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ABSTRACT 

Neural networks have been shown to be pow-
erful tools for solving optimization problems. In 
this paper, we first retrospect Chen’s chaotic 
neural network and then propose several novel 
chaotic neural networks. Second, we plot the 
figures of the state bifurcation and the time 
evolution of most positive Lyapunov exponent. 
Third, we apply all of them to search global 
minima of continuous functions, and respec-
tively plot their time evolution figures of most 
positive Lyapunov exponent and energy func-
tion. At last, we make an analysis of the per-
formance of these chaotic neural networks. 
 
Keywords: Wavelet Chaotic Neural Networks; 
Wavelet; Optimization 

 

1. INTRODUCTION 

Hopfield and Tank first applied the continuous-time, 
continuous-output Hopfield neural network (HNN) to 
solve TSP [1], thereby initiating a new approach to op-
timization problems [2,3]. The Hopfield neural network, 
one of the well-known models of this type, converges to 
a stable equilibrium point due to its gradient decent dy-
namics; however, it causes sever local-minimum prob-
lems whenever it is applied to optimization problems. 
M-SCNN has been proved to be more power than 
Chen’s chaotic neural network in solving optimization 
problems, especially in searching global minima of con-
tinuous function and traveling salesman problems [4].  

In this paper, we first review the Chen’s chaotic neural 
network. Second, we propose several novel chaotic neu-
ral networks. Third, we plot the figures of the state bi-
furcation and the time evolution of most positive 
Lyapunov exponent. Fourth, we apply all of them to 
search global minima of continuous functions, and re-
spectively plot their time evolution figures of most posi-

tive Lyapunov exponent and energy function. At last, 
simulation results are summarized in a Table in order to 
make an analysis of their performance.  
 
2. CHAOTIC NEURAL NETWORK 

MODELS 
 
In this section, several chaotic neural networks are given. 
And the first is proposed by Chen, the rest proposed by 
ourselves. 

2.1. Chen’s Chaotic Neural Network 

Chen and Aihara’s transiently chaotic neural network [5] 
is described as follows:  
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neuron , a a positive scaling parameter for neural in-
puts, damping factor of nerve membrane, 0≤ ≤1, 

self-feedback connection weight (refractory 

strength) ≥0, 
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 damping factor of , 0<( )iz t  <1,  

a positive parameter,
0I

  steepness parameter of the out-
put function,  >0. 

2.2. Morlet Wavelet Chaotic Neural Network 
(MWCNN) 

Morlet wavelet chaotic neural network is described as 
follows: 
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where ( )ix t ,  ,  , ( )iy t ijW   ,  , k iI  ,  , ( )iz t 0I  

are the same with the above. And the Eq.4 is the Morlet 
wavelet function.  is a steepness parameter of the 
output function which is varied with different optimiza-
tion problems. 

u

2.3. Mexican Hat Wavelet Chaotic Neural 
Network (MHWCNN) 

Mexican hat wavelet chaotic neural network is described 
as follows: 
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where ( )ix t ,  ,  , ( )iy t ijW   , k  ,  ,  , iI ( )iz t 0I , 

 are the same with the above. And the Eq.7 is the 
Shannon wavelet function. 
u

 
3. RESEARCH ON CONTINUOUS  

FUNCTION PROBLEMS 
 

In this section, we apply all the above chaotic neural net- 
works to search global minima of the following three 
continuous functions. 

The three continuous functions are described as foll- 
ows [6]: 
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The minimum value of Eq.10, 11, 12 respectively are -1, 
-1.0316285, 0, 0.398 and its responding point are (0, 0), 
(0.08983, -0.7126) or (-0.08983, 0.7126), (-3.142, 2.275) 
or (3.142, 2.275) or (9.425, 2.425). 

In order to make comparison conveniently, we set 
some parameters such as the annealing speed  , the 

self-feedback and the initial value of internal state 

as follows: 

)0,0(z

(0,0)y  =0.002, =[0.8, 0.8], 

=[0.283, 0.283]. Meanwhile, we set the iteration 

as large as 5000 so as to get stable state of a global 
minimum. 

(0,0)z

(0,0)y

3.1. Chen’s Chaotic Neural Network 

1) Simulation on the First Continuous Function 
The rest parameters are set as follows: 

k =1, =0.5,  =1/10, =0.85. 0I

The time evolution figures of the biggest positive 
Lyapunov exponent and energy function of Chen’s in 
solving the first continuous function are shown as Fig-
ure 1, Figure 2. 

The global minimum and its responding point of the 
simulation are respectively -0.99989 and (0.0073653, 
0.0073653). 

2) Simulation on the Second Continuous Function 
The rest parameters are set as follows: 

k =1, =0.02,  =1/20, =0.85. 0I

The time evolution figures of most positive 
Lyapunov exponent and energy function of Chen’s in  

 

 
Figure 1. Time evolution figure of Lyapunov 
exponent. 

 

 
Figure 2. Time evolution figure of energy 
function. 
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Figure 3. Time evolution figure of 
Lyapunov exponent.  
 

 

Figure 4. Time evolution figure of en-
ergy function. 

solving the first continuous function are shown as Fig-
ure 3, Figure 4. 

The global minimum and its responding point of the 
simulation are respectively -1 and (0, 0.70712). 

