
Journal of Applied Mathematics and Physics, 2020, 8, 1047-1065
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2020.86082 Jun. 5, 2020 1047 Journal of Applied Mathematics and Physics

Neuroevolution Strategy for Time Series
Prediction

George Naskos1, Konstantinos Goulianas1, Athanasios Margaris2

1Department of Information and Electronic Engineering, International Hellenic University, Thessaloniki, Greece
2Department of Digital Systems, University of Thessaly, Larissa, Greece

Abstract
Optimization is a concept, a process, and a method that all people use on a
daily basis to solve their problems. The source of many optimization methods
for many scientists has been the nature itself and the mechanisms that exist in
it. Neural networks, inspired by the neurons of the human brain, have gained
a great deal of recognition in recent years and provide solutions to everyday
problems. Evolutionary algorithms are known for their efficiency and speed,
in problems where the optimal solution is found in a huge number of possible
solutions and they are also known for their simplicity, because their imple-
mentation does not require the use of complex mathematics. The combina-
tion of these two techniques is called neuroevolution. The purpose of the re-
search is to combine and improve existing neuroevolution architectures, to
solve time series problems. In this research, we propose a new improved
strategy for such a system. As well as comparing the performance of our sys-
tem with an already existing system, competing with it on five different data-
sets. Based on the final results and a combination of statistical results, we
conclude that our system manages to perform much better than the existing
system in all five datasets.

Keywords
Neuroevolution, Neural Networks, Evolutionary Algorithms, Time Series

1. Introduction

The great potential of neural networks has been proven repeatedly in the past
years by many studies, as they are applicable to real problems, even in our daily
lives [1]. Evolutionary algorithms (EA) are used in optimization problems, with
the ability to cope better with problems where the optimal solution is found

How to cite this paper: Naskos, G., Gou-
lianas, K. and Margaris, A. (2020) Neuroe-
volution Strategy for Time Series Predic-
tion. Journal of Applied Mathematics and
Physics, 8, 1047-1065.
https://doi.org/10.4236/jamp.2020.86082

Received: April 12, 2020
Accepted: June 2, 2020
Published: June 5, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2020.86082
https://www.scirp.org/
https://doi.org/10.4236/jamp.2020.86082
http://creativecommons.org/licenses/by/4.0/

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1048 Journal of Applied Mathematics and Physics

among a chaotic set of solutions [2]. Generally speaking, the larger the range of
possible solutions to a problem, the more efficient the EA associated with it. The
combination of the two approaches results in the neuroevolution (NE) [3] [4].
This approach describes a neural network equipped by an evolutionary optimi-
zation algorithm. Bearing in mind the benefits of evolutionary algorithms, they
are proven to be useful in deep learning [5], because of the enormous size of
such a network that making it ideal for EA use. This allows the achievement of
the same or better results in less time than a conventional optimization algo-
rithm. It is also possible to build an EA system to find out which neural network
architecture is appropriate for the problem. Then, the proposed network can be
used, using a conventional optimization method [6]. In this study we will inves-
tigate the use of NE in time series problems [7]. This is a type of problem that
has an increased degree of difficulty, having an additional factor, and more spe-
cifically, the time. Five datasets will be used, with some of their data to be de-
rived from real problems and some other data, from simulations. Five different
experiments will be performed on each of the datasets and then our own system
will be compared with the memetic cooperative neuroevolution (MCNE) system
[8]. In both systems, the same datasets have been used for the experiments,
which are split into training/validation/testing in the same way [9]. Our system
is generally based on their own MCNE. At the same time, proposals will be made
for different methods and parameters in evolutionary algorithms, where they
can be used not only in NE but generally in optimization problems. Finally, the
results of our system will be compared to the upgraded version of their own
MCNE system.

2. Artificial Neural Network

Neural networks try to replicate the biological function of the human brain.
Each neuron receives an excitation and, after processing, sends its own excita-
tion to the other neurons to which it is connected. There are many types of
neural networks, one of which is multilayer perceptron (MLP) [10].

