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Abstract 
The major difficulty for the Feynman Path Integral Monte Carlo (PIMC) 
simulations of the quantum systems of particles is the so called “sign prob-
lem”, arising due to the fast oscillations of the path integral integrand de-
pending on the complex-valued action. Our aim is to find universal tech-
niques being able to solve this problem. The new method combines the basic 
ideas of the Metropolis and Hasting algorithms and is based on the Pi-
card-Lefschetz theory and complex-valued version of Morse theory. The basic 
idea is to choose the Lefschetz thimbles as manifolds approaching the saddle 
point of the integrand. On this thimble the imaginary part of the com-
plex-valued action remains constant. As a result the integrand on each thim-
ble does not oscillate, so the “sign problem” disappears and the integral can 
be calculated much more effectively. The developed approach allows also 
finding saddle points in the complexified space of path integral integration. 
Some simple test calculations and comparisons with available analytical re-
sults have been carried out. 
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1. Introduction 

One of the main difficulties for the Path Integral Monte Carlo (PIMC) simula-
tion of the quantum systems of particles is the so called “sign problem”. The 
“sign problem” arises in the simulations of the Wigner and Feynman path integrals, 
describing quantum systems and the finite density quantum chromodynamics due 
to the fast oscillations of the integrand defined by the complex-valued action. This 
integrand does not give a real and positive Boltzmann-like weight (for example, by 
the Wick rotation) to resort to the traditional Monte Carlo methods. The 
so-called reweighting algorithm is highly ineffective when the imaginary part of 
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the action becomes very large, because one needs to take a sample from a con-
figuration space, where the weights of nearby configurations have almost the 
same amplitudes but very different phases. 

There have been many proposals to circumvent the “sign problem”. Basic 
possible approach to this problem is to consider the variables, which are as-
sumed to be real in the original formulation, to be complex and to extend the 
cycle of path-integration to a complex space in order to achieve better conver-
gence. 

So long under the typical physical conditions the integrand is holomorphic in 
the new complex variables and the final value of the path integral is unchanged 
by Cauchy’s theorem. Making use of the Picard-Lefschetz theory and a complex 
version of Morse theory we can select the cycle approaching the saddle point at 
the path-integration, where the imaginary part of the complex action stays con-
stant (Lefschetz thimbles) [1] [2] [3]. Since the imaginary part of the action is 
constant on each thimble, the “sign problem” disappears and the integral can be 
calculated much more effectively. 

However, since different thimbles are strongly separated, one needs to develop 
method allowing incorporating contributions from all relevant thimbles. One of 
the natural ways to incorporate the relevant thimbles [4] [5] is to use a gradient 
flow of action starting from the original real space of integration and creating a 
new manifold at a finite flow time, which is equivalent to the integration over 
original real space. In particular, when the flow time approaches infinity, the 
new manifold is composed of Lefschetz thimbles. In practise, as long as the finite 
flow-time is large enough then the “sign problem” will be alleviated, as integrals 
turn into integrals of an oscillating function with decaying amplitude. However 
reducing the amount of flow time may also reduce the effectiveness against the 
“sign problem” and the multimodal problem simultaneously. 

The alternative approach of sampling at calculation of the path-integrals on 
thimbles is based on the making use of the complexified Langevin equation [6] 
[7] [8]. Of course, application of the noise leads to departures from the thimble 
that accumulates and needs to be corrected. Numerically, this procedure can be 
made stable. 

Besides, the Langevin algorithm, other algorithms have been proposed: an 
Hybrid Monte Carlo algorithm [9], that however is essentially as expensive as 
the Langevin algorithm; two Metropolis algorithms [4] [10] that are simpler and 
faster, but have the risk of poor acceptance for large systems and an alternative 
algorithm [11] that ensures a control of the thimble at the price of limited scala-
bility. 

