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Abstract 
This paper is concerned about studying modeling-based methods in cluster 
analysis to classify data elements into clusters and thus dealing with time se-
ries in view of this classification to choose the appropriate mixed model. The 
mixture-model cluster analysis technique under different covariance struc-
tures of the component densities is presented. This model is used to capture 
the compactness, orientation, shape, and the volume of component clusters in 
one expert system to handle Gaussian high dimensional heterogeneous data 
set. To achieve flexibility in currently practiced cluster analysis techniques. 
The Expectation-Maximization (EM) algorithm is considered to estimate the 
parameter of the covariance matrix. To judge the goodness of the models, 
some criteria are used. These criteria are for the covariance matrix produced 
by the simulation. These models have not been tackled in previous studies. 
The results showed the superiority criterion ICOMP PEU to other criteria.  
This is in addition to the success of the model based on Gaussian clusters in 
the prediction by using covariance matrices used in this study. The study also 
found the possibility of determining the optimal number of clusters by 
choosing the number of clusters corresponding to lower values for the dif-
ferent criteria used in the study. 
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1. Introduction 

The clustering analysis is one of the statistical methods that deal with the divi-
sion and classification of variables data elements into several homogeneous 
groups that are homogeneous within one group (cluster) and are different from 
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other groups (other clusters). Cluster analysis is defined as, a set of methods for 
constructing a (hopefully) sensible and informative classification of an initially 
unclassified set of data, using the variable values observed on each individual. All 
such methods essentially try to imitate what the eye-brain system does so well in 
two dimensions (Everitt and Skrondal [1]). Because of this characteristic of clus-
ter analysis, it has been used in many applied fields. It is used to divide and clas-
sify data into aggregates, which help to properly select appropriate statistical 
analysis of these data as a decision-making tool. The objective of this statistical 
method is to divide the data matrix containing the number of (n) of the samples 
and (p) of the variables into a homogeneous number of partial groups (k) by as-
sembling homogeneous and convergent sample items in clusters. Thereafter, 
criteria and measures must be used to distinguish between the different cluster 
results to reach two main points: the similarity of the data elements within the 
different clusters and the optimal number of clusters. This is done through the 
use of the legal functions, known as the standards of validity and legal perfor-
mance of the cluster. In this paper, one of the most important hybrid models 
based on clusters, the Gaussian mixed model-based clustering is used. The hy-
brid models based on clusters are able to predict accurately if the appropriate va-
riance model is chosen. It is applied through the use of four heterogeneity mod-
els. The covariance matrix of the Gaussian mixed model is unknown. So to esti-
mate these parameters we need to maximize the log-likelihood function of. Di-
rect maximization of the log-likelihood function is complicated, so the maxi-
mum likelihood estimator (MLE) of a finite mixture model is usually obtained 
via the EM algorithm (Dempster et al. [2]). 

Banfield and Raftery [3] proposed a model-based clustering method based on 
constraining these geometric features of components using the eigenvalue de-
composition of the covariance matrix.  

Different constraints on the covariance matrix provides different models that 
are applicable to different data structures, which is another advantage of mod-
el-based clustering. In 1995, Celeux and Govaert [4] classified these models in 
three main families of models: spherical, diagonal and general families. They 
have given the definitions and derivations of all 14 available models, along with 
the covariance matrix update equations based on these models to be used in the 
EM algorithm. However, only nine of those have a closed form solution to the 
covariance update equation, which is evaluated in the M-step of the EM algo-
rithm. 

Later in 2016, Chi et al., [5] showed that the population likelihood function 
has bad local maxima even in the special case of equally-weighted mixtures of 
well-separated and spherical Gaussians. They proved that the log-likelihood val-
ue of these bad local maxima can be arbitrarily worse than that of any global op-
timum. Also, they showed that the EM algorithm with random initialization will 
converge to bad critical points with probability at least. They further establish 
that the first-order variant of EM will not converge to strict saddle points almost 
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surely, indicating that the poor performance of the first-order method can be at-
tributed to the existence of bad local maxima rather than bad saddle points.  

Cluster analysis is used in various fields of science. Tóth et al., [6] described 
gamma-ray bursts (GRBs) using clustering. They analyzed the Final BATSE Cat-
alog using Gaussian-mixture-models-based clustering methods for six variables 
(durations, peak flux, total fluency and spectral hardness ratios) that contain in-
formation on clustering. 

