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Abstract 
We present an ab-initio, self-consistent density functional theory (DFT) de-
scription of ground state electronic and related properties of hexagonal boron 
nitride (h-BN). We used a local density approximation (LDA) potential and 
the linear combination of atomic orbitals (LCAO) formalism. We rigorously 
implemented the Bagayoko, Zhao, and Williams (BZW) method, as enhanced 
by Ekuma and Franklin (BZW-EF). The method ensures a generalized minimiza-
tion of the energy that is far beyond what can be obtained with self-consistency 
iterations using a single basis set. The method leads to the ground state of the 
material, in a verifiable manner, without employing over-complete basis sets. 
We report the ground state band structure, band gap, total and partial densi-
ties of states, and electron and hole effective masses of hexagonal boron ni-
tride (h-BN). Our calculated, indirect band gap of 4.37 eV, obtained with 
room temperature experimental lattice constants of a = 2.504 Å and c = 6.661 
Å, is in agreement with the measured value of 4.3 eV. The valence band 
maximum is slightly to the left of the K point, while the conduction band 
minimum is at the M point. Our calculated, total width of the valence and to-
tal and partial densities of states are in agreement with corresponding, expe-
rimental findings. 
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1. Introduction 

The demand for compact ultraviolet laser devices has led many researchers to 
search for materials with band gaps larger than that of GaN (3.4 eV), a material 
presently utilized in the fabrication of high-power, blue-ray laser devices [1]. 
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Properties of hexagonal boron nitride (h-BN), with a graphite-like crystal struc-
ture, provide a basis for many applications. It is employed as a good electrical 
insulator, with excellent thermal conductivity, for crystal growth and molecular 
beam epitaxy. It has several applications in electronics and nuclear energy in-
dustries and serves as an excellent lubricant [2]. Recently, its outstanding cata-
lyst properties have attracted much attention, for potential applications in oxy-
gen reduction reactions [3] [4] [5]. Hexagonal boron nitride (h-BN) is a wide 
band gap material with high chemical and thermal stability. Despite the above 
attributes of h-BN, a survey of the literature shows a lack of consensus on the 
experimentally determined band gap of the material. Measured, direct and indi-
rect band gaps have been reported, with values ranging from 3.6 to 7.1 eV. Its 
electronic structure and band gap have been studied experimentally using x-ray 
photoemission [6] [7] [8] [9], optical absorption [10], UV absorption [11], opti-
cal reflectivity [12] [13], luminescence spectra [14] [15], photoconductivity [16] 
[17], and temperature dependence of the electrical resistivity [18]. The various 
experimentally measured band gaps are summarized in Table 1. From the con-
tent of the table, we infer a lack of consensus not only on the direct or indirect 
nature of the band gap, but also on its numerical value—notwithstanding some 
of the discrepancies may be due to differences in sample purity, thickness (for 
films) and measurement temperature.  

As shown in Table 2, the theoretical studies of h-BN disagree on the value of 
the band gap and particularly on the locations of the valence band maximum 
(VBM) and of the conduction band minimum (CBM), respectively. Specifically, 
the table shows that previous LDA and GGA calculations [22]-[32] led to seven 
(7) different pairs of VBM and CBM: M-H (1), H-M (5), K-M (2), M-K (1), H-K 
(1), Г-H (1) and Г-K (2), where the numbers between parentheses represent the 
respective frequencies of the concerned VBM-CBM pair. The two Green func-
tion and dressed Coulomb approximation (GW) calculations in the table found 
the gap to be from H to M. With an LDA potential, Ma et al. [23] employed the  
 
Table 1. Experimental values of the band gap (Eg) of h-BN, in eV. The results in this table 
are reportedly for bulk h-BN. We note that some authors believe the measured indirect 
band gap of 4.3 eV [9] [10] [11] best represents the true band gap of h-BN.  