It is well known and it can give very good results in a wide range of problems.
This is the kind of neural network that will be used in the following experiments.
An MLP is described by one or more layers of neurons. Each neuron has inputs
and each input is a data characteristic of the situation. Each entry, it associated
with a weight value. This value is a number that indicates how important this
feature is for that particular neuron. There is an extra weight called bias. The bi-
as moves the activation function to the x-axis so that it fits better depending on
the input data. The weights are multiplied by their associated input values and
the resulted products are summed each other. The resulted value goes through
an activation function whose return value is the output signal of the specific
neuron in Figure 1. The neuron acquires the ability to learn through an optimi-
zation method that appropriately adapts the weights of the neuron.

The main advantages of neural networks are:

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1049 Journal of Applied Mathematics and Physics

Figure 1. Artificial neuron model.

The ability to learn. More specifically, through their training, they can learn to

solve a problem by adjusting to their weights.
Their most powerful feature is generalization. It is defined as their ability to

produce results for data they have not seen in their training.
There is a large set of optimization methods based on neural network which

help to solve classification and regression problems. In addition, given an enti-
ty’s past values, they can predict its future values.

Their major disadvantages are:
There is no general rule for the most appropriate use of the activation func-

tion, as well as for the optimum number of layers and the number of neurons in
each layer. Thus, it takes multiple efforts and continuous testing, to determine
the best configuration and specify a network that produces satisfactory results.

Because of its nature, there is no satisfactory control over the network as well
as useful information that someone can derive by looking at the weights and
connections of the network. In general, the real function of a neural network is
that of a black box, for which the only thing we know is the input data and its
results.

3. Evolutionary Algorithms

The creation of evolutionary algorithms (EA) is the idea that the biological
process of evolution could be the basis for the development of optimization al-
gorithms [1] [2]. The theory associated with these algorithms is based on natural
selection and genetic change, with a population of individuals competing with
each other to choose the best. Recombining the best among them will produce
better offspring. If the process continues repeatedly, the members of the result-
ing population will be much better with respect to the initial members of this set.
In a real problem, the members of the population, are a candidate solution to the
problem.

EA are divided into several stages:
1) Initially, a population is created by individuals (Algorithm 1-Step 1). Each

individual contains chromosomes and the chromosomes contain genes. Genes
are the values that have their characteristics, which are the ones that will deter-
mine how good the solution is to the problem. This number is the fitness value

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1050 Journal of Applied Mathematics and Physics

of the individual.
2) Once a fitness value has been found for each individual (Algorithm

1-Step 2), a new set of individuals is created, selected on the basis of a method
based on their fitness (Algorithm 1-Step 3). It has to be noted, that in the gen-
eral case, the best ones are selected, but the worst ones are also given the op-
portunity to be selected, because they may contain genetic code that is useful
for the next step.

3) This stage is the recombination of the total from the previous stage. So,
these people will fertilize the next generation (Algorithm 1-Step 4). Recombina-
tion is the most basic way of population growth. In most cases, from the set
produced by the selection method there are two people that are selected. There-
fore, by recombining these two individuals, we can produce two even better
offspring. The fact that evolutionary algorithms, are targeted search algorithm,
and not just a random search algorithms is based to this recombination proce-
dure.

4) The young offspring will go through a method of random mutation of their
genes. This happens in order to enable the population to surpass any local opti-
mum as it grows (See Algorithm 1-Step 5).

5) Finally, the offspring are integrated into the population, fitness is calculated
for each new individual in the population (Algorithm 1-Step 6) and the process
starts from the beginning.

The algorithm terminates when the specified number of iterations or a com-
putational limit has been reached.

The advantage of EA is that they can solve quickly difficult problems. The
greater the number of possible optimal solutions, the more efficient they are in
terms of both speed and result. Their main advantages are:

Most conventional methods are stiff or sometimes inappropriate for several
problems, due to their need for complex mathematics. The use of such mathe-
matics is indifferent to EA, which makes them suitable for a wide range of prob-
lems.