In 2000, Bozdogan [7] studied the basic idea of Akaike’s [8] information crite-
rion (AIC). Then, he presented some recent developments on a new entropic or 
information complexity (ICOMP) criterion of Bozdogan [9] for model selection. 

The main contribution of the present paper is to propose the mixture-model 
cluster analysis technique under different covariance structures of the compo-
nent densities. To determine the optimal number of clusters by selecting the 
number of clusters corresponding to the lowest values for the different criteria. 
Four models for covariance structures that have not been applied in previous 
studies are studied using three criteria of the complexity of information. 

This paper is organized as follows: Section one is the introduction and section 
two the Gaussian Mixture Model-based Clustering (GMMC) is discussed. In sec-
tion three, the Expectation-Maximization (EM) algorithm is introduced. The 
Model Selection Criteria are introduced in section four. Finally, sections five and 
six contain the Numerical Results, and the Conclusion, respectively (Table 1). 

2. The Gaussian Mixture Model-Based Clustering (GMMC) 

The Gaussian mixture model is a powerful clustering algorithm used in cluster 
analysis. It is the most widely used clustering method of this kind, is the one 
based on learning a mixture of Gaussians. It assumes that there are a certain 
number of Gaussian distributions, and each of these distributions represents a 
cluster. Hence, a Gaussian Mixture Model tends to group the data points be-
longing to a single distribution together. Gaussian Mixture Models are probabil-
istic models and use the soft clustering approach for distributing the points in 
different clusters. It’s difficult to determine the right model parameters, Expecta-
tion-Maximization method is used to determine the model parameters.  

In a case where ( )n pX ×∈  are given (p dimensional data of size n), would be 
interested in estimating the number of clusters K. Assuming the observations 

ijx  ( 1, ,i n=  , 1, ,j p=  ) are assumed to be drawn from the following mix-
ture K distribution, each corresponding to a different cluster:  

 
Table 1. Nomenclatures of used parameters. 

parameters nomenclatures parameters nomenclatures 

πK mixing proportion λk Scalar controlling the volume of the ellipsoid 

θk vector of unknown parameters Aκ diagonal matrix 

Σk covariance matrix Dκ orthogonal matrix 

μk mean vector   
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( ) ( )
1

; , ;
K

k k k
k

f x g xπ θ π θ
=

= ∑  

Here 1, , Kπ π  are the mixing proportions that satisfy 0kπ >  and 

1 1K
kk π

=
=∑ . kθ  is the vector of unknown parameters of the kth component, 

and kπ  represents the probability that an observation belongs to the kth com-
ponent. The Gaussian mixture model assumes that the components of the mix-
ture are the multivariate normal distribution, thus the density function becomes:  

( ) ( )
1

; , , ; ,
K

k k k k
k

f x g xπ µ π µ
=

Σ = Σ∑  

The mixture components (i.e. clusters) are ellipsoids centered at kµ  with 
other geometric features, such as volume, shape, and orientation, determined by 
the covariance matrix kΣ . (Titterington et al. [10]). 

In this case, the component densities kg  are given by: 

( ) ( ) ( ) ( )
1

122
1; , 2 exp
2

p

k k k k k k kg x x xµ µ µ
−−

− Σ = Σ − − Σ −


π 


 

Parsimonious parameterizations of the covariance matrices can be obtained 
by using the eigenvalue decomposition of the covariance matrix. The eigenvalue 
decomposition of the kth covariance matrix is given as: 

T
k k kD A D kκ κλΣ = >  

where: kλ  is a scalar controlling the volume of the ellipsoid. 
Aκ  is a diagonal matrix specifying the shape of the density contours with 
( )det 1Aκ = .  

Dκ  is an orthogonal matrix which determines the orientation of the corres-
ponding ellipsoid (Banfield and Raftery [3] and Celeux and Govaert [4]). 

In one dimension, there are just two models: E for equal variance and V for 
varying variance. In the multivariate setting, the volume, shape, and orientation 
of the covariance can be constrained to be equal or variable across groups. Thus, 
14 possible models with different geometric characteristics can be specified. Ta-
ble 2 reports all such models with the corresponding distribution structure type, 
volume, shape, orientation, and associated model names. See (Erar [11], Gupta 
and Bhatia [12], Chi et al., [5], Scrucca et al., [13], Malsiner-Walli et al., [14] and 
Tóth, et al., [6]). 