Experimental method Eg (eV) 

X-ray photoemission spectra 3.6 [a], 3.85 [b] 

Optical and UV absorption 3.9 [c], 4.3 [d] 

Laser-induced fluorescence (LIF) 4.02 [e] 

Optical reflectivity spectra 4.5 [f], 5.2 [g] 

Luminescence optical spectra >5.5 [h], 5.89 [i], 5.95 [j] 

Photoconductivity, and absorption spectra 5.8 [k], 5.83 [l] 

Temperature dependence of electrical resistivity 7.1 [m] 

aRef. [6], bRef. [7] [8] [9], cRef. [10], dRef. [11] [12] [13], eRef. [14], fRef. [15], gRef. [16], hRef. [17], iRef. [18], 
jRef. [19], kRef. [20], lRef. [21], mRef. [22]. 
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Table 2. Illustrative, previously calculated values of the band gap (Eg) of h-BN, in eV. 
They include results from LDA, GGA, and GW calculations.  

Computational method Potentials Eg (eV) 

Linear Combination of Pseudoatomic 
Orbitals (LCPAO) 

LDA 3.7 (M-H) [a] 

FP-LAPW LDA 
3.9 (H-M) [b] 
4.3 (H-H) [b] 

Ab-initio Pseudopotential LDA 3.9 (K-M) [c] 

OLCAO LDA 4.07 (M-K) [d] 

Ultra soft Pseudopotential LDA 
4.1 (H-M) [e] 
4.5 (M-M) [e] 

FP-LAPW LDA 
4.0 (H-M) [f] 
4.5 (M-M) [f] 

FP-LAPW LDA 4.58 (H-K) [g] 

FP-LAPW PW91-GGA 4.53 (Γ-K) [g] 

FP-LAPW PBE-GGA 4.54 (Γ-K) [g] 

Projected-Augmented-Wave (PAW) LDA 4.02 (K-M) [h] 

PAW (VASP) LDA 4.21 (H-M) [i] 

PAW (VASP) GGA 4.39 (H-M) [i] 

PAW GGA 4.47 (K-M) [j] 

GW GGA 5.4 (H-M) [c] 

GW LDA 5.95 (K-M) [h] 

GW LDA 5.95 (H-M) [k] 

aRef. [23], bRef. [24], cRef. [25], dRef. [26], eRef. [27], fRef. [28], gRef. [29], hRef. [30], iRef. [31], jRef. [32], 
kRef. [33]. 

 
linear combination of pseudo-atomic-orbitals (PAO) method to calculate prop-
erties of h-BN. Their calculated, indirect band gap, from H to M, was 3.7 eV 
[23]. The calculated direct (H-H) and indirect (H-M) band gaps, obtained by 
using the Full Potential Linearized Augmented Plane Wave (FP-LAPW) method, 
were respectively 4.3 eV and 3.9 eV [24]. The LDA pseudopotential calculations 
of Blasé et al. [25] resulted in an indirect (K-M) band gap of 3.9 eV while their 
GW quasiparticle calculations produced an indirect (H-M) band gap of 5.4 eV. 
Xu and Ching [26], using orthogonalized linear combination of atomic orbitals 
(OLCAO), found an indirect (K-M) band gap of 4.07 eV. The optimized ultra-soft 
(Vanderbilt-type) LDA pseudopotential calculations of Furthmüller et al. [27] 
predicted an indirect (H-M) band gap of 4.1 eV and a direct (M-M) gap of 4.5 
eV. Table 2 shows the above referenced results and several other theoretical 
findings [28]-[33].   

Clearly, this range of theoretical results for the band gap of h-BN, including 
the seven (7) different pairs of VBM-CBM, points to the need for further work. 
Additionally, and unlike the cases for most semiconductors, the experimental 
results in Table 1 also disagree. These discrepancies constitute a major motiva-
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tion for this work. This motivation is partly predicated on previous, theoretical 
results of our group, in agreement with corresponding experimental ones, for 
more than 30 semiconductors [34].  