It is one of the few methods that simultaneously explores the search space and
takes advantage of the information already processed. Thus, random searches
make a good exploration of the space and the search takes advantage of the in-
formation.

1) BEGIN
2) Step 1: INITIALISE population with random candidate solutions;
3) Step 2: EVALUATE each candidate;
4) REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO
5) Step 3: SELECT parents;
6) Step 4: RECOMBINE pears of parents;
7) Step 5: MUTATE the resulting offspring;
8) Step 6: EVALUATE new candidates;
9) DONE
10) END

Algorithm 1. Pseudocode of evolutionary algorithm.

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1051 Journal of Applied Mathematics and Physics

Another major advantage is their easy parallelism, a potential that is scarce in
other competing methods. Parallelism results, in better results in less time.

Finally, they can be combined with other methods. Although the power of EA
is high, there are some cases of problems in which other methods produce very
good results, due to their specialization in the problem. This is a result of the
great flexibility of EA.

As with any method there are disadvantages:
The first thing anyone should do to solve a problem with EA is to encode the

problem in such a way that EA can process it. However, this can sometimes be
difficult depending on the nature of the problem. Specifically, this encoding is a
process that will take time for one to understand and feel comfortable with.

The next step is to be able to set and implement a goal for EA. This goal is to
guide the population of the algorithm to the optimal solution. Therefore, this
stage greatly influences finding the optimal solution and in turn requires time
and familiarity with it.

4. Proposed Neuroevolution Architecture

Thanks to the great flexibility that EA possess, they are able to combine with
other methods. However, neural networks are needed to solve machine learning
problems. This results in the combination of EA and neural networks. Neural
networks alone cannot be trained, they need to use an optimization algorithm.
One of the best known is backpropagation (BP). In NE [3] [4] the EA take the
place of the optimization algorithm. The good news is that it is no longer neces-
sary to use sophisticated mathematics to train and optimize the network. There
are also many ways to customize and control during training, as are significantly
reduced the effort and experimentation needed to find the right network. For
example, in very large networks, in deep learning, training times are greatly re-
duced and consistently good results are produced.

4.1. Existing Study

There are several studies in the NE industry. One of the most recent that deals
with time series problems can be found in [7]. An upgraded system to solve such
problems is proposed in [8]. In practice, it combines EA with conventional algo-
rithms, in order to achieve better results. Another study that uses the same sys-
tem, but different strategies is described in [9], with very good results. Having in
mind the best results from [9], that were compared to ours and based on an
overview of the MCNE strategy described in [8], we were able to produce better
results at about the same cost. We have also used the same datasets with [11]
[12] [13] [14] [15] from the most recent study [9] to allow a meaningful com-
parison of the systems.

4.2. Our System

The encoding of the neural network differs in our method from the present
study [8], since this is one of the most important pieces of EA and has a great

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1052 Journal of Applied Mathematics and Physics

impact on the good results of the algorithm. Our system puts a subpopulation,
that is, a set of neural networks, which implies that the subpopulation individu-
als are neural networks, while in [8] each neuron is also a subpopulation and its
atoms are neurons with different weights. As a result, in the process of evolution,
when the worst of the population is replaced by the bests, only the neurons ac-
tually change, while in proposed method the whole neural network changes.
Meanwhile, the fitness of both systems is calculated in the same way and the
overall rationale of the system is the same, so that the results can be compared
between the two systems. Among the three methods cited in [9], MCNE [8] is
closer to our system and the comparison will be performed between these two
systems.

The implementation of the proposed system is not based on a library or on an
available neural simulator, but everything has been created from scratch. This
decision was made on the grounds that in order to do proper research there
must be complete control over the system, a feature that generally is not sup-
ported by third-party software. Of course during the implementation, we used
the well-known techniques for both EA and neural networks with some custo-
mizations. The advantage of this implementation is that it has many parameters
that they can easily be controlled, so that the system can adapt and solve the
problem in the best possible way. This system was able to give better results
across all datasets [11] [12] [13] [14] [15].

