ( ) ( )0 1 21 2 , , , ,t
nT T x T x T x T x=   



              (17) 

and 
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2 11 2, , 2 , , 2t n nx x x x− =  



.                  (18) 

• P and C are lower triangle matrices such that [8] 

00 10 11, 0 , 0
, , 1, 0, 1;

n n
ij iji j i j

P P C C P P P
= =

   = = = = =           (19) 

20 21 222, 0, 1;P P P= − = =                    (20) 

,0 2,0

, 1, 1 2,

3, , ;
, 1, ,

i i

i j i j i j

P P
i n

P P P j i
−

− − −

= −  == − = 




            (21) 

1, 0, , ;iiC i n= =                        (22) 

,0 1,1

, 1, 1 1, 1

2
1, , 1;

, 1, ,
i i

i j i j i j

C C
i n

C C C j i
−

− − − +

=  = −= + = 




          (23) 

,0 1,1 , 1, 1 1, 12 ; , 1, , 1.n n n j n j n jC C C C C j n− − − − += = + = −         (24) 

The main purpose of this paper is to develop a technique for generating a 
polynomial approximation for the Gaussian function which, among all polyno-
mial approximations with the same degree, has a very small maximum error. 
This technique is based on the telescoping procedure of power series proposed 
by Lanczos [2], and the polynomial fitting of the error in the approximation, 
with the objective of economizing a sufficiently accurate truncated Maclaurin 
series of the Gaussian function. The resulting economized series will be used to 
compute bound state energies associated with the attractive Gaussian potential 
via the Asymptotic Iteration Method (AIM). Similar computations have been 
made by Mutuk [15] who applied the AIM to the Gaussian potential using a 
truncated Maclaurin series to approximate the function ( )2exp r− . 

The rest of this paper is organized as follows. In Section 2, we apply the pro-
cedure of economization to the Gaussian function by using firstly Chebyshev 
polynomials of the first kind, and secondly the ( )jT x∗  polynomials. For each 
economized series, the exact error is calculated and fitted by a power series hav-
ing the same degree as the initial non-economized finite power series. The new 
finite series obtained by adding the approximate error to the associated econo-
mized series in turn undergoes the procedure of economization, which leads to a 
much more efficient economized power series. The originality of our work is 
precisely the multiple application of the economization method, which alleviates 
one of the most harmful aspects of the telescoping method, i.e., the low accuracy 
of the economized series around the origin of expansion [16]. Section 3 contains 
a brief introduction to the AIM for the Gaussian potential using the economized 
series obtained in Section 2 to approximate the Gaussian function. We also pre-
sent and comment our results concerning bound state energies of the attractive 
Gaussian potential for a given well depth. We compare them with those given by 
the exact Hamiltonian diagonalization on a finite basis of Coulomb Sturmian 
functions. The conclusion is given in Section 4. 

2. Gaussian Function Economization 

We here consider the Gaussian function of the form 
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( ) ( )2expGf x x= −                       (25) 

and the interval [−1, 1] for the independent variable x. The Maclaurin series ex-
pansion of this function is given by 

( ) ( )2 2

0

1
exp .

!

j
j

j
x x

j

∞

=

−
− = ∑                    (26) 

We denote by { } ( )N
Gf x  the Nth-degree truncated Maclaurin series of ( )Gf x  

and we choose 14N = . We have: 

{ } ( ) ( )7
14 2

0

1
!

j
j

G
j

f x x
j=

−
= ∑                     (27) 

Expanding { } ( )14
Gf x  in a Chebyshev series, we obtain: 

{ } ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

14
2 4 6

8 10

12 14

739773 205029 114127 18943
1146880 655360 2949120 5898240

293 61
1474560 5898240

1 1
2949120 41287680

Gf x T x T x T x

T x T x

T x T x

= − + −

+ −

+ −

 (28) 

where we have used relations given in Equation (7). Of course if we expand the 
Chebyshev polynomials again in terms of power series of x, we obtain the same 
polynomial back. 