2. Method and Computational Details 

We succinctly provide below the essential features of our computational ap-
proach. Extensive details on it are available in the literature [34]-[41]. As with 
most other calculations, we employed a density functional theory (DFT) poten-
tial and the linear combination of atomic orbitals (LCAO). Our specific DFT 
potential for this work is the local density approximation (LDA) one by Ceperley 
and Alder, with the parameterization of Vosko et al. [42] [43] [44] [45]. A major 
difference between our method and most others in the literature stems from our 
performance of a generalized minimization of the energy functional to attain the 
ground state of the system, without utilizing over-complete basis sets. The first 
[46] [47] [48] and the enhanced [49] [50] [51] versions of this generalized mi-
nimization of the energy are respectively expounded upon in the literature.  

As per the second DFT theorem, self-consistent iterations with a single basis 
set lead to a stationary solution among an infinite number of such solutions. 
This fact resides in the reality that the ground state charge density (i.e. basis set) 
is not à priori known, as far as we can determine. Consequently, the chances are 
extremely small for a calculation with a single basis set to lead to the ground 
state of the system or to avoid over-complete basis sets.  

We have described in previous publications a straightforward way to search 
for and to reach the ground state of the system. Beginning with a small basis set 
that is large enough to account for all the electrons in the system, we perform 
successive self-consistent calculations, where the basis set of a calculation, except 
for the first one, is that of the preceding calculation augmented with one orbital. 
The first and second versions of our method, known as BZW and BZW-EF me-
thod, differ as follows. For the first one, we add orbitals in the order of increas-
ing energy of the excited states they represent. In the second, we heed the “arbi-
trary variations” clause of the second DFT theorem and add orbitals so as to 
recognize the primacy of polarization orbitals (p, d, and f) over the spherical 
symmetry of s orbitals for valence electrons. Indeed, for diatomic and any other 
multi-atomic system, valence electrons do not possess any full, spherical sym-
metry known to us, unlike the core electrons. The above referenced, successive 
calculations continue until three (3) consecutive ones produce the same occu-
pied energies. This criterion guarantees the attainment of the absolute minima of 
the occupied energies (i.e. the true ground state). With just two (2) consecutive 
calculations leading to the same occupied energies, these energies could represent 
a local minima and not the absolute ones. The first of the referenced three (3) 
consecutive calculations [34] is the one providing the DFT description of the 
material. The basis set for this calculation is dubbed the optimal basis set, i.e. the 
smallest basis set leading to the ground state charge density and energies.  

https://doi.org/10.4236/jmp.2020.116057


Y. Malozovsky et al. 
 

 

DOI: 10.4236/jmp.2020.116057 932 Journal of Modern Physics 
 

In this study, we utilized the program package developed at the US Depart-
ment of Energy’s Ames Laboratory, in Ames, Iowa. B and N are light enough to 
neglect relativistic corrections. Self-consistent calculations of the electronic ener-
gies and wave functions for the atomic or ionic species provided input data for 
the solid-state calculations. Specifically, for hexagonal BN, the species we consi-
dered were B3+ and N3−. Preliminary calculations for neutral atoms (B and N) 
pointed to a charge transfer larger than 2, from B to N.   

We provide below computational details to enable the replication of our work. 
Hexagonal BN (h-BN) belongs to the 4

6hD  space group, with a space group num-
ber of 194, a Pearson symbol of hP4, and Patterson space group P63/mmc [17]. 
There are two atoms of each kind in the unit cell, with the boron (B) atoms occu-  