Approaching the clustering problem from this probabilistic standpoint reduc-
es the whole problem to the parameter estimation of a mixture density. The un-
known parameters of the Gaussian mixture density, are the mixing proportions, 

kπ , the mean vectors, kµ , and the covariance matrices, kΣ . Therefore, to esti-
mate these parameters, we need to maximize the log-likelihood given by: 

( ) ( )
1 1

log | log | ,
n K

k k i k k
i k

L x g xθ π µ
= =

 = Σ  
∑ ∑  

The estimates of the mixing proportion, kπ , the mean vector kµ , and the 
covariance matrix kΣ  for the kth population are given as: 
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Table 2. Parameterizations of the covariance matrix and the corresponding geometric 
features. 

 Model Covariance Distribution Volume Shape Orientation 

1 EII Iλ  Spherical Equal Equal - 

2 VII k Iλ  Spherical Variable Equal - 

3 EEI Aλ  Diagonal Equal Equal Coordinate axes 

4 VEI k Aλ  Diagonal Variable Equal Coordinate axes 

5 EVI Aκλ  Diagonal Equal Variable Coordinate axes 

6 VVI k Aκλ  Diagonal Variable Variable Coordinate axes 

7 EEE TDADλ  Ellipsoidal Equal Equal Equal 

8 EVE TDA Dκλ  Ellipsoidal Equal Variable Equal 

9 VEE T
k DADλ  Ellipsoidal Variable Equal Equal 

10 VVE T
k DA Dκλ  Ellipsoidal Variable Variable Equal 

11 EEV T
kD ADκλ  Ellipsoidal Equal Equal Variable 

12 VEV T
k kD ADκλ  Ellipsoidal Variable Equal Variable 

13 EVV T
kD A Dκ κλ  Ellipsoidal Equal Variable Variable 

14 VVV T
k kD A Dκ κλ  Ellipsoidal Variable Variable Variable 

 

( )
1

1 ˆˆ
n

k k i
i

I
n

π
=

= ∑   

( )
1

1 ˆˆ
ˆ

n

k i k i
ik

I
n

µ χ
π =

= ∑   

( ) ( ) ( )
1

1 ˆˆ ˆ ˆ
ˆ

n

k i k i k k i
ik
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n

χ µ χ µ
π =

 ′Σ = − −  ∑   

where: ( )
ˆ1ˆ
ˆ0
i

k i
i

k
I

k

 == 
≠





. 

This estimation requires the non-linear optimization of the mixture likelihood 
for high-dimensional data sets. However, there are no closed-form solutions to 

( )ˆlog | 0L xθ
θ
∂

=
∂

 for any mixture density; so the likelihood has to be numeri-  

cally maximized. For this numerical optimization, the Expectation-Maximization 
(EM) algorithm of Dempster et al. [2] is used, which treats the data as incom-
plete and the group labels yi as missing.  

3. The Expectation-Maximization (EM) Algorithm 

The expectation-maximization (EM) algorithm is an iterative procedure used to 
find maximum likelihood estimates when data are incomplete or are treated as 
being incomplete. The consummate citation for the EM algorithm is the famous 
paper by Dempster et al. [2]. In EM algorithm, E and M steps are iterated until 
convergence is reached. The EM algorithm is based on the “complete-data”; i.e., 
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the observed data plus the missing data. In E-step, the expected value of the 
complete-data log-likelihood, say Q, is computed; in the M-step, Q is maximized 
with respect to the model parameters. The EM algorithm is easy to implement 
and a numerically stable algorithm that has reliable global convergence under 
fairly general conditions. However, the likelihood surface in mixture models 
tends to have multiple modes. So initialization of EM is crucial because it usually 
produces sensible results when started from reasonable starting values (Wu [15]). 
In this approach, hierarchical clusters are obtained by recursively merging the 
two clusters that provide the smallest decrease in the classification likelihood for 
the Gaussian mixture model (Banfield and Raftery [3], Xu et al. [16]). 

