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Abstract 
The main subject of this study is to adapt the fractional step method to the 
resolution of the radiative heat equation. This interest is justified by the in-
tervention of the flow radiation in the modeling of several physical pheno-
mena. Since this differential equation is actually difficult to solve, a new me-
thod has to be used to solve the equations that govern the heat transfer in the 
porous medium. The results have been limited to the less fine parametric 
study and have brought us to the conclusion that the new code can be 
adapted to a broader and more generalized study. 
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1. Resolution of the Radiatif Integro-Differential Equation 
1.1. Introduction 

The fractional step method has been proposed by Marchuk G. I. [1] for resolu-
tion on the “Neutron Transport Equation” and developed by Yanenko N. N. 
[2]. 

This work adapted this method to solve the radiative thermal equation. This 
differential equation governs the variation of the luminance in a gray medium 
with non-reflecting faces. The volume method is used in space [3] and the frac-
tional step method with time. 

The equation is written in the following form: 
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( )
1 4

1

1 d 1
2 r

L L TL L
c t

ωµ µ ω σ
τ −

∂ ∂
+ + = + −

∂ ∂ π∫              (1) 

t is the time, τ  the optical thickness, L the luminance; 
With the boundary conditions: 

( )0
1 1L L Tε=  at 0τ =  and 0µ >                 (2) 

( )0
2 2L L Tε=  at Hτ =  and 0µ <                (3) 

1.2. The Equation’s Models 

We have the following general equation, according to those boundary and initial 
conditions: 

1

1

1 d
2

s f
c t

σϕ ϕµ σϕ ϕ µ
τ −

∂ ∂
+ + = +

∂ ∂ ∫                  (4) 

0ϕ =  for 0τ =  and 0µ >                    (5) 

0ϕ =  for Hτ =  and 0µ <                   (6) 

0ϕ ϕ=  for 0t =                        (7) 

and the functions: 
• ( ), , tϕ ϕ τ µ=  and ( ), ,f f tτ µ=  depend however of the three variables 

, , tτ µ ; 
• ( )σ σ τ=  and ( )s sσ σ τ=  depend only of the variable τ , with σ  and 

sσ  as continuous and limited. 

0 10 ; 0 ss sσ σ σ σ σ ′< < ∞ < ≤ < ∞   
Some new variables are also introduced here: 

( ) ( ), , , ,t tϕ τ µ ϕ τ µ+ =  and ( ) ( ), , , ,t tϕ τ µ ϕ τ µ− = − , for 0µ >  

The first equation then becomes: 

( )1

0

1  d
2

s f
C t

σϕ ϕµ σϕ ϕ ϕ µ
τ

+ +
+ + − +∂ ∂

+ + = + +
∂ ∂ ∫           (7.1) 

( )1

0

1  d
2

s f
C t

σϕ ϕµ σϕ ϕ ϕ µ
τ

− −
− + − −∂ ∂

− + = + +
∂ ∂ ∫           (7.2) 

With the following boundary conditions: 

( ), , tϕ τ µ+  at 0τ =                     (7.3) 

( ), , 0tϕ τ µ− =  at Hτ =                    (7.4) 

and the initial condition is, for t = 0: 

0 0;ϕ ϕ ϕ ϕ+ + − −= =                      (7.5) 

C = 1 is assumed. 
Another change of variables is introduced as well: 
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( )1
2

u ϕ ϕ+ −= ⋅ +
 

( )1
2

v ϕ ϕ+ −= ⋅ −
 

( )1
2

g f f+ −= ⋅ +
 

( )1
2

r f f+ −= ⋅ −
 

The Equations (7.3), (7.4) and (7.2) become: 

1

0
ds

u v u u g
t

µ σ σ µ
τ

∂ ∂
+ + = +

∂ ∂ ∫                  (7.6) 

v u v r
t

µ σ
τ

∂ ∂
+ + =

∂ ∂
                      (7.7) 

with the boundary conditions (7.4) and (7.5) being: 

0u v+ =  at 0τ =                      (7.8) 

0u v− =  at Hτ =                      (7.9) 
0 0;u u v v= =  at 0τ =                    (7.10) 

The domain of study is [ ] [ ]0, 0,1D H= × . 
Consider the space ( ) ( )2 2L D L D×  with the following scalar product: 

( )
2 1 1

0 0
1

, d di i

i
a b a bµ τ

=

= ∑∫ ∫
 

where 
1 1

2 2;
a ba b
a b
   

= =   
   

 

1.3. Evolutionary Writing of the Equation (4) 

The Equation (4) with the conditions (5-7), replaced by the Equations (7.6)-(7.10) 
is presented in the following form: 