In this work we present the new Metropolis-Hastings algorithm for searching 
critical points and subsequent generation of the Lefschetz thimbles. The algo-
rithm allows to find the saddle points and to sample initial conditions for 
downward flows from vicinity of the saddle points. The developed approach 
combines the basic ideas of the Metropolis and Hasting algorithms. So to in-
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crease efficiency of numerical procedure we have separated the Markovian tran-
sition on the complex plane in two sub-steps: the proposal and the ac-
ceptance-rejection. The proposal probability allows proposing a new state for 
given one. Here we are free in choosing proposing probability as it affects only 
the efficiency of the sampling the main contribution to the integrals and does 
not change the final result of calculations. The acceptance distribution is the 
conditional probability to accept/reject the proposed state. 

The integrals involved in our test calculations are one variable integral and 
can be performed analytically or independent numerically. However, it provides 
an interesting benchmark which can be seen as a limiting case of more realistic 
path integrals. It is non-trivial from the point of view of a Monte Carlo integra-
tion. For comparison with analytical results we present some calculations for the 
Airy function and some results on the Fourier transform of basic 1D factors 
comprising the Wiener path integral representation of the Wigner function in 
phase space. It also provides a case where different aspects of our approach can 
be clearly visualized. 

This paper is organized as follows. In Section 2 we remind the basic ideas of 
the Wigner formulation of quantum mechanics. Section 3 is devoted to the brief 
deriving the path integral representation of the Wigner function. In Section 4 we 
explain the basic ideas of the complexification of the variables in path integrals 
and introduce in complex-valued space of the path integration the manyfold ap-
proaching the saddle point, where the imaginary part of the path integral action 
is constant (Lefschetz thimble). Path integration on the thimble allows reducing 
the “sign problem”. In Section 5 we derive the Metropolis-Hasting algorithm al-
lowing finding the saddle points in complex-valued space of integration. Vicini-
ties of the saddle pints are used as initial conditions to generate the Lefschetz 
thimbles. Section 6 presents results of the test calculations for 1D case with 
known analytical answer. Conclusion of the work is given in Section 7. 

2. Wigner Approach to Quantum Mechanics 

We consider a one-dimensional quantum-mechanical system consisting of one 
particle in potential field ( )U q . The Hamilton function of this system is  

( ) ( )
2

, ,
2
pH p q U q
m

= +                      (1) 

where p is the momentum of particle, q is its coordinate. Everywhere in this pa-
per, we will assume that the potential field ( )U q  is analytical function. We as-
sume that the system is in thermodynamic equilibrium with a thermostat. In 
other words, we consider a canonical ensemble with temperature T and volume 
V (V is one-dimensional). 

The quantum canonical ensemble can be fully characterized by the Wigner 
function ( ),W p q , which is essentially a density matrix in the mixed coordi-
nate-momentum representation and defined as a Fourier transform of the den-

https://doi.org/10.4236/jamp.2020.87098


V. S. Filinov, A. S. Larkin 
 

 

DOI: 10.4236/jamp.2020.87098 1281 Journal of Applied Mathematics and Physics 
 

sity matrix:  

( )
i

ˆ, d e 2 e 2 ,
p HW p q q q
ξ βξ ξ ξ

+∞
−

−∞

= − +∫              (2) 

where ( )1 kTβ = , Ĥ  is Hamiltonian, obtained from (1) by replacing ,p q  
by momentum and coordinate operators ˆ ˆ,p q  respectively. The Wigner func-
tion ( ),W p q  can be formally considered as quantum generalization of classi-
cal distribution function in the phase space. This interpretation is noncompletely 
correct, because ( ),W p q  may be non-positive. However momentum and co-
ordinate distribution functions, as well as average values of physical quantities 
depending on p and q, can be obtained from the Wigner function in classi-
cal-like way:  

( ) ( )

( ) ( )

( ) ( )

d , ,

d , ,
2

d dˆ , , ,
2

V

F p qW p q

pW q W p q

p qA W p q A p q

=

=
π

=
π

∫

∫

∫





                  (3) 

where ( ),A p q  is so-called Weyl symbol of operator Â . 