pying sites ( 10,0,
2

) and ( 1 2, ,0
3 3

) while the nitrogen (N) atoms are at (0, 0, 0) and 

( 1 2 1, ,
3 3 2

). Our self-consistent calculations were performed with the experimental  

lattices constants for hexagonal BN with a = 2.504 Å = 4.7319 a.u. is a lattice 
constant in atomic units (1 a.u. = 1 Å/aB, where aB is the Bohr radius) and c = 
6.661 Å = 12.5875 a.u. at room temperature. We expanded the radial parts of the 
orbitals in terms of even-tempered Gaussian functions. The s and p orbitals for 
the cation B3+ were each described with 16 even-tempered Gaussian functions 
with the respective minimum and maximum exponents of 0.2658 and 1.655 × 
104 for the atomic potential and 0.1242 and 1.365 × 104 for the atomic wave 
functions. The self-consistent calculations for B3+ led to the total charge of 
2.0005, which is also the valence charge, with an error per electron of 2.5 × 10−4. 
Similarly, the s and p orbitals for N3− were described with 20 even-tempered 
Gaussian functions with the respective minimum and maximum exponents of 
0.1600 and 1.600 × 104 for the atomic potential and 0.1000 and 1.300 × 104 for 
the atomic wave functions. These exponents led to the convergence of the atom-
ic calculations for N3− with the total, core and valence charges of 10.00004, 
2.00002, and 8.00002, respectively. The error per electron was therefore 4 × 10−6. 
We utilized a 24 k-point mesh with proper weights, in the irreducible Brillouin 
zone, for the self-consistency iterations. The criterion for the convergence of the 
iterations was a difference of 10−5 or less between the potentials from two con-
secutive ones. We used 140 k points in the irreducible Brillouin zone for the 
production of the final, self-consistent bands.  

3. Results 

Table 3 contains information on the successive calculations performed with the 
purpose of reaching the absolute minima of the occupied energies. The band gap 
generally can decrease or increase before one reaches the optimal basis set. As 
shown farther below, with the graphs of the bands, Calculations IV, V, and VI led 
to the same occupied energies indicating that these energies have reached their ab-
solute minima, i.e. the ground state. As per the BZW-EF method, Calculation 
IV, the first of the three (3) is the one providing the DFT description of the  
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Table 3. Successive calculations with the BZW-EF method, for h-BN (Calculations I-VI). 
In these calculations, the lattice constants are a = 2.504 Å and c = 6.661 Å, at room tem-
perature. Calculation IV led to the absolute minimum of the occupied energies, given that 
Calculations V and VI produced occupied energies identical to corresponding ones from 
Calculation IV. The calculated indirect band gap, from near K to M, is 4.369 eV (or 4.37 
eV).  

Calculation No. 
Valence Orbitals for 

B3+ 
Valence Orbitals 

for N3− 
No. of  

Functions 
Band Gaps (eV) 

(near K-M) 

I 1s22p02s0 2s22p6 36 7.499 

II 1s22p02s0 2s22p63p0 48 5.767 

III 1s22p02s03p0 2s22p63p0 60 4.370 

IV 1s22p02s03p0 2s2263p03s0 64 4.369 

V 1s22p02s03p03s0 2s2263p03s0 68 4.365 

VI 1s22p02s03p03s0 2s22p63p03s04p0 80 4.210 

 
material. The basis set for this calculation is the optimal basis set, i.e. the smallest 
basis set leading to the ground state of the material, without being over-complete.  

Figures 1(a)-(e) provide a graphical illustration of the generalized minimiza-
tion of the energy, as the basis set is methodically augmented for successive, 
self-consistent calculations. Every pair of bands from consecutive calculations is 
shown below. In Figure 1(c), Calculations III may appear to reach the minima 
of the occupied energies, given that these occupied energies are mostly the same 
as corresponding ones from Calculation IV. However, a close examination of the 
occupied energies around −18.50 eV, at the Γ point, shows that both bands have 
been lowered by Calculation IV from their values from Calculation III. The oc-
cupied energies from Calculation IV are identical to the corresponding ones 
from Calculations V and VI. This perfect superposition of the occupied energies 
from three (3) consecutive calculations is the robust criterion for the attainment 
of the absolute minima of the occupied energies, i.e. the ground state of the ma-
terial. As such, these occupied energies possess the full, physical content of DFT. 
From Figure 1(d) and Figure 1(e), it is apparent that the referenced superposi-
tion of the occupied energies does not hold for the all the unoccupied ones. It is 
instructive to note, however, that the low laying, unoccupied energies from the 
three (3) calculations, up to 8 eV, are also superimposed. This gratifying feature, 
notwithstanding, it is clear from the graphs that higher, unoccupied energies 
tend to be lowered as the size of the basis set increases.  

The top of the valence band (VBM) is between K and Γ, at equally 10% of the 
K-Γ separation, to the left of K. Its distance from K is ∆K = (4π/3a) × 0.1 = 
0.0885, where a = 4.7319 a.u. is a lattice constant in atomic units. Hence, the lo-
cation of the VBM is at K* = K − ΔK = (0, 0.7965, 0), to the left of K.  