Let us truncate the Chebyshev series (28) by neglecting the last two terms, and 
denote by { } ( )10

Gf x  the resulting expression, i.e., 

{ } ( ) ( ) ( )

( ) ( ) ( )

10
2 4

6 8 10

739773 205029 114127
1146880 655360 2949120

18943 293 61
5898240 1474560 5898240

Gf x T x T x

T x T x T x

= − +

− + −



     (29) 

Replacing ( ) ( )2, 4, ,10jT x j =   by its polynomial form (see Equation (11)), 
we obtain the tenth-degree economized power series of ( )2exp x−  associated 
with the finite series { } ( )14

Gf x  which is a polynomial of degree 14: 

( ) { } ( )102 2 4

6 8 10

2752511 2949041 184201exp
2752512 2949120 368640

15227 99 61
92160 2560 11520

Gx f x x x

x x x

− ≈ = − +

− + −



      (30) 

Figure 1 shows four errors { } ( )10
GE x , { } ( )12

GE x , { } ( )14
GE x  and { } ( )10

GE x  in 
the approximation of ( )2exp x−  calculated as the differences between the Gaussian 
function and the truncated power series { } ( )10

Gf x , { } ( )12
Gf x , { } ( )14

Gf x  and  
{ } ( )10

Gf x , i.e., { } ( ) ( ) { } ( )10 102expG GE x x f x= − − , { } ( ) ( ) { } ( )12 122expG GE x x f x= − − , 
{ } ( ) ( ) { } ( )14 142expG GE x x f x= − −  and { } ( ) ( ) { } ( )10 102expG GE x x f x= − −  . The defini-

tion of the function { } ( )10
GeE x  whose graph is shown in Figure 1 will be given 

below. 
We see that the tenth-degree economized power series { } ( )10

Gf x  approximates  
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Figure 1. Plots of different errors in the approximation of ( )2exp x− . (a) Graph of { } ( )10
GE x ; (b) Graph of 

{ } ( )12
GE x ; (c) Curves of { } ( )10

GE x  (solid line) and { } ( )14
GE x  (symbol  ); (d) Graph of { } ( )10

GeE x . 

 
( )2exp x−  on [−1, 1] better than the tenth-degree Maclaurin series and nearly as 

well as the twelfth and fourteenth-degree Maclaurin series { } ( )12
Gf x  and { } ( )14

Gf x . 
Indeed, its maximum error (at 1x = ± ) is 52.26131782 10−×  whereas the 

error of approximation equals 31.21277450477565 10−×  for { } ( )10
Gf x ,  

41.7611438411323396 10−− ×  for { } ( )12
Gf x  and 52.229831429946445 10−×  for 

{ } ( )14
Gf x . We “economize” in sense that we get about the same precision with a 

lower-degree polynomial. 
We have to add that we can get a much more efficient economized power se-

ries by first adding to the series { } ( )10
Gf x  the associated error fitted by a 

high-degree polynomial, and then applying the procedure of economization to 
the resulting polynomial. To this end, we discretize the problem in the interval 

[0, 1] and evaluate the function { } ( )10
GE x  at kX kh=  (for 0,1, , 1k p= − ) 

where p is the number of mesh points and h the step size, thus creating two 

p-components real vectors X and Y such that kX kh=  and { } ( )10
k G kY E X=  , 

0,1, 2, , 1k p= − , where kX  and kY  design the k-th components of the vec-
tors X and Y respectively. We then appeal to the maple 18 software (the Fit com-

mand) to construct the (2K)th-degree polynomial ( )2KP x  of type 2

0

K
j

j
j

B x
=
∑ , 

5K > , that best fits the above set of data points, i.e., ( ),k kX Y , 0,1,2, , 1k p= − . 
It is worth noting that in maple, the Fit command fits a model function to given 
data by minimizing the least-square error. In the case we are concerned with, the 
calling sequence is: ( )( )2 , , ,KFit P x X Y x  where ( )2KP x  is to be replaced by 

2

0

K
j

j
j

B x
=
∑  and 0 1, , , KB B B  are adjustable parameters to be computed. With K 

= 7 and p = 101, we find: 
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7
0