3. Path Integral Representation 

In general case, the density matrix in (2) cannot be calculated directly, since the 
kinetic and potential energy operators in Hamiltonian are non-commutative, so 
the statistical operator ( )ˆexp Hβ−  does not split into ( )2ˆexp 2p mβ −   and 

( )ˆexp U qβ−   . Therefore, we use the following procedure, leading to represen-
tation of the density matrix in form of path integrals (Winer path integral form). 

Firstly, the statistical operator ( )ˆexp Hβ−  should be represented as product 
of 2K operators ( ) ˆexp 2K Hβ −  , assuming that K is large number. Secondly, 
one should insert 2 1K −  unit operators 1̂  and replace each of them with 
completeness relation for states with a certain coordinate q :  

ˆ

ˆ ˆ
2 2

1 ˆ
2

1 1 1

2 e 2

ˆ ˆ2 e 1 1e 2

d d e .

H

H H
K K

K H
K

K K k k
k K

q q

q q

q q q q

β

β β

β

ξ ξ

ξ ξ

−

− −

− −

− + − +
=−

− +

= − +

 
=  

 
∏∫ ∫



 

           (4) 

For large values of K, “high-temperature” statistical operators ( )( )ˆexp 2K Hβ−  

can be decomposed into the product of the operators ( ) ( )2ˆexp 2 2K p mβ −   

and ( ) ( )ˆexp 1 2 2K U qβ−    with accuracy ( )( )2
2O Kβ 

  
. After this step,  

corresponding matrix elements can be easily calculated, using the completeness 
relations for states with a certain momentum p  and the wave functions 

iq p pq=  . Finally, we obtain the representation of the Wigner function in 
form of 2K-dimensional integral over variables kq , ( )0, 1, , 1k K= ± ± −  and 
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ξ :  

( ) ( ) ( )2 1 , ,
1 1

2, d d d e ,K K K

K
q q

K KW p q q q O
m

τ ξ τ+ −

−
−Φ

− + −
∆ = + ∆ 

 

π
∫ ∫ ∫ 



    (5) 

( ) ( ) ( )21
11

2 1
i, , .

2 2

K
k kk k

K K K
k K

U q U qq qmq q p τξ
τ

−
++

+ −
=−

 +−∆  Φ = − + +  ∆   
∑

 

 

Here we assume that 2Kq q ξ± =  . Parameter ( )2Kτ β∆ =   is small and 
tends to zero for K →∞ ; while the formula becomes exact. 

4. Basics of the Complexification on Lefschetz Thimbles 

According to the Morse theory [3] [4] [5] the regions of integration over each 
real kq  in the path integrals (5) is equivalent to the integration over complex 
valued set of Lefschetz thimbles which is homologically equivalent due to the 
Cauchy’s integral theorem to the integration on real cycle C . Assuming that 

kq  takes the complex values kq ∈  and the action ( )kq τΦ     is extended to 
a holomorphic function of q let us consider the set Σ  of critical points (saddle  
points) ,kq σ , which satisfy condition [ ]

,
0

kq q
q q

σ=
∂Φ ∂ = . The real Morse 

function in our case can be defined as [ ]{ }kh q≡ −ℜ Φ  and the associate gra-

dient (downward) flow equations are given by [2] [12]:  

( )d , .
d

l
l

∂Φ
= ∈

∂
qq

q
                      (6) 

The Morse function h is always strictly decreasing along a flow. Associated 
with a critical point ,kq σ , a Lefschetz thimble σϒ  [12] is defined by the union 
of all downward flows, which trace back to ,kq σ  at l → −∞ . Let us note that if 

( )kq l  equals a critical point at some l, then the flow equation implies that 
( )kq l  is constant for all l. So a non-constant flow can only reach a critical point 

at l → −∞ . 
One can also introduce another submanifold τΠ  of by the union of all up-

ward flows, satisfying equation with opposite sign to Equation (6) [12] [13] [14] 

( ) 1d ,
d

k
k

k

q
q l l

l q

 ∂Φ  = − ∈
∂







                    (7) 

which converge to ,kq τ  at l → −∞ , so that its intersection number with 
( )kq l σ∈ϒ  is unity and vanishing otherwise, ,,σ τ σ τδϒ Π = . 
Strictly speaking this means that ( )kq l σ∈ϒ  if ( )kq l  is the solution of 