W AW F
t

∂
+ =

∂
 in [ ]0,D T×                    (8) 

0W W=  for 0t =                        (9) 

with 
1

0 0
0

0

d
, , ,

suu g
W W F A

v v r

σ σ µ µ
τ

µ σ
τ

 ∂
−      ∂ = = = =      ∂    

 
∂ 

∫
      (10) 

where: 
T: is a period of time. 
F: belong to [ ]( )2 0,L D T×  and W0, W(t) belong to ψ and ψ0 respectively. 
With: 

• ψ: subspace of functions of L2(D), verifying (AW, W) < ∞. 
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• ψ0: subspace of ψ which is formed from the functions which components are 
continuous in D, and their derivative functions with τ are continuous as well. 

• Remark: 

( ) ( ), ,AW W AW Wγ≥  

where γ  is constant > 0. 

2. The Numerical Method 
2.1. Approximation According to the Component of Space 

The length H is discretized in n nodes τi and the node τi+1/2 is placed between 
two nodes consecutives τi and τi+1. 

 

 
 

The Equation (7.6) is integrated on the ranges 0 1 2,τ τ   , 1 2 1 2,i iτ τ− +    and 

1 2 ,n nτ τ−   , and the Equation (7.7) is integrated on the ranges [ ]1,i iτ τ− , we ob-
tain the following equations: 

* For i = 0: 

( )1 2 1 2 1 2 1 2 1 2

0 0 0 0 0

1

0
d d d d d ds

vu u u g
t

τ τ τ τ τ

τ τ τ τ τ
τ τ σ τ σ µ τ τ

τ
∂ ∂

+ + = +
∂ ∂∫ ∫ ∫ ∫ ∫ ∫    (11) 

1 1 1 1

0 0 0 0
d d d duv v r

t
τ τ τ τ

τ τ τ τ
τ τ σ τ τ

τ
∂ ∂

+ + =
∂ ∂∫ ∫ ∫ ∫              (12) 

* For 1 ≤ i ≤ n − 1: 

( )1 2 1 2 1 2 1 2 1 21

0
d d d d d di i i i i

i i i i i
s

vu u u g
t

τ τ τ τ τ

τ τ τ τ τ
τ τ σ τ σ µ τ τ

τ
+ + + + +∂ ∂

+ + = +
∂ ∂∫ ∫ ∫ ∫ ∫ ∫   (13) 

1 1 1 1d d d di i i i

i i i i

uv v r
t

τ τ τ τ

τ τ τ τ
τ τ σ τ τ

τ
+ + + +∂ ∂

+ + =
∂ ∂∫ ∫ ∫ ∫             (14) 

* and for i = n 

( )
1 2 1 2 1 2 1 2 1 2

1

0
d d d d d d

n n n n

n n

n

n n n
s

vu u u g
t

τ τ τ τ τ

τ τ τ τ τ
τ τ σ τ σ µ τ τ

τ− − − − −

∂ ∂
+ + = +

∂ ∂∫ ∫ ∫ ∫ ∫ ∫   (15) 

Introduction of the following approximations: 

( )1 2 1 2

0 1 2 1 2
0

0

1 1 1d ; d , 1 ; d ;k

k n

n
k n

k n

u u u u k n u u
d d d

τ τ τ

τ τ τ
τ τ τ

τ τ τ
+

− −
= = ≤ ≤ =∫ ∫ ∫

 

( )1
1 2

1 2

1 d , 1 1
k

k
k

k

v v k n
d

τ

τ
τ

τ
+

+
+

= ≤ ≤ −∫
 

With: 

1 2 10 0 1
2

21 1 1
2 2

; ; ;k n n k k kk k n
d d d dτ τ τ τ τ τ τ τ τ τ τ τ+ +

+ − −
= − = − = − = −

 

The components ui and vi+1/2 so check to: 
* for i = 0: 
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0

100
0 0 0 00

0

1 2 ds

v uu
u u g

t
µ σ σ µ

δτ
+∂

+ + = +
∂ ∫              (16) 

1 2
1 2 1 2 1 2

2

1

1

0v u u
v r

t
µ σ

δτ
∂ −

+ + =
∂

                  (17) 

Considering 0u v+ =  to 0τ =  and 

( )1 2 1 2

0 0

1 1

0 0
d d d ds su u

τ τ

τ τ
σ µ τ µ σ τ=∫ ∫ ∫ ∫

 
* for i=1, n-1: 

2 1 2 1

0

1 d
i

i
i i s i i

i

i iv vu
u u g

t
µ σ σ µ

δτ
+ −−∂

+ + = +
∂ ∫              (18) 