Even though the occupied energies in Table 4 and the graph of the bands 
from Calculation IV (in Figure 1(d)) provide an adequate description of the 
ground state electronic properties of hexagonal BN, we discuss farther below  
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Figure 1. Energy bands of hexagonal BN (h-BN) as obtained in Calculations I-VI of the BZW-EF method. These figures show 
the bands for pairs of consecutive calculations, with solid lines for bands of a calculation and dashed lines for the bands of the 
calculation immediately following it. The progressive lowering of the occupied energies, upon setting the Fermi levels to zero, 
is apparent, up to Calculation IV-VI, which produced the same absolute minima of the occupied energies, i.e. the ground 
state. (a) Calculations I and II; (b) Calcualtions II and III; (c) Calculations III and IV. Calculation IV is optimal basis set; (d) 
Calculations IV and V; (e) Calculations V and VI. 
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Table 4. Calculated, electronic energies (in eV) of h-BN, at high symmetry points in the 
Brillouin zone, obtained from Calculation IV. The Fermi energy is set equal to zero. The 
calculated band gap is 4.37 eV. 

Γ-point K-ΔK-point K-point H-point A-point M-point L-point 

17.357 21.116 20.759 19.791 16.4508 21.593 21.745 

16.617 20.969 20.759 19.791 16.4508 21.259 21.745 

13.322 19.793 18.939 18.802 13.320 21.033 18.820 

13.321 18.613 18.939 18.802 13.320 20.236 18.820 

13.305 16.896 17.668 14.843 13.319 15.699 13.856 

13.304 14.445 13.994 14.843 13.319 12.780 13.856 

13.056 13.656 13.994 13.878 12.958 10.689 10.824 

12.592 12.309 12.957 13.878 12.958 10.163 10.824 

9.714 5.445 5.064 4.715 7.263 6.222 5.040 

5.049 4.953 5.064 4.715 7.263 4.369 5.040 

−2.419 0.000 −0.138 −0.048 −2.435 −0.482 −1.007 

−2.420 −0.614 −0.138 −0.048 −2.435 −1.552 −1.007 

−2.453 −7.827 −8.067 −8.082 −2.436 −5.399 −5.423 

−2.453 −7.833 −8.067 −8.082 −2.436 −5.452 −5.423 

−4.365 −9.241 −9.242 −9.322 −5.606 −9.960 −9.990 

−6.593 −9.366 −9.400 −9.322 −5.606 −10.012 −9.990 

−18.206 −14.748 −14.653 −14.653 −18.368 −15.254 −15.283 

−18.509 −14.801 −14.653 −14.653 −18.368 −15.313 −15.283 

 
subtilities relative to the valence band maximum (VBM) and the conduction 
band minimum (CBM). In particular, our close examination of the bands hints 
at a possible explanation of the multitude of VBM-CBM pairs reported by pre-
vious density functional theory calculations. These calculations, as far as we can 
determine, did not perform the generalized minimization of the energy as dic-
tated by the second DFT theorem. 

Figure 2 and Figure 3 respectively show the calculated, total and partial den-
sities of states (DOS, pDOS). We derived them from the bands produced by 
Calculation IV, with the optimal basis set. Short, vertical segments indicate the 
locations of major peaks, whose values are provided on the graph of the total 
density of states. The calculated valence band width of 18.58 eV is in agreement 
with the calculated valence band width (18.5 eV) from Ma et al. [23] and from 
Castellani et al. [24]. While this value is smaller than the experimental finding of 
20.7 ± 1.5 eV obtained by J. Barth et al. [7] and by Tegeler et al. [8] in their XPS 
measurements, we note that, according to these authors [7] [8] [23] [24], the real 
total width of the valence bands may be smaller than the measured value by l - 3 
eV, due to significant Auger broadening of the XPS spectrum at energies cor-
responding to the s band. 
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Figure 2. Calculated, total density of states (DOS) for hexagonal boron nitride (h-BN), 
obtained with the bands from Calculation IV. 
 