5
1

4
2

3
3

3
4

3
5

6

3.629622950984207597588 10

2.673950577493475324288 10

3.21731897337007 10

1.4340314605314449260836 10

2.95693533428559792089 10

2.95236680605017687949 10

1.27950886476751

B

B

B

B

B

B

B

−

−

−

−

−

−

= ×

= − ×

= ×

= − ×

= ×

= − ×

= 3

4
7

1361964 10

1.22788990618675818847685 10B

−

−











 ×

 = − ×

            (31) 

Applying the procedure of economization to the fourteen-degree polynomial 
{ } ( ) ( )10

14Gf x P x+ , we find a new tenth-degree economized series, which we de-

note by { } ( )10
Gef x : 

{ } ( )10 2

4 6

8

10

0.9999995697531816685 0.9999686090106535367159

0.4996268919513314237 0.1650294823388696094779
0.03835801149191082515380786
0.00510734148478025040218

Gef x x

x x
x

x

= −

+ −

+

−

 (32) 

The function { } ( )10
GeE x  defined by the expression 

{ } ( ) ( ) { } ( )10 102expGe GeE x x f x= − −                  (33) 

is shown in Figure 1. It is clear that the series { } ( )10
Gef x  is more accurate than 

all the above power series. 
So far in this section, we have used the ( )jT x  polynomials to economize the 

fourteenth-degree Maclaurin series of the Gaussian function on the domain 
1 1x− ≤ ≤ . In what follows the economization will be done on the interval [0, 1] 

using shifted Chebyshev polynomials of the first kind ( )*
jT x . We get 

{ } ( ) ( )
{ } ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1414
*

* *
1 2

* * *
3 4 5

* *
6 7

24725514565 671360027 1528406863
33822867546 2013265920 32212254720

431317481 5406881 747037
24159191040 16106127360 1610612736

1148881 70579 43
96636764160 9395240960

G Gf x f x

T x T x

T x T x T x

T x T x

=

= − −

+ + −

+ + − ( )

( ) ( ) ( )

( ) ( ) ( )

*
8

* * *
9 10 11

* * *
12 13 14

97
8053063680

1547 1 7
12079595520 2147483648 8053063680

19 1 1
48318382080 24159191040 676457349120

T x

T x T x T x

T x T x T x

− − −

− − −

    (34) 

where the asterisk in brackets in expression ( )
{ } ( )14

*Gf x  refers to the use of the 

( )*
jT x  polynomials in the approximation of the Gaussian function ( )Gf x . 

It is worth noting that Equation (34) is obtained by using the following ex-
pression [14]: 
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( )

( )

( )

0

*
0

1 *
1

*

1 4
2
1 4
2

1 4
2

NN

x
T

x T
A

T
x

 
 

  
  
   =   
  
   

 
 






                     (35) 

where: 
• 14N =  

• *
0

1
2

T =  and thus *
02x T=  

• 
, 0

N
ij i j

A a
=

 =  


 is a ( ) ( )1 1N N+ × +  triangular matrix such that [14] 

1, 0,1, , ; 0, ;ii ija i N a j i= = = >                (36) 

( )1,0 0 12 , 0,1, 2, ,i i ia a a i N+ = + =                 (37) 

and 

1, 1 1, 1, 12 , , 1, 2, , .ij i j i j i ja a a a i j N− − − − += + + =             (38) 

It follows immediately from Equation (35) that 

( )

( )

( )

( )

( )

0

*
0

1*
1 1

*

1 4
2
1 4
2

1 4
2

N N

x
T

T x x
A

T x
x

−

 
 

   
   
   =   
   
    

 
 





                   (39) 

Since ( )* 1jT x ≤   j∀ ∈   and [ ]0,1x ∈ , the last six terms in the right-side 
of Equation (34) are rather tiny in magnitude ( 61.280672 10−≈ × , 

104.65661287 10−≈ × , 108.69234403 10−≈ × , 103.93225087 10−≈ × ,  
114.13921144 10−≈ ×  and 121.4782898 10−≈ ×  respectively). We therefore can 

chop off these terms (keep terms up to ( )*
8T x ) without risk of appreciable 

change in the final results, and then re-expand back to a monomial series. Doing 
this gives the following eighth-degree polynomial: 