Equation (6) and for any positive (maybe very small) 0>  there exists the 
positive (maybe very large) 0L >  that for all negative l such that l L− >  we 
have ( ) ,k kq l q σ− <  . This allows in numerical simulation to use the following 
approximation. Due to the restrictions on computational time at solving Equa-
tion (6), (7) it is necessary to exclude the small   vicinity of critical point, 
where the parameter l → −∞ . So in numerical simulations the staring points 
for downward flow have to be chosen outside of a small vicinity of ,kq σ  and the 
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averaging results of calculations by the Monte Carlo method can be done over 
ensemble of the downward flows related to decreasing small  . Algorithm of 
this MC approach, sampling the main contribution in integrals like (5) will be 
discussed below. 

Then, according to Morse theory [2] [12] [15], it follows that  

,C n n Cσ σ σ τ
σ∈Σ

= ϒ = Π∑                    (8) 

which holds in the homological sense. As consequence, for the critical points 

σq  satisfying ( ) ( )( )max qσ ℜ −Φ ≥ ℜ −Φ q , q C∈  , it holds that  
0C σΠ =  and the associated thimbles do not contribute to the path integra-

tion. On the other hand, it holds that if , 1C σΠ =  the associated thimbles 
contribute with the relative weights proportional to ( )( )e q τ−ℜ Φ   . Now, for exam-
ple, the momentum distribution function Equation (3) can be given by the for-
mula  

( ) ( )( ) ( ) ( )( )ie e .q qF p n Dq
σ

τ τ
σ

σ
τ− ℑ Φ −ℜ Φ      

ϒ
∈Σ

= ∑ ∫             (9) 

5. Numerical Algorithm 

To do simulations we are going to combine the Monte Carlo method (MC) [16] 
[17] for searching the critical points qσ  and the finite-difference methods for 
solving Equation (6) with initial conditions qσ  obtained by MC method in the 
small   vicinity of qσ . 

Used here MC method is based on the Metropolis-Hastings algorithm [16] 
[17], which resides in designing a Markov process (by constructing transition 
probabilities ( )P ′→q q ), such that its stationary distribution to be equal to 
( )w q . The derivation of the algorithm starts with the condition of detailed bal-

ance: 

( ) ( ) ( ) ( )w P w P′ ′ ′→ = →q q q q q q               (10) 

which can be rewritten as  

( )
( )

( )
( )

.
P w
P w

′ ′→
=

′→
q q q
q q q

                     (11) 

To increase efficiency of the numerical procedure we are going to separate the 
transition in two sub-steps: the proposal and the acceptance-rejection. The transition 
probability can be written as the product: ( ) ( ) ( )P g A′ ′ ′→ = → →q q q q q q . 
The proposal distribution ( )g ′ →q q  is the conditional probability of propos-
ing a state ′q  for given q . The acceptance distribution ( )A ′→q q  is the 
conditional probability to accept the proposed state ′q . 

Inserting this relation in the previous equation, we have  

( )
( )

( )
( )

( )
( )

.
A w g
A w g

′ ′ ′→ →
=

′ ′→ →
q q q q q
q q q q q

                (12) 

Then it is necessary to choose an acceptance that fulfills detailed balance. One 
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common choice is the Metropolis’s suggestion:  

( ) ( )
( )

( )
( )

min 1, .
w g

A
w g

′ ′ →
′→ =   ′→ 

q q q
q q

q q q
             (13) 

This means that we always accept when the acceptance is bigger than 1 and we 
can accept or reject when the acceptance is smaller than 1. 