 
Figure 3. Calculated, partial densities of states (p-DOS), as derived from bands resulting 
from Calculation IV. 
 

The lower and upper groups of valence bands have widths of 3.98 eV and 
10.02 eV, respectively. Three major peaks in the density of states for the conduc-
tion bands are located at 4.92 eV, 12.88 eV, and 18.46 eV. The above characteris-
tics of the total density of states (DOS), for h-BN, will be hopefully confirmed by 
future experimental measurements. Additionally, the eigenvalues in Table 4 
lend themselves to comparison with some X-Ray and UV spectroscopic mea-
surements. From Figure 3, for the partial densities of state (pDOS), we clearly 
observe a net dominance by nitrogen s state in the lowest group of valence 
bands, with a tiny contribution from boron p state. In the upper group of va-
lence bands, N p dominates, with small contributions from boron p and minus-
cule ones from boron s. This hybridization of nitrogen p and boron p should be 
observable in X-Ray spectroscopic measurements. While the largest contribution 
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to the conduction bands comes from nitrogen p, particularly around the absorp-
tion edge, that of boron p is also significant. Both N s and B s have evanescent 
contributions to the conduction bands.  

Several transport properties, including various mobilities for electrons or 
holes, depend on the inverse of the electron or hole effective masses, respective-
ly. For this reason, we have calculated the electron and hole effective masses 
shown in Table 5, in units of the electron mass m0. With values of 0.205m0, 
2.250m0, and 1.730m0 in the M to Γ, M to K, and M to L directions, respectively, 
the electron effective mass at the bottom of the conduction band is clearly aniso-
tropic. The same is true for the electron effective mass at H, even though its val-
ues from H to A and H to Γ are identical.  

The hole effective masses from K* to Γ, K* to H, and K* to M are respectively 
0.534, 0.569, and 1.48, in units of m0. The calculated hole effective masses at the 
H symmetry point, along H-A, H-Γ, H-K, and H-L axes, are 0.822, 0.822, 3.468, 
and 1.671, respectively, in units of m0. These hole effective masses are anisotrop-
ic, despite the equality of the ones from H to A and H to Γ. 

4. Discussion  

A discussion of our results, particularly in relation to findings from previous 
DFT calculations, rests on the following fact. None of the previous calculations  
 
Table 5. Calculated effective masses for hexagonal BN, in units of free electron mass m0: 
Me indicates an electron effective mass in the conduction bands and Mh represents a hole 
effective mass. The top of the valence band is at K*, to the left of the K symmetry point, as 
defined above.  

Types and Directions of Effective Masses Values of Effective Masses (m0) 

Me (M-Γ) 0.205 

Me (M-K) 2.250 

Me (M-L) 1.730 

Me (H-A) 0.588 

Me (H-Γ) 0.588 

Me (H-K) 1.102 

Me (H-L) 3.129 

Me (K-Γ) 0.387 

Me (K-H) 0.433 

Mh (K*-Γ) 0.534 

Mh (K*-H) 0.569 

Mh (K*-M) 1.480 

Mh (H-A) 0.822 

Mh (H-Γ) 0.822 

Mh (H-K) 3.468 

Mh (H-L) 1.671 
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appear to have performed a generalized minimization of the energy. The mini-
mization obtained following self-consistent iterations, with a single basis set, 
produces the minimum of the energy relative to that basis set. Such solutions are 
stationary ones whose number is practically infinite. None should be à priori 
assumed to provide a description of the ground state of the material. Conse-
quently, the computational results should not be expected to possess the full, 
physical content of DFT or to agree with experimental measurement. Our gene-
ralized minimization, as thoroughly explained above, verifiably leads to the ab-
solute minima of the occupied energies, i.e. the ground state, as required by the 
second DFT theorem. Explicitly searching for the ground state and avoiding ba-
sis sets that are overcomplete for the description of the ground state are two re-
quirements for a correctly performed DFT calculation. We address below plaus-
ible, negative consequences use of over-complete basis sets.  