( )
{ } ( )8 2

*

3 4 5

6 7 8

338228631227 10451 335730191
338228674560 503316480 335544320

1073473 1974601 330473
188743680 4194304 3932160
14501951 457969 4397
47185920 3440640 245760

Gf x x x

x x x

x x x

= + −

+ + +

− + −



      (40) 

where the asterisk in brackets refers to the fact that the polynomial ( )
{ } ( )8

*Gf x  
results from expanding a series of shifted Chebyshev polynomials of the first 
kind in a Maclaurin series. We remark that all coefficients of all orders between 
0 and 8 are present in the series (40), which is contrary to the result obtained by 
doing economization using the ( )jT x  polynomials. 
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Expanding in shifted Chebyshev series the fourteenth-degree polynomials ob-
tained by adding to the series (40) the associated error, i.e., ( ) ( )

{ } ( )82
*exp Gx f x− −  , 

fitted by a polynomial of degree 14, and then truncating the resulting series by 
keeping terms up to ( )*

10T x , we obtain, after re-expanding back to a monomial 
series: 

( )
{ } ( )10

*

2 3

4

1921813995872400 1826255126789
1921813993952917 7435884170023661913

4672693204690532 102312372739415
4672739946124667 642352316915332223
2178621924686046 256326879832656
4345907498707751 4101

Gef x x

x x

x

= −

− −

+ − 5

6 7

8 9

10

6598156699859
1351939948987433 2017059682950979
9138237798110217 55887252994313927
531462878751634 502318618293295
6164345560849269 15052107665351233

246300847073295
59133395086370608

x

x x

x x

x

− −

+ −

+

    (41) 

Note that this expression can be used to approximate ( )2exp x−  on [ ]1,1−  
by multiplying all terms of odd exponents by the sign of the independent varia-
ble x. 

In Figure 2, we show the plot of the error in the approximation of ( )2exp x−  
based on the use of Equation (41), together with the plots of  

( )
{ } ( ) ( ) ( )

{ } ( )8 82
* *expG GE x x f x≡ − −  , { } ( )10

GeE x  and { } ( )14
GE x . We see that the ( )*

jT x  
polynomials economize the Gaussian function ( )2exp x−  more efficiently than  

 

 

Figure 2. Comparison of ( )
{ } ( )10

*GeE x  with other errors in the approximation of ( )2exp x− . (a) Graph of { } ( )14
GE x ; (b) Graph of 

( )
{ } ( )8

*GE x ; (c) Graph of { } ( )10
GeE x ; (d) Graph of ( )

{ } ( )10
*GeE x . 
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the ( )jT x  ones, but there is a price to pay since for a given degree 2p, the 
( )*

jT x  polynomials lead to an economized polynomial whose number of terms, 
i.e., 2p + 1, is almost twice the number of terms in the economized power series 
obtained when the ( )jT x  polynomials are used, which is exactly 1p + . 

3. Application to the Asymptotic Iteration Method for the 
Gaussian Potential 

3.1. Basic Equations of the Asymptotic Iteration Method (AIM) 

In this subsection, we briefly outline the asymptotic iteration method; the details 
can be found in [17] and [18]. 

The AIM was introduced to solve the second-order homogeneous linear dif-
ferential equations of the form [17] [18] [19] 

( ) ( ) ( ) ( ) ( )0 0y x x y x s x y xλ′′ ′= +                 (42) 

where ( )0 0xλ ≠  and ( )0s x  have sufficiently many continuous derivatives in 
some interval, not necessarily bounded. The differential Equation (42) has a 
general solution [17] [18] 

( )( ) ( ) ( )( )( )2 1 0( ) exp d exp 2 d d
x x

y x c c
ξ

α ξ ξ λ η α η η ξ = + +  ∫ ∫ ∫     (43) 

where 

( )
( )

( )
( ) ( )1

1

k k

k k

s x s x
x

x x
α

λ λ
−

−

= ≡                     (44) 

for sufficiently large k. 
In Equation (44), ( )k xλ  and ( )ks x  are defined as follows [17] [18]: 