1 2
1 2 1 2 1 2

1 2

1i ii
i i i

i

v u u
v r

t
µ σ

δτ
+

+ + +
+

+
∂ −

+ + =
∂

               (19) 

* and for i = n: 

11
0

d
n

n n n
n n s n n

n

u u v
u u g

t
µ σ σ µ

δτ
−∂ −

+ + = +
∂ ∫              (20) 

The condition is also taken into account: 

0u v− =  at Hτ =  

Let M (0, 2n) the Hilbert space of vector functions 

0 1 1 1
2 2

, , , , , nn
W W W W W W

−

 
  
 



 
provided the following scalar product: 

( )
2

2 /2 /2
0

, d
n

i i i
i

W d Wτ µ
=

⋅ Ω⋅Ω = ∑∫
 

Introduce the vectors: 0 1 1 1 1
2 2

, , , , , ,n nn
u v u u v u−

−

 
  


=


Φ   

0 1 1 1 1
2 2

, , , , , ,n nn
F g r g g r g−

−

 
=   
 



 

0 0 0 0 0 0 0
0 1 1 1 1

2 2

, , , , , ,n nn
u v u u v u−

−

 
=


Φ  




 
After estimations, the problem is reduced to the following evolutionary sys-

tem: 

A F
t

∂Φ
+ ⋅Φ =

∂
                       (21) 

[ ]0,t T∈  with 0Φ = Φ  for 0t =  
where A is an integro-differential operator which is defined according to two 
operators L and S such as: 

A L S= −  
with, 
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( )
1

2 2
0

d for 0 2Si iS diag i nσ δ µ
 

= ≤ ≤ 
 

∫               (22) 

where 

2

2

0; not pair
 

1; pair

i

i

i

i

δ

δ

=

 =
  

0
0 0

1 2
1 2 1 2

1 2
1 2

0 0

0

0

0

0 0

n
n

n
n n

d d

d d

L

d

d d

µ µσ
τ τ

µ µσ
τ τ

µσ
τ

µ µ σ
τ τ

−
−

 + 
 
 
− 

 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 − + 
 

       (23) 

We note that A is coercive, ensuring the stability of the process. 

2.2. Approximation in the Time 

This approximation will be based on the fractional step method, which means 
making the evolution between two principal steps of time. The process will be 
described after the decomposition, known as “splitting”, of operator A: 

With 1 2A A A= +  

1 2 1 2

1 2

0 0

1

0 0

0 0

0

0

0

0 0
n n

n

d d

d d

A

d

d d

µ µ
τ τ

µ µ
τ τ

µ
τ

µ µ
τ τ

−

 
 
 
 
− 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 − 
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2 2

1

2 2
0

di Si iA diag σ σ δ µ
 

= − 
 

∫
 

The operators are defined positive on has the following algorithm: 

* on 1 1 3,j jt t− −   : 2 3 1
1 12 2

j jdt dtE A E A− −   + Φ = − Φ   
   

       (24) 

1 3 2 3
2 22 2

j jdt dtE A E A− −   + Φ = − Φ   
   

              (25) 

* on 1 3 1 3,j jt t− +   : 1 3 1 3 2j j jdt F+ −Φ = Φ + ⋅ ⋅            (26) 

* on 1 3 1,j jt t+ +   : 2 3 1 3
2 22 2

j jdt dtE A E A+ +   + Φ = − Φ   
   

       (27) 

1 2 3
1 12 2

j jdt dtE A E A+ +   + Φ = − Φ   
   

               (28) 

The Fj element is an approximation of F, defined by: 

1 3

1 31 3 1 3

1 d
j

j

t
j

j j t

F F t
t t

+

−+ −

=
− ∫  with jt jdt=              (29) 

2.3. Final Diagram 

With the presented approximations of the three parameters z, μ and t, Equations 
(15) and (17) can be replaced; for instance, for Equation (15): 

Let us consider the following equation: 
1 2
3 3

2 22 2
j jdt dtE A E A
− −   + Φ = − Φ   

   
               (30) 

for 1 i n≤ ≤ : 

1 2 1 2
1 3 2 3

1
2  

1
2

i
i

i

j j
i

dt

dt

σ

σ− −
− −

−
Φ = Φ

+
                     (31) 

for 1 i n≤ ≤ : 
1 2

1 13 33 2
0

1
0

3 1 d 1 d
2 2 2 2i i

j j

i i s
j

i
j

i s
dt dt dt dtσ σ µ σ σ µ−− − −   + Φ − Φ = − Φ + Φ   

   ∫ ∫    (32) 