3) Simulation on the Third Continuous Function 
The rest parameters are set as follows: 

 

 
Figure 5. Time evolution figure of 
Lyapunov exponent. 

 
Figure 6. Time evolution figure of energy 
function. 

k =1, =0.2,  =1, =0.5. 0I

The time evolution figures of most positive Lyapunov 
exponent and energy function of Chen’s in solving the 
first continuous function are shown as Figure 5, Figure 
6. 

The global minimum and its responding point of the 
simulation are respectively 0.39789 and (9.4246, 
2.4747). 

3.2. Morlet Wavelet Chaotic Neural Network 
(Mwcnn) 

1) Simulation on the First Continuous Function 
The rest parameters are set as follows: 

k =1, =0.5, u =0.5, =0.65. 0I

The time evolution figures of most positive Lyapunov 
exponent and energy function of MWCNN in solving the 
first continuous function are shown as Figure 7, Figure 8. 

The global minimum and its responding point of the 
simulation are respectively -0.99997 and (0.0038638, 
0.0038638). 

2) Simulation on the Second Continuous Function 
The rest parameters are set as follows: 

k =1, =0.05, u =0.7, =0.2. 0I

The time evolution figures of most positive Lyapunov 
exponent and energy function of MWCNN in solving the 
first continuous function are shown as Figure 9, Figure 
10. 

 

 
Figure 7. Time evolution figure of Lyapunov 
exponent. 

 

 
Figure 8.Time evolution figure of energy 
function. 
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Figure 9. Time evolution figure of 
Lyapunov exponent. 

 
Figure 10. Time evolution figure of en-
ergy function. 

 
Figure 11. Time evolution figure of 
Lyapunov exponent. 

 
Figure 12. Time evolution figure of en-
ergy function. 

The global minimum and its responding point of the 
simulation are respectively -1.0021 and (-0.074007, 
0.76863). 

3) Simulation on the Third Continuous Function 
The rest parameters are set as follows: 

k =1, =0.02, u =0.09, =0.2. 0I

The time evolution figures of most positive Lyapunov 
exponent and energy function of MWCNN in solving the 
first continuous function are shown as Figure 11, Figure 
12. 

The global minimum and its responding point of the 
simulation are respectively 0.39789 and (3.1413, 
2.2733). 

3.3. Mexican Hat Wavelet Chaotic Neural 
Network (MHWCNN) 

1) Simulation on the First Continuous Function 
The rest parameters are set as follows: 

k =1, =0.5, =0.2, =0.8. u 0I

 
Figure 13. Time evolution figure of 
Lyapunov exponent. 

 
Figure 14. Time evolution figure of energy 
function. 

 
Figure 15. Time evolution figure of 
Lyapunov exponent. 
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Table 1. the simulation results of the chaotic neural networks. The time evolution figures of most positive Lyapunov 
exponent and energy function of MHWCNN in solving  

Fu

n 

 
Model
 

 
GM/ER 

Chen’s MWCNN MHWCNN 

TGM -1 -1 -1 

PGM -0.99989 -0.99997 -0.99996 
1f  

ER 0.00011 0.00003 0.00004 

TGM -1.0316285 -1.0316285 -1.0316285 

PGM -1 -1.00021 -1.0316 2f
 ER 0.0316285 0.031418

5 
0.0000285 

TGM 0.398 0.398 0.398 

PGM 0.3789 0.3789 0.3789 4f

 ER 0.0191 0.0191 0.0191 

AVE AVER 0.01270962 0.01263712 0.00479212 

the first continuous function are shown as Figure 13, 
Figure 14. 

The global minimum and its responding point of the 
simulation are respectively -0.99996 and (0.0043259, 
0.0043259). 

2) Simulation on the Second Continuous Function 
The rest parameters are set as follows: 

k =1, =0.05, u =2.8, =0.05. 0I

The time evolution figures of most positive Lyapunov 
exponent and energy function of MHWCNN in solving 
the first continuous function are shown as Figure 15, 
Figure 16. 

The global minimum and its responding point of the 
simulation are respectively -1.0316 and (-0.089825,  

 

 
0.71263). 

3) Simulation on the Third Continuous Function.  
The rest parameters are set as follows: 

k =1, =0.05, =0.3, =0.2. u 0I

The time evolution figures of most positive Lyapunov 
exponent and energy function of MHWCNN in solving 
the first continuous function are shown as Figure 17, 
Figure 18. 

Figure 16. Time evolution figure of en-
ergy function. 

 

The global minimum and its responding point of the 
simulation are respectively 0.39789 and (3.1415, 
2.2743). 
 
4. ANALYSIS OF THE SIMULATION 

RESULTS 
 
Simulation results are summarized in Table 1. The col-
umns “GM/ER”, “TGM”, “PGM” and “AVER” repre-
sent, respectively, global minimum/error rate; theoretical 
global minimum; practical global minimum; average 
error. 

Figure 17. Time evolution figure of 
Lyapunov exponent. 

 

Seen from the Table 1, we can conclude that the 
wavelet chaotic neural networks are superior to Chen’s 
in AVER 
 
5. CONCLUSION 
 
We have introduced Chen’s and wavelet chaotic neural 
networks. We make an analysis of them in solving con-
tinuous function optimization problems, and find out that 
wavelet chaotic neural networks are superior to Chen’s 
in general. 

Figure 18. Time evolution figure of en-
ergy function. 

Openly accessible at  
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