( ) ( ) ( ) ( ) ( )1 1 0 1 , 1, 2,3, ;k k k kx x s x x x kλ λ λ λ− − −′= + + =         (45) 

( ) ( ) ( ) ( )1 0 1 , 1, 2,3,k k ks x s x s x x kλ− −′= + =             (46) 

The convergence (quantization) condition of the method, as given in (44), can 
also be written as follows [15] [20]: 

( ) ( ) ( ) ( ) ( )1 1 0, 1, 2,3,k k k k kx x s x x s x kδ λ λ− −= − = =         (47) 

For a given radial potential such as the Gaussian one, the radial Schrödinger 
equation is converted to the form of the Equation (42). Once this form has been 
obtained, it is easy to determine ( )0s x  and ( )0 xλ  and calculate ( )ks x  and 

( )k xλ  by using Equations (45) and (46). The energy eigenvalues are then ob-
tained from the quantization condition given by Equation (47). 

3.2. Asymptotic Iteration Method for Gaussian Potential 

We here consider the Gaussian potential of the form 

( ) ( ) [ [2exp , 0,V A λ= − − ∈ +∞r r r                (48) 

where 0A >  is the depth of the potential and 0λ >  determines its width. The 
radial Schrödinger equation (SE) for a particle with mass m that moves in 

https://doi.org/10.4236/oalib.1106505


H. Nyengeri et al. 
 

 

DOI: 10.4236/oalib.1106505 12 Open Access Library Journal 
 

three-dimensional space under the effect of the attractive Gaussian potential (48) 
can be written as 

( ) ( ) ( ) ( )
2

2
2 2

d 1
exp 0

d
n

n

R r
A r R r

r r
λ

ε
+ 

+ + − − = 
 





 

          (49) 

where r λ= r , ( )22A mA λ=   and ( )22mε λ= E , E  being the energy of 
the particle. This is a second order non-linear differential equation. In order to 
solve this equation via the AIM, we should first model it with a second order 
linear differential equation and then convert this model equation to the form of 
Equation (42). Mutuk [15] solved the non-linear differential Equation (42) for 

1λ =  via the AIM by suggesting a wave function of the form 

( ) ( ) ( )1 2expn nR r r r f rβ+= −

 

                 (50) 

and making use of the tenth-degree truncated Maclaurin series of ( )2exp r− , 
i.e., 

( )
4 6 8 10

2 2exp 1
2 6 24 120
r r r rx r− ≈ − + − + −               (51) 

to construct a linear model of this non-linear equation. He obtained a second 
order linear homogeneous differential equation for the factor ( )nf r



 with the 
general form 

( ) ( ) ( ) ( ) ( )
2

0 02

d d
dd

n n
n

f r f r
r s r f r

rr
λ= + 



              (52) 

where 

( ) ( )
0

2 1
4 ,r r

r
λ β

+ 
= − + 

 



                  (53) 

( ) ( )
10 8 6 4

2 2
0 1 2 2 2 3

120 24 6 2
r r r rs r A r rε β β

 
= − + − + − − + − + 

 


     (54) 

We have to emphasize that in the AIM, energy eigenvalues are calculated from 
the quantization condition given by Equation (47). For each iteration, this equa-
tion will depend on two variables, ε  and r. The eigenvalues calculated by 
means of ( ) 0k rδ =  should however be independent from the choice of r. Actu-
ally, this will be the case for most iteration sequences. The choice of r can be 
critical to the speed of the convergence of the eigenvalues, as well as the stability 
of the process [17] [20]. This suitable choice of r minimizes the potential or 
maximizes the radial wave function given by Equation (50) in the case of the at-
tractive Gaussian potential. 