The EM algorithm is an iterative procedure consisting of two alternating steps, 
given some starting values for all parameters ( ˆkπ , ˆkµ  and ˆ

kΣ ). The algorithm 
can be summarized as follows at iteration (t + 1): 

1) In the E-step, the posterior probability, îkT  of the ith observation belong-
ing to the kth component is estimated, given the current parameter estimates. 

( ) ( ) ( )( )
( ) ( ) ( )( )1

ˆˆ ˆ ,
ˆ .

ˆˆ

|

ˆ ,|

t t t
k k i k k

ik K t t t
k k i k kk

g x
T

g x

π µ

π µ
=

Σ
=

Σ∑
 

2) In the M-step, the parameter estimates of kπ , kµ  and kΣ  are updated 
given the estimated posterior probabilities, using the update equations 

( )1

1

1 ˆˆ
n

t
i

i
T

nκ κπ +

=

= ∑  

( )
( )

1
1

1

1 ˆˆ
ˆ

n
t

i it
i

x T
nκ κ

κ

µ
π

+
+

=

= ∑  

( )
( )

( )( ) ( )( )1 1 1
1

1

1 ˆˆ ˆ ˆ
ˆ

n
t t t

i i it
i

T x x
nκ κ κ κ

κ

µ µ
π

+ + +
+

=

Σ = − −′∑  

3) Iterate the first two steps until convergence. 
The EM algorithm requires two issues to be addressed; determining the num-

ber of components, K, and initialization of the parameters.  

4. The Model Selection Criteria 

After estimating the parameters for the covariance matrix, the next step of de-
termining the optimal cluster structure is selecting the best model. Despite the 
vast number of different model selection criteria in the literature, Schwarz’s 
Bayesian Criteria (SBC) (Schwarz [17]) is no doubt the most widely used in the 
model-based clustering. Besides these criteria, two other selection criteria are 
used. Namely AIC (Akaike [8]) and the information complexity (ICOMP) crite-
rion (Bozdogan [18]). When using any information criterion to perform model 
selection, the model corresponding to the lowest score as providing the best 
balance between good fit and parsimony is chosen. Using the likelihood function, 
the AIC and SBC functions of the Gaussian mixture model can be defined as 
follows: 
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( )AIC 2log ˆ | 2L x mθ= − +  

( ) ( )ˆSBC 2lo |g logL x m nθ += −  

where: ( )ˆ |L xθ  is the likelihood function. 
m is the number of independent parameters to be estimated.  
θ̂  is the maximum likelihood estimate for parameter θ. 
ICOMP, originally introduced by Bozdogan [7] [9] [18] [19], is a logical ex-

tension of AIC and SBC, based on the structural complexity of an element or set 
of random vectors via the generalization of the information-based covariance com-
plexity index of Van Emden [20]. ICOMP penalizes the lack-of-fit of a model 
with twice the negative of the maximized log-likelihood, following the same 
procedure of AIC and SBC. However, in ICOMP, a combination of lack-of-par- 
simony and profusion-of-complexity are also simultaneously penalized by a 
scalar complexity measure, C, of the model covariance matrix; while in AIC 
and SBC, only the lack of parsimony is penalized in terms of the number of 
parameters. In general, ICOMP is defined by using the likelihood function, 
the AIC and SBC functions of the Gaussian mixture model can be defined as 
follows:    

( ) ( )( )ˆ |ICOMP 2log 2L x C Covθ θ− +=  

where: ( )ˆ |L xθ  is the likelihood function. 
C is a real-valued complexity measure.  

( )Cov θ  is the estimated model covariance matrix.  
The covariance matrix is estimated by the estimated inverse Fisher informa-

tion matrix (IFIM), 1ˆ −  is given by:  

( )
1

2
1

ˆlog
ˆ

L
E

θ

θ θ

−

−
  ∂  = −  ′∂ ∂   

  

That is to say, IFIM is the negative expectation of the matrix of the second 
partial derivatives of the maximized log-likelihood of the fitted model, evaluated 
at the maximum likelihood estimators θ̂ . 