1 3 2 31 1

0 0

1
2d d

1
2

i
j

i i

i

j

dt

dt

σ
µ µ

σ

− −
−

Φ = Φ
+

∫ ∫                 (33) 

2 2
13
0

1 3 31 1 d
2 11

22

j ji
i i i i

i
i

j dtdt
dt dt

σ
σ µ

σ σ

− −−

 
  Φ = − Φ + Φ  
  ++
 

∫        (34) 

for 1 i n≤ ≤ : 
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1 2
3 2 3

1 2
1

1
2

1
2

j j
i

i

i
i

dt

dt

σ

σ−
−
−

−
−

Φ = Φ
+

                    (35) 

for 1 i n≤ ≤ : 

2 2
13
0

1 3 31 1 d
2 11

22

j ji
i i i i

i
i

j dtdt
dt dt

σ
σ µ

σ σ

− −−

 
  Φ = − Φ + Φ  
  ++
 

∫        (36) 

2.4. Approximation on the Level of μ 

The interval [0, 1] is subdivided into the m-1 sub-intervals, which lengths are dμl 
with 1, ,l m=  . 

We substitute ( )
1

0

dµ µΦ∫  by 
1

m

l l
l

s
=

Φ∑  with ( )l lµΦ = Φ . 

2.5. Definitive Algorithm 

, ,
2 1

1
3

12 2
j

l l
j

l l
dt dtE A E A− −   + Φ = − Φ   

   
              (37) 

2
3

2, ,
3

2
1

2 2
j

l l
j

l l
dt dtE A E A

−−   + Φ = − Φ   
   

              (38) 

1 3 1 3 2 j
l l l
j j dt F+ −Φ = Φ + ⋅                     (39) 

1
3

2,
2 3

2,2 2
jj

l l l l
dt dtE A E A

++   + Φ = − Φ   
   

              (40) 

2
1 3

1, 1,2 2
jj

l l l l
dt dtE A E A

++   + Φ = − Φ   
   

              (41) 

for 1 i n≤ ≤  1 3 2 3
1 2, 1 2,

1
2

1
2

i
j j
i l i l

i

dt

dt

σ

σ

− −
− −

 − 
 Φ = Φ
 + 
 

             (42) 

for 1 i n≤ ≤  
1

1 3 2 3 2 3
, , ,

0

1 1 d
21 1

2 2

j j jsi
i l i i l i l

i ci

dtdt
dt dt

σ
σ µ

σ σ

− − −

 
   Φ = − Φ + Φ      + +        

∫  (43) 

The numerical algorithm to solve the integro-differential equation is therefore 
completed. 

After the resolution, we obtain the vector Φl formed by the computed values 
with principal and the values of ul calculated with the inserted nodes. We will be 
able to determine l

+Φ  and l
−Φ  by using the following relation: 

l l l

l l l

u v

u v

+

−

Φ = +

Φ = −

                        (44) 
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The solution of Φ  is given by: 

( ) ( )µ µ+Φ = Φ  for 0µ >                    (45) 

( ) ( )µ µ−Φ = Φ  for 0µ <  

2.6. Numerical Results and Interpretation 

1) Introduction 
The results are initially presented with an exponential profile of the tempera-

ture. Then, the model’s sensitivities are tested, taking into consideration several 
physical parameters, such as the albedo or the coefficient of extinction. 

The variable C is the celerity of light in the medium. To simplify the study, it 
is taken equal to 1, because it does not influence the calculation in steady state, 
which interests us here. 

But in the case of an unsteady regime, we return to the evolutionary writing of 
the problem, which is written with the presence of constant C in the following 
form: 

1 W A W F
C t
∂

+ ⋅ =
∂

                      (46) 

Which is equivalent to: 

W A W F
t

∂ ′ ′+ ⋅ =
∂

                       (47) 

It is assumed that C is variable here (and not only equal to 1), a change of va-
riables has to be introduced: A C A′ = ⋅  and F C F′ = ⋅  

2) Adaptation of the model 
Considering the nature of the boundary conditions related to the modelling of 

the radiative transfer, the solution of the general equation does not correspond 
exactly to the one we are expecting. A change of variables has to be introduced. 