In the AIM, the wave function can be written as 

( ) ( ) ( ) ,R r f r g r=                       (55) 

where ( )f r  represents the asymptotic behavior. In our case,  
( ) ( )1 2expf r r rβ+= − . Hence, we have taken 0 1 2r β= + , which is the 

value of r that minimizes the wave function. β  is an arbitrary parameter relat-
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ed to the convergence. 
The convergence of the eigenvalues for the cases of 5β = , 10β = , 15β = , 

20β =  and 25β =  is reported in Table 1 where we compute the eigenvalue 
associated with 0n =  and 0=  by means of the AIM using the maple 18 
software which is known to be a powerful symbolic mathematical software. It is 
clear that the eigenvalues converge for all the five values of β  whatever the 
method used to approximate the Gaussian potential, which is contrary to the 
results obtained by Mutuk [15], results in which the eigenvalues associated with 

25β =  start to diverge when the iteration number exceeds 25. We think that 
the discrepancy between our results and the Mutuk ones for big values of β  is  

 
Table 1. The convergence of the eigenvalues of the attractive Gaussian potential for different β values 
and various approximations of ( )2exp r−  with 0n =  and 0= . k is the iteration number. Potential 

parameters are 400A =  atomic units (a.u) and 1λ = . 

k 5β =  10β =  15β =  20β =  25β =  

Case when ( )2exp r−  is approximated by { } ( )10
Gf r  

5 −341.0688830474 −341.8636075467 −340.8935079470 −337.7200338828 −332.6977761321 

10 −341.9254654373 −341.8947739087 −341.8401496755 −341.3676566108 −340.0652087765 

15 −341.8928052396 −341.8951776246 −341.8917224454 −341.8259470423 −341.5155999493 

20 −341.8951970225 −341.8951825921 −341.8949449890 −341.8860095241 −341.8175694378 

25 −341.8952944608 −341.8951827299 −341.8951646890 −341.8939194761 −341.8792560172 

30 −341.8951181845 −341.8951827316 −341.8951812560 −341.8950010631 −341.8918685491 

35 −341.8952105375 −341.8951827313 −341.8951826045 −341.8951553894 −341.8944775320 

Case when ( )2exp r−  is approximated by { } ( )10
Gef r  

5 −341.0689984810 −341.8637041219 −340.8935705098 −337.7201165391 −332.6978692095 

10 −341.9255403121 −341.8948643889 −341.8402253974 −341.3677264589 −340.0652821435 

15 −341.8929255824 −341.8952752998 −341.8918113752 −341.8260257799 −341.5156731941 

20 −341.8952882673 −341.8952810695 −341.8950408791 −341.8860978972 −341.8176499726 

25 −341.8953944688 −341.8952812636 −341.8952626420 −341.8940138238 −341.8793440006 

30 −341.8952166476 −341.8952812693 −341.8952796780 −341.8950981092 −341.8919617049 

35 −341.8953091217 −341.8952812693 −341.8952811207 −341.8952534430 −341.8945735888 

Case when ( )2exp r−  is approximated by ( )
{ } ( )10

*Gef r  

5 −341.0689060243 −341.8636125367 −340.8935075511 −337.7200331523 −332.6977757218 

10 −341.9255057473 −341.8947928633 −341.8401553565 −341.3676575772 −340.0652085751 

15 −341.8928270961 −341.8952098472 −341.8917464673 −341.8259602261 −341.5156066083 

20 −341.8952339038 −341.8952140810 −341.8949735723 −341.8860302791 −341.8175820206 

25 −341.8953255387 −341.8952146307 −341.8951961273 −341.8939474244 −341.8792775015 

30 −341.8951481135 −341.8952145413 −341.8952129050 −341.8950312970 −341.8918948319 

35 −341.8952455669 −341.8952145712 −341.8952144367 −341.8951867772 −341.8945069443 
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due to the fact that during the implementation of the AIM, the precision level 
has been set to 50 digits, which means that our results have been computed with 
high precision and are more accurate. It is clear from Table 1 that the approxi-
mation of ( )2exp r−  based on the use of the ( )jT r∗  polynomials has the ad-
vantage that the energies converge significantly faster towards the accurate value 
of 00E , i.e., −341.8952145612, than those calculated using the two other ap-
proximations. 