For a multivariate normal model, the general form of ICOMP is defined as:  

( ) ( ) ( ) ( )1 1
PEU 1

ˆ ˆ ˆICOMP 2log | logL x m n Cθ− −= − + +   

where: 

( ) ( )1
1 1

1

ˆ 1ˆ ˆlog log
2 2

trSC
s

−

− −
 
 = −
 
 


   

( ) ( )1 1ˆ ˆdim ranks − −= =   

For all the above criteria, the decision rule is to select the model that gives the 
minimum score for the loss function. 
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5. The Numerical Results 

All results were obtained by using MATLAB. 
The Gaussian mixture-model based clustering is applied, which implements 

the EM algorithm for inference, to four simulated data sets. The maximum 
number of clusters is taken K max = 6 for all examples. The convergence criteria 
of the EM algorithm are set to see = 10−6 and a maximum of 1000 iterations is 
allowed. After confirming the validity of mathematical equations and the pro-
gram, four models of covariance matrix were applied. These models are: 

Model: EVV with the covariance matrix ( T
kD A Dκ κλ ).  

Model: VII with the covariance matrix ( k Iλ ). 
Model: VEE with the covariance matrix ( T

k DADλ ). 
Model: VVE with the covariance matrix ( T

k DA Dκλ ). 
These models have been selected due to their distinguishing features: They 

represent different cases of the covariance matrix. Where the models [EVV] 
[VEE] and [VVE] belong to the General Family (Celeux and Govaert [4]). While 
the model [VII] belongs to the spherical family. In all models, the AIC, SBC and 
ICOMPPEU parameters were calculated. The optimal number of clusters has 
been determined by reaching the lowest values. The values of the complexity 
criteria were as follows: 

1) Model: EVV with the covariance matrix ( T
kD A Dκ κλ ) (Figure 1 & Figure 

2) 
From Table 3, the optimal number of clusters was determined. It was deter-

mined by achieving the lowest values of the criteria at the same time. It was 
found to fit the number of clusters of two clusters. 

Given below in Table 4 the parameter values estimated for the best simula-
tion.  

For the selected model, GMMC identifies the cluster labels with a miss classi-
fication rate of 1%. The miss classification rate is calculated as follows: 
 

 
Figure 1. Scatterplot of the actual dataset labeled by groups (Model EVV). 
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Figure 2. Scatterplot of the estimated dataset labeled by groups (Model EVV). 
 
Table 3. Values of the criteria for selecting the model to reach the best simulation for the 
model (EVV) for the number of clusters k = 1, ..., 6. 

ICOMPPEU SBC AIC No. of clusters 

2174.1 2188.3 2188.1 1 

1826.8 1844.3 1837.8 2 

1828.7 1852.3 1839.7 3 

1831 1860.8 1842 4 

1832.4 1868.4 1843.4 5 

1842.2 1884.5 1853.2 6 

 
Table 4. The resulting confusion matrix for model (EVV). 

Output Parameters Input Model 

No. of simulations = 100 

1

1.2671 1.2559
1.2559 2.0334

COV  
 
 

=  

2

3.738 3.6801
3.6801 4.5328

COV
−

=


 − 
 

[ ]0.6997 0.3003kπ =  
1.9466 2.8553

,
1.8859 0.1221kµ =

−   
   −     

2λ =  

1

1 0
0 1

A =
 
 
 

 

2

1 0
0 3

A =
 
 
 

 

1

1.2929 1.2483
1.2483 2.000

COV  
 
 

=  

2

4.7071 4.6268
4.6268 5.41

CO
2

V
4

− 
 − 

=
 

[ ]0.7 0.3kπ =  
2 3

,
2 0kµ

−   
  
  

= 
  

n = 250 
n1 = 175 
n2 = 75 
K = 2 

EVV 
T

k k kD A Dλ  

 
 Predicted   

Total 2 1   

175 
75 

1 
75 

174 
0 

1 
2 

Actual 

250 76 174 Total  
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( )

174 75 2491 100 1 100 1 100
250 250

1 0.99 100 1

ii jja a+  +   − × = − × = − ×     Σ     
= − × =

 

2) Model: VII with the covariance matrix ( k Iλ ) (Figure 3 & Figure 4) 
Using Table 5, the optimal number of clusters was two clusters. GMMC 

achieves a miss classification rate of 2% for the model (VII). The resulting con-
fusion matrix is shown in Table 6. 