It is important to notice that it is not clear, in a general problem, which dis-
tribution ( )g ′→q q  one should use. It is a free parameter of the method 
which has to be adjusted to the particular problem “in hand”. The probability 
( )g ′→q q  affects only the efficiency of sampling the main contribution to the 

integrals and does not change the final result of calculations. For optimization of 
the MC finding the main contribution to the integral (9) the choice of the 
( )g ′→q q  may be the following ( ) [ ]( ) [ ]( )e eg β β′− ℜ Φ − ℜ Φ′→ = q qq q  with free 

appropriate fit parameter β . To optimize the MC search of the critical points 

,kq σ  ( [ ]
,

0
kq q

q q
σ=

∂Φ ∂ = ) we define the probability ( )w q  as  

( ) [ ]( )2
expw b= − ∂Φ ∂q q q  with parameter 1b ≥ . The ideal acceptance rate,  

which is the fraction of proposed samples that is accepted during the last N sam-
ples, have to be in interval of 23% - 50%. 

The Metropolis-Hastings algorithm consists in the following steps: 
1) Initialization: pick an initial state point q  at random.  
2) Randomly pick a state ′q , according to probability ( )g ′→q q . 
3) Accept the state according to the probability ( )A ′→q q . If not accepted, 

that means that ′ =q q , and so there is no need to update anything. Else, the 
system transits to ′q .  

4) Go to 2 until many M states were generated to “forget” initial q  and to 
obtain the average position of the critical point q .  

5) If ( ) 0.95w ≥q  carry out several iterations by complex-valued extension 
of the Newton’s method to produce better approximations to the roots (or ze-
roes) of the complex-valued function [ ] 0

q q
q q

σ=
∂Φ ∂ = . Else go to 2.  

6) Save the state qσ = q .  
7) At random pick an initial point δq  at the small vicinity of the zero point 

of the complex-valued space (maybe in any given quarter).  
8) Analogously randomly pick a new state δ ′q  according to the probability 
( )g σ σδ δ ′+ → +q q q q .  
9) Go to 8 many times M ′  to “forget” initial δq  state and to obtain the av-

erage value of the δ ′q . 
10) Solve equation for upward flow τΠ  with initial conditions of σ δ ′+q q  

to check if , 1n Cσ σ= Π = . If 1nσ =  go to 11, otherwise go to 2. 
11) Solve Equation (6) with initial conditions of σ δ ′+q q  until modulus of 

the integrand in (9) will be smaller of several order of magnitude of its initial 
value and calculate the integral sum related to (9).  

12) Go to 2 many times and calculate the integrals (9). 
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Function ( )F p  (9) has be averaged over the set of downward flows-solutions 
of the Equation (6) with initial conditions q  provided by MC procedure from 
neighborhood of σq . 

6. Results of Numerical Test Calculations 

Before calculations of multidimensional integrals (5) we have to test the algo-
rithm proposed above by calculations of some simpler integrals with known 
answer. It is reasonable to begin with consideration of low dimensional improp-
er integrals of strongly oscillating functions. 

6.1. The Airy Function 

Let us consider a classic example: the Airy function is defined as the integral 
over the real axis C  and can be considered as a Fourier transform: 

( )
31Ai d exp i ,

2 3
xp x px

+∞

−∞

  
= +  

   π ∫               (14) 

The integrand is strongly oscillating function on C , which makes a direct 
numerical evaluation infeasible. The left plot of Figure 1 shows lines of the con-
stant imaginary part of the power in exponent in (14) on complex plane, while 
increasing and lowering values are denoted by the red and blue regions. The 
critical points are in the left upper and the right bottom quarters of the complex 
plane. We can deform the integration path in the complex plane of variable 

iz x y= + , as long as the new path belongs to the original relative homology 
class, which connects regions of strongly decaying modulus of the integrand at 
infinity (blue regions on the centre plot of Figure 1). Right panel of this figure 
shows the contour plot of the MC probability ( ) [ ]( )2

expw b= − ∂Φ ∂q q q  
with two red circles at its maximum values at the critical points. 

Testing the proposed approach starts from finding critical points by suggested 
MC method. It turns out that the Markovian chain traveling on the whole com-
plex plane always stabilizes in the vicinity of the critical point 1.11 i1.79zσ = − +  
(point in the left upper quarter of the complex plane in Figure 1) ignoring the 
second critical point ( 1.11 i1.79zσ = + − ) in the favoure of the first one. So to  
 

 
Figure 1. (Color online) The contour plot of the imaginary part (left panel) and the real 
part (central panel) of the power in exponent in (14) on complex plane for 2 4ip = + . 