( )
( )

0
1 1

0
22

L T

L T

ε

ε

+ +

− −

′Φ = Φ −

′Φ = Φ −





                     (48) 

Where +′Φ  and −′Φ  are the solution of the general model carried out with 
the change affecting its second member: 

( ) ( ) ( )( )0 0 0
1 1 1 1 2 22

sf f L T L T L T
σ

ε ε ε+ +′ = − + +            (49) 

( ) ( ) ( )( )0 0 0
2 2 1 1 2 22

sf f L T L T L T
σ

ε ε ε− −′ = − + +            (50) 

( )
4

0sTf f L T
σ+ −= = =
π

                   (51) 

3) Interpretation of the results 
For an exponential profile of the temperature, as seen in Figure 1, the variation 

of radiative flux is done in the same direction as that of the temperature. This vari-
ation is shown in Figure 2. This agreement in the variations in the temperature  
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Figure 1. The variation of the temperature profile with Optical thickness T (103 K); ex-
ample: for 1.2, T = 1200 K. 

 

 

Figure 2. Evolution of the radiative flux with the Optical thickness. 
 

and radiative flux is justified by approximation of Rosseland [4]. This approxi-
mation is expressed by: 

 r r
TQ
z

λ ∂
= −

∂  
where the radiative transfer is characterized by a radiative conductivity: 

316
3r

T
k
σλ =

 
k (m−1) is the extinction coefficient per unit volume of the packed bed. 
In this study, we were interested in the stationary solution. Figure 3 shows 

that the solved equation has a good stationary solution. 
To see if our code reflects the physical aspect of the radiation phenomena, we 

determined the effect of different physical parameters of the radiation by using 
the same profile of temperature. 

Influence of albedo: 
We present in Figure 4 the effect that the albedo had on the radiative flux for  
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Figure 3. The variation of radiative flux in accordance with time. 
 

 

Figure 4. The effect of the albedo on radiative flux with the Optical thickness (1, for ω = 
0; 2, for ω = 0.3; 3, for ω = 0.5; 4, for ω = 0.7). 

 
a coefficient of extinction equal to 1000. 

It is noticed that when the albedo decreases, the radiative flux increases. This 
result corresponds to the data of the literature [5] [6]. 

The divergence of the flux vector of radiation is more important when the al-
bedo is low. Physically, for the semi transparent medium not diffusing (no albe-
do), the effect of the radiative transfer on material is maximum. In contrast, for a 
medium entirely diffusing (albedo equal to one), only the conductive exchanges 
influence the establishment of the profile of temperature in the medium. 

Consequently, the diffusion tends to decrease the importance of the radiative 
heat exchanges in the medium. 

Influence coefficient of extinction: 
We show in Figure 5 the radiative profiles for various coefficients of extinc-

tion K (noted beta), for an albedo of 0.5. It is observed that when the coefficient 
of extinction increases, the radiative flux decreases. This variation is foreseeable, 
considering the expression of the albedo, according to the coefficient of extinc-
tion as well as the preceding effect of the albedo. 

Note: these results are obtained with the following parameters: 
• The step of space is equal to 1. 
• The step of time is equal to 10−4. 
• The error is of about to 10−6. 
• l is equal to 10−1. 
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Figure 5. The effect of the coefficient of extinction (for ω = 0.5) on the evolution of radia-
tive flux profile, (1 for k = 1000 m−1, 2 for k = 1500 m−1, 3 for k = 2000 m−1). 

3. Conclusion 

A new numerical method of solving the radiative transfer equation is presented 
here. It is based on the fractional step method proposed by G. I. Marchuk [2] 
and modified by A. Belghit. It seems to be a relatively more simple method 
compared to the conventional resolution methods (see Case’s normal-mode ex-
pansion technique in [6], for example). It will be adapted to the resolution of 
heat and mass transfers in a reactive porous medium. 
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Appedix 
Nomenclature 

C  Speed of light in the medium, m/s 
(C = c0/n with n is the refraction index 
and co = 2998.108 m∙s−1) 

d  Particle diameter, m 
E  The matrix identity 
k  Extinction coefficient, m−1 

L  Luminance, W/(m2Sr1) 
n  Refraction index 
T  Temperature, K 
σ  Boltzmann constant, σ = 1.3805 × 10−23 J∙K−1 

Greek Letters 

δ  Scattering coefficient 
εp  Emissivity of the solid 
λ  Thermal conductivity of the gas, W/(m∙K) 
λr  Radiative conductivity 
μ   Direction cosine between the directed intensity and the positive τ axis 
σr  Stefan-Boltzmann constant, σr = 5.65 × 10−8 Wm2∙K4 

h  Planck constant, h = 6.6255 × 10−34 J∙s 
ρ  Density of the gas, kg/m3 
ρs  Density of the solid, kg/m3 
τ  Optical thickness, m 
φ   Incident radiative flux (solar energy), W 
Φ  Radiative flux density, SφΦ = , W/m2 

ω  Albedo, the ratio of the scattering to the Extinction coefficient, ω = δ/k 
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