Table 2 presents the results for a few values of n and   computed by means 
of 50 iterations using Equations (32) and (41) to approximate ( )2exp r−  (third 
and fourth columns). The energy eigenvalues are obtained with 10β =  be-
cause the solutions are in many cases very close after few iterations when this 
value of β  is used. Our results are compared with the Mutuk ones [15] (se-
cond column) and the numerically calculated ones by the spectral Galerkin 
method (SGM) [10] [21] [22] [23] based on expanding the radial wave function 
on a finite basis of Coulomb Sturmian functions defined by [24] [25]: 

( ) ( )1 2 1
, , 1e 2r

n n nS r r L rκ κ κ κ+ − +
− −= l l

l l lN                 (56) 

 
Table 2. Comparison of the energy eigenvalues of the Gaussian potential in a.u. obtained by using AIM 
for various approximations of ( )2exp r−  with those calculated by means of the SGM for different values 

of n and  . We have chosen 500sN =  as the number of Coulomb Sturmian functions and 0.75 as the 
value of κ . 

n l  
AIM

nE  [20] ( )AIM
n T


E  ( )*AIM
n T


E
 nE  (SGM) 

0 0 −341.895 −341.8952812693 −341.8952145634 −341.8952145612 

 1 −304.464 −304.4628734909 −304.4628385252 −304.4628385187 

 2 −268.111 −268.1107182645 −268.1107354323 −268.1107352747 

 3 −232.873 −232.8752572993 −232.8753005817 −232.8753006164 

 4 −198.796 −198.7982218304 −198.7982699611 −198.7982701557 

 5 −165.982 −165.9280998766 −165.9281979555 −165.9281992439 

1 0 −269.643 −269.6444152212 −269.6444593468 −269.6444593960 

 1 −235.469 −235.4500537755 −235.4500423406 −235.4500423784 

 2 −202.415 −202.4312696988 −202.4312567683 −202.4312573413 

 3 −170.566 −170.6390652253 −170.6393093668 −170.6393137155 

 4 −140.028 −140.1336105726 −140.1351139213 −140.1351393984 

 5 −110.745 −110.9860422690 −110.9928139273 −110.9929464404 

2 0 −203.958 −203.9834943823 −203.9835278369 −203.9835287973 

 1 −173.222 −173.2438451895 −173.2443128404 −173.2443204776 

 2 −143.669 −143.8063838858 −143.8090957528 −143.8091441645 

 3 −115.588 −115.7413375161 −115.7539342717 −115.7541993222 

 4 −88.992 −89.12279993927 −89.17365021793 −89.17495589254 

 5 −63.077 −64.00748481716 −64.18978885943 −64.19587677261 
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where ( )mL xα  denotes the associated Laguerre polynomial and n the principal 
quantum number. The normalization constant ,n

κ
lN , given by 

( ) ( )
( )

1 2
1

,

1 !
2

!n

n
n n

κ κ κ +  − −
=  

+  

l
l

l
N

l
                (57) 

is obtained from the normalization condition ( ) ( ), ,0
d 1n nS r S r rκ κ∗∞

  = ∫ l l . 
Note that the spectral methods have the advantage of “exponential conver-

gence” property, depending on the size of the basis, which makes them more 
accurate than local methods. Unlike finite difference methods, spectral methods 
are global methods, where the computation at any given point depends not only 
on information at neighboring points, but also on information from the entire 
domain. We appreciate that the results associated with the ( )

{ } ( )10
*Gef r  appear to 

approach the numerical eigenvalues reasonably well for all taken values of n and 
 . 

4. Conclusion 

In this work, we have applied the procedure of economization to the Gaussian 
function of the form ( ) ( )2expGf x x= −  by using Chebyshev polynomials of the 
first kind on one hand and the shifted ones on the other, with an application to 
the solution of the radial Schrödinger equation for the attractive Gaussian well 
via the Asymptotic Iteration Method (AIM). We have seen that the use of 

( )jT x∗  polynomials leads to more efficient economized power series of 

( )2exp x−  which can be used to well model the non-linear radial Schrödinger 
equation for the Gaussian potential with a second order linear differential equa-
tion solvable by means of AIM.  
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