(Right plot) Contour plot of the probability ( ) [ ]( )2
expw b= − ∂Φ ∂q q q . 
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force the Markovian chain to stabilize in the vicinity of the second critical point 
we have to use the special restrictions. Reason of this behavior of the Markovian 
chain is the asymmetry of the contour plots of the real and imaginary parts of 
the power in exponent in (14) (see Figure 1). 

Solution of the complex valued differential Equations (6 and 7) with MC ini-
tial conditions nearby both critical points allow to obtain averaged downward 
(red lines) and upward (blue lines) flows (see both plots of Figure 2). Right plot 
of this figure shows in detail the downward and upward flows from different 
quarters of the small enough vicinities of the critical points. Let us note that ini-
tial conditions for red downward and blue upward flows were the same to test 
their fast converge to the related σϒ  and σΠ  respectively. Let us note that the 
power low grows on the complex plane of the right part of differential Equations 
(6) and (7) results in limitations on the “time” l of obtained solutions at needed 
given accuracy. 

As only the blue line for red point crosses the real axis ( 1C σΠ = ) we cal-
culate integral defined the Airy function along the red Lefschetz thimble. As we 
mentioned above the Markovian chain traveling on the whole complex plane 
prefer namely this critical point ignoring the second one. The reason of this in-
teresting fact has been further investigated. 

Results of the MC calculation at 2 i4p = +  are presented in Table 1 as well 
as results of some additional calculations for 0 i4p = +  and 4 i0p = + . Com-
parison of obtained MC results with well known values of Airy function demon-
strates a good enough agreement. Discrepancy between exact values of the Airy 
function and related values obtained by proposed procedure can be explained by 
approximations used in transitions from initial integral to its Lefschetz thimbles 
representation accounting for only the main contribution to the contour inte-
grals. 
 

 
Figure 2. (Color online) (Left plot) The averaged downward flows are lines-1 ( σ∈ϒ ) and 
the upward flows are lines-2 ( σ∈Π ). The critical points are points 3 and 4 
( [ ] 0q q∂Φ ∂ = ) of the integrand in (14). Red critical point and the associated thimbles 

contribute to the contour integral of the Airy function (14) as , 1C σΠ = , while the 

blue point not, as , 0C σΠ = . (Right plot) Details of initial conditions obtained by MC 

method in different quarters of small vicinity of the critical point. 
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Table 1. The MC results versus the exact Airy function. 

p MC the Airy function 

2 + i4 0.3365 − i0.065451 0.3301 − i0.088 

0 + i4 −4.8569 + i7.244 −4.6362 + i7.4111 

4 + i0 0.000738 + i0.00006 0.000952 + i0 

6.2. Short Time Wigner Path Integral 

Now to test the developed approach let us consider elementary factor in the fi-
nite dimensional approximation of the path integral, which may be rewritten in 
the form like (see (5)):  

( ) ( )( )( ){ }2 4d exp i i 4 ,k k k k k k kI p q p q q const q
+∞

−∞

= + − +∫        (15) 

where, for example, 2const = . 
The left and right plots of Figure 3 are the contour plots of the image and real 

parts of the power of exponent in integrand in (15) respectively. Right plot of 
Figure 3 presents contour plot of the probability, ( ) [ ]( )2

expw b= − ∂Φ ∂q q q  
which with conditional probability ( )g ′→q q  allows finding by MC method 
the critical points and provides the initial conditions for solution of the Equa-
tions (6) and (7). According to the Monte Carlo simulation the critical points are 

1 0.5712 i0.8786z ≈ + , 2 0.5712 i0.8786z ≈ − +  and 3 1.77 i0.0z ≈ − + , which 
agree with the regions of the saddle-like behaviour of the contour lines on left 
and right plots of Figure 3. Here the Markovian chain traveling on the whole 
complex plane always stabilizes in the vicinity of the critical point 1z  and 2z  
ignoring the point 3z . 