3) Model: VEE with the covariance matrix ( T
k DADλ ) (Figure 5 & Figure 6) 

From the results in Table 7, it was found that the optimal number of clusters 
is three, so the number of clusters was increased. To achieve greater clarity, the 
sample size was 500 instead of 250 and was divided into three groups as follows 
(Table 8). 

For this model, the miss classification rate was 15%. 
4) Model: VVE with the covariance matrix ( T

k DA Dκλ ) (Figure 7 & Figure 
8) 
 

 
Figure 3. Scatterplot of the actual dataset labeled by groups (Model VII). 
 

 
Figure 4. Scatterplot of the estimated dataset labeled by groups (Model VII). 
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Figure 5. Scatterplot of the actual dataset labeled by groups (Model VEE). 

 
Table 5. Values of the criteria for selecting the model to reach the best simulation for the 
model (VII) for the number of clusters k = 1, ..., 6. 

ICOMPPEU SBC AIC No. of clusters 

2018.8 2034.5 2034.3 1 

1859.8 1904.8 1873.5 2 

1864.4 1890.8 1878.1 3 

1863.5 1896 1877.7 4 

1868.7 1907.4 1882.4 5 

1873.7 1893.8 1888.74 6 

 
Table 6. The resulting confusion matrix for model (VII). 

Output Parameters Input Model 

No. of simulations = 100 

1

1.0460 0.0659
COV

0.0659 0.8913
− 

=  − 
 

2

2.4341 0.5134
COV

0.5134 1.9715
− 

=  − 
 

[ ]0.7040 0.2960kπ =  

1.9139 2.7437
,

2.0450 0.1582kµ =
−   

   −   
 

1,2kλ =  

1

1 0
0 1

A  
=  
 

 

2

1 0
0 3

A  
=  
 

 

1

1.2929 1.2483
COV

1.2483 2.000
 

=  
 

 

2

4.7071 4.6268
COV

4.6268 5.4142
− 

=  − 
 

[ ]0.7 0.3kπ =  

2 3
,

2 0kµ
−   

  
  

= 


 

n = 250 
n1 = 175 
n2 = 75 
K = 2 

VII 

k Iλ  

 
 Predicted   

Total 2 1   

175 
75 

0 
72 

175 
3 

1 
2 

Actual 

250 72 178 Total  
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Figure 6. Scatterplot of the estimated dataset labeled by groups (Model VEE). 

 

 
Figure 7. Scatterplot of the actual dataset labeled by groups (Model VVE). 

 

 
Figure 8. Scatterplot of the estimated dataset labeled by groups (Model VVE). 
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Table 7. Values of the criteria for selecting the model to reach the best simulation for the 
model (VEE) for the number of clusters k = 1, ..., 6. 

ICOMPPEU SBC AIC No. of clusters 

2028.1 2043.7 2043.4 1 

1727.6 1744.9 1738.4 2 

1725.2 1748.7 1736.1 3 

1731.8 1761.5 1742.7 4 

1741.8 1777.7 1752.6 5 

1741.9 1784 1752.7 6 

 
Table 8. The resulting confusion matrix for model (VEE). 

Output Parameters Input Model 

No. of simulations = 100 

1

0.8652 0.6431
COV

0.6431 0.8904
 

=  
 

 

2

1.7439 2.1360
COV

2.1360 3.2356
 

=  
 

 

3

1.2078 0.8378
COV

0.8378 1.7065
 

=  
 

 

[ ]0.4559 0.4162 0.1279kπ =  

0.7230 0.3678 1.1760
, ,

1.2093 0.0200 0.3249kµ
     
     


=
    

 

1,1.5,3kλ =  

1 0
0 1

A 
=


 
 

 

cos 6 sin
8 8

sin cos
8 8

D

 π π    ∗        
 π π   −    

   

=



 

1

0.6464 0.6242
COV

0.6242 1.000
 

=  
 

 

2

0.9697 0.9362
COV

0.9362 1.500
 

=  
 

 

3

1.9393 1.8725
COV

1.8725 3.000
 

=  
 

 

[ ]0.3 0.5 0.2kπ =  

1,2,3

0.5 1 0
, ,

1 1 0.5
µ

     
     −  

=
  

 

n = 500 
n1 = 150 
n2 = 200 
n3 = 150 

K = 3 

VEE 
T

k DADλ  

 
 Predicted   

Total 3 2 1   

150 
200 
150 

0 
0 

129 

24 
170 

1 

126 
30 
20 

1 
2 
3 

Actual 

500 129 195 176 Total  

 
The fit number of clusters for this model was two clusters (Table 9). 
It was shown that the miss classification rate was 0% from the data in Table 

10. 