In a more detailed description the following methods for EA have been used.
Regarding the selection process, the tournament method has shown far better

results than roulette. It seems to help in rapid population growth, while at the
same time is able to keep the population in balance in case of a high likelihood of
mutation. The tournament has only one parameter that controls how many
people will compete against each other. In this way it is possible to control how
possible is the selection of a non-good individual. However, there may be some
cases in which the use of fitness is not adequate to decide which one to choose,
due to the generality of fitness. One solution is to create an extra value for each
person. So, we don’t have to mess with actual fitness since it is calculated every
epoch right after fitness is calculated. This feature is called the “percentage of
fitness” because it is a percentage-based fitness. This enables the creation of
many methods for its calculation. The selection method can be based on this
value instead of fitness, since the logic of fitness calculation remains the same,
but at the same time, we can select people with different strategies. In the next
paragraph we propose three methods of calculating this value.

1) We called the first method, the rank method, because every person will get
its value based on the worst and the best of the current population. In Equation
(1) we consider the worst to be 0% and the best 100%.

100 c minPercent
max min

−
= ⋅

−
 (1)

where

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1053 Journal of Applied Mathematics and Physics

c is the fitness of the person;
min is the smallest fitness in the population;
max is the greatest fitness in the population.
2) The current best, calculates the percent based on the best person in the

current population. Thus, the range of the percentage is [0, best fitness], and
therefore, in order to get a value of 0% the value of fitness should be zero. This
one is less stringent with the not-so-good people of the population compared
with the rank method.

3) The last method requires the maximum value calculated via the fitness,
which is not always available. The range of the percentage is [0, total best fitness]
and it is used in problems where the fitness is not available or there is not a good
way for its calculation.

The crossover is used for the recombination method with only two parents,
producing two offspring. The parameter in this method determines how many
genes the crossover will take. The smaller the parameter number, the better the
knitting of the genes. The parameter helps to better control the growth.

In the mutation method, it has to be determined how many chances each gene
has to mutate. Regarding this method, there are two adjustments that have been
implemented. When the mutation is done, it doesn’t just get a random value
through a range, but a value emerged via the addition or the subtraction of a
value from the old one. This makes growth smoother, without killing good
people due to a big value change. Also, as the epochs pass, the likelihood of mu-
tation increases. So, the population lets to grow on its own and then when it
sticks to local optimum, it is directed to move forward with the high mutation
potential. We change the probability based on the epochs with the linear func-
tion. At this point, it can be used any function the user wants. However, the ex-
periments show that there was a little change in the results with more compli-
cated functions than linear.

Another important method for growth, as well as for the end results, is the
parallel growth with subpopulation. We did this by starting different threads for
each population. An interesting feature of the proposed method is the imple-
mentation of a method called the “migration”. From time to time, a set of the
best person from every sub-population is created. It is this group that will re-
place the worst persons of every subpopulation Figure 2. As a consequence, the
overall performance and growth are greatly increased, because some subpopula-
tions may not have enough good persons, in such cased the migration method is
used to fix this problem. The downside to this method is when it is given to the
system to generate many subpopulations, and therefore many threads. Specifi-
cally, when the computer processor cannot support so many threads, it requires
more time to complete, although it is executed in parallel due to threads crea-
tion.

The proposed system as well as the system described in [9] use hybrid EA.
When a conventional algorithm is executed at certain times for better develop-
ment then the EA are called hybrid [16].

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1054 Journal of Applied Mathematics and Physics

Figure 2. Detailed showing migration and hybrid methods simultaneously.

In the NE, the conventional algorithm is an optimization method for neural

networks. In our case it is BP [6]. At a certain number of EA epochs, there are
some BP epochs. In our system this is done immediately before migration is
complete. Specifically, once the group is destined for migration, these individu-
als in the group execute some BP epochs Figure 2. Without the hybrid, our sys-
tem would