As before solution of the complex valued differential Equations (6) and (7) 
with MC initial conditions nearby both upper critical points allow to obtain av-
eraged downward (red lines) and upward (blue lines) flows (see Figure 4). As 
both blue lines for red point cross the real axis ( 1C σΠ = ) we calculate sum 
of the contributions to the integral (15) along the both red Lefschetz thimbles 
with opposite sign due to the different thimble orientation. According to the 
Morse theory contribution of the bottom critical point has to be ignored as the 
related blue line does not cross real axis (here not shown) and the maximum of 
the integrand on the real axis is smaller than the value of the integrand at this 
critical point. 

As before details the MC initial conditions and related downward and upward 
flows are presented by right plot of Figure 4. Let us note that red and blue lines 
start at the same MC initial points. Reason of asymmetry in behavior of the red and 
blue lines is in asymmetry of the real and imaginary parts of the power in expo-
nent (see Figure 4). Let us stress the fast convergence of the upward and 
downward flows to the related limit lines σϒ  and σΠ . Comparison of the Mon-
te Carlo result for 0.01306 i0.00006kI = +  with independent exact calculations 
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Figure 3. (Color online) The contour plot of imaginary part(left panel) and real part 
(central panel) of the of the power in exponent in (15) on complex plane for 2const = . 

(Right plot) Contour plot of the probability ( ) [ ]( )2
expw b= − ∂Φ ∂q q q . 

 

 
Figure 4. (Color online) The averaged downward flows are lines-1 ( σ∈ϒ ) and the 
upward flows are lines-2 ( σ∈Π ) at 2const =  and 2const =  and 2 i4p = + . The 
critical points of the integrand in (15) are points 3 ( [ ] 0q q∂Φ ∂ = ). Red critical point 

and the associated thimbles contribute to the contour integral (15) as , 1C σΠ = . 

(Right plot) Details of MC initial conditions in different quarters of small vicinity of the 
critical points. 

 
0.01402 i0kI = +  demonstrate a good enough accuracy of the developed ap-

proach. 

6.3. Short Time Feynman Path Integral 

As the second example, we consider an elementary factor in discrete form of 
path integral (5) with imaginary parameter β :  

( ) ( )
3

2d exp i .
3
xI p x px x const

+∞

−∞

   = + − +  
   

∫             (16) 

Contour plots on Figure 5 show imaginary and real parts of the com-

plex-valued action ( ) ( )
3

2i
3
zz pz z const

 
Φ = + − + 

 
, when 2 4ip = +  and  

2const = . Two critical points and its Lefschetz thimble should be taken into 
account according to the explained above procedure (see red and blue lines on 
the right plot of Figure 5). In this case analytical estimations of the integral (16) 
are not available, while the independent numerical estimations due to the fast 
oscillations of the integrand in (16) is not reliable. The Monte Carlo calculations 
of the (16) demonstrate the fast convergence and will be considered later.  
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Figure 5. The contour plot of phase (left panel) and modulus (central panel) of the 
integrand from (16) on complex-valued plane for 2 4ip = +  and 2const = . Averaged 
downward and upward flows from the neighborhood of the two critical points (red and 
blue lines on the right plot correspondingly). 

7. Conclusion 

The main goal of this paper is to develop a new effective Monte Carlo method 
for numerical evaluation of a Feynman path integrals suffering to the “sign 
problem”. This approach combines the basic ideas of the Metropolis and Hast-
ing algorithms and is based on the Picard-Lefschetz theory and complex-valued 
version of Morse theory. Developed approach allows also simulating the path 
integral representation of the Wigner function. The basic ideas from mathemat-
ics come from Picard-Lefschetz theory and from Morse theory based on selec-
tion of the manifolds approaching the saddle points of the integrand, where the 
imaginary part of the complex-valued action stays constant (Lefschetz thimbles). 
Since the imaginary part of the action is constant on each thimble, the “sign 
problem” on the thimble disappears and the Feynman integrals can be calculated 
much more effectively. Some simple 1D test calculations and comparisons with 
available analytical results have been carried out. We hope that this method can 
also provide a new perspective in the path integration. 
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