6. Conclusion 

In this paper, the Gaussian mixture model-based clustering is used. The mixture 
models based on clusters are able to predict accurately if the appropriate cova-
riance matrix, model is selected. It is applied by using four models: 

https://doi.org/10.4236/ojs.2020.103034
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206753#sec013


N. A. Morad 
 

 

DOI: 10.4236/ojs.2020.103034 578 Open Journal of Statistics 
 

Table 9. Values of the criteria for selecting the model to reach the best simulation for the 
model (VVE) for the number of clusters k = 1, ..., 6. 

ICOMPPEU SBC AIC No. of clusters 

1872.6 1884.3 1884.1 1 

1516.1 1529.5 1523.1 2 

1520.7 1540.4 1527.7 3 

1516.8 1542.6 1523.8 4 

1529.7 1561.8 1536.7 5 

1527.7 1566 1534.7 6 

 
Table 10. The resulting confusion matrix for model (VVE). 

Output Parameters Input Model 

No. of simulations = 100 

1

0.6007 0.5619
COV

0.5619 0.9121
 

=  
 

 

2

1.1635 1.8430
COV

1.8430 4.1089
 

=  
 

 

[ ]0.7039 0.2961kπ =  

2.0486 3.0599
,

2.0247 0.0947kµ =
−   

   −   
 

1,1.5kλ =  

1

1 0
0 1

A  
=  
 

 

2

1 0
0 3

A  
=  
 

 

cos 6 sin
8 8

sin cos
8 8

D

 π π    ∗        
 π π   −    

   

=



 

1

1.1980 1.6492
COV

1.6492 3.0186
 

=  
 

 

2

1.4402 1.7089
COV

1.7089 3.2965
 

=  
 

 

[ ]0.7 0.3kπ =  

2 3
,

2 0kµ
−   

  
  

= 


 

n = 250 
n1 = 175 
n2 = 75 
K = 2 

VVE 
T

k kDA Dλ  

 
 Predicted   

Total 2 1   

175 
75 

0 
75 

175 
0 

1 
2 

Actual 

250 75 175 Total  

 
1) Model [EVV] ( T

k k kD A Dλ ) represents the case of equal volume, variable 
shape, and orientation. It is showed that the optimal number of clusters equals 
two. From the values of the complexity criteria in Table 3, it is noted that the 
ICOMPPEU criterion corresponds to the lowest value compared to the other 
two criteria and the miss classification rate was 1%. 

2) Model [VII] ( k Iλ ) represents the case of variable volume, shape, and 
orientation. Also, in this model, the optimal number of clusters equals two and 
the ICOMPPEU criterion corresponds to the lowest value compared to the other 
two parameters (the values in Table 5). The miss classification rate was 2%. 
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3) Model [VEE] ( T
k DADλ ) represents the case of variable volume, equal 

shape, and direction. From Table 7, it is found that the optimal number of clus-
ters is calculated by the number of clusters corresponding to the lowest values of 
the complexity of the information and found to be equal to three. The miss clas-
sification rate was 15%. 

4) Model [VVE] ( T
k kDA Dλ ) represents the case of variable volume, shape, 

and equal orientation. As the first and second model the optimal number of 
clusters equals two the ICOMPPEU criterion corresponds to the lowest value 
compared to the other two criteria (values are found in Table 9, while the miss 
classification rate was 0%. 

The results showed that the ICOMPPEU criteria were superior to the rest of 
the criteria. In addition to the success of the Gauss model based on the clusters 
in the prediction using the covariance matrix. The study also determined the 
possibility of determining the optimal number of clusters by selecting the num-
ber of clusters corresponding to the lowest values of the different criteria. 

For the number of clusters k = 1, ..., 6, the three different selection criteria 
have chosen the VVE model for the number of clusters two to be the optimal 
model. For the selected model, the Gaussian Mixture Model-based Clustering 
(GMMC) diagnoses the cluster classification with a 0% miss classification rate. 
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