With the second corollary of the first DFT theorem, i.e. that the spectrum of 
the Hamiltonian is a unique functional of the ground state charge density [34], 
we avoid over-complete basis sets. While these larger basis sets lead to the 
ground state energies, they also lower some unoccupied energies from their val-
ues obtained with the optimal basis set. As per the above corollary, any unoccu-
pied energy, different from (i.e. lower than) its corresponding value obtained 
with optimal basis set, no longer belongs to the spectrum of the Hamiltonian. 
This rigorous conclusion also results from the fact that, with these larger basis 
sets, the charge density and the Hamiltonian do not change from their respective 
values obtained with the optimal basis set. Consequently, the unoccupied eigen-
values, different from their corresponding values obtained with the optimal basis 
set, cannot rationally be physically meaningful ones. The Rayleigh theorem for 
eigenvalues, as elaborated upon elsewhere [34] [49] [50], trivially explains the 
spurious lowering of unoccupied energies in calculations employing larger basis 
sets that contain the optimal one. We should note the spuriously lowered, un-
occupied energies, including some lowest laying ones, provide one plausible ex-
planation of the widespread underestimation of band gaps in the literature. This 
contention stems in part from the fact that single basis set calculations tend to 
employ large basis sets in order to avoid incompleteness.  

With the above understanding, we discuss the fine structures of the bands us-
ing the enlarged graphs in Figure 4 and Figure 5. While Figure 4 shows the en-
tire band structure, Figure 5 only exhibits the drastically enlarged uppermost 
and lowest valence and conduction bands, respectively, around and between the 
K and H symmetry points. In Figure 4, the highest and degenerate valence 
bands are visibly close to the Fermi level, from K to H. Figure 5 is needed to as-
certain the location of the valence band maximum. To do so, one is guided by 
the fact that, at the location of the VBM, the band is superimposed on a short 
segment at the Fermi level. Figure 5 shows that the VBM is at the K* point de-
fined above. At the H point, the degenerated valence band is only 0.048eV below 
the Fermi level. The top of the valence band at M is 0.482 eV below the Fermi 
level. The direct band gap at M is therefore 4.369 eV + 0.482 eV = 4.851 eV. It  
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Figure 4. The enlarged graph of the band structure of hexagonal BN, produced by Calcu-
lation IV, with the optimal basis set.  
 

 
Figure 5. The further enlarged parts of highest and lowest valence and conduction bands, 
respectively, in Figure 4, between and around the K and H high symmetry points. Clear-
ly, the top of the valence band is the only part that is superimposed on the Fermi level; 
this top is at K* as defined above, to the left of K, and 0.1 is the one tenth of the distance 
between Г and K points. 
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is slightly larger than the one at H which is 4.763 eV + 0.048 eV = 4.811 eV.  
The above fine structures of the bands hint to a possible explanation of the 

report of seven (7) different VBM-CBM pairs by previous DFT calculations. In-
deed, while the presumed single basis sets in these calculations may be close to 
or contain the corresponding optimal basis sets, with the above subtle features of 
the band structure, the slightest deviation of these basis sets from the one de-
scribing the ground state could explain the differences between the resulting 
bands and between them and the ones reported here. Additionally, without the 
generalized minimization, it is practically hopeless to have the basis set complete 
for the description of the ground state, without being over-complete.  

5. Conclusion  

We have presented the description of electronic and related properties of the 
ground state of h-BN, as obtained from ab-initio, self-consistent density func-
tional theory (DFT) calculations. Our generalized minimization of the energy, 
following the BZW-EF method, verifiably led to the ground state and avoided 
over-complete basis sets. Our findings possess the full, physical content of DFT. 
Our calculated indirect band gap from K* to M is 4.37 eV. This value is practi-
cally in agreement with the experimental finding of 4.30 eV which is the most 
accepted one in the literature. The density of states (DOS) and partial densities 
of states (p-DOS) are in good agreement with those from electron momentum 
spectroscopy (EMS) [6] [7] [8] [9]. To the best of our knowledge, no measure-
ments of the electron effective masses are available for comparison with our cal-
culated ones. In light of our previous success, partly through accurate predictive 
capabilities, we expect future experiments to confirm our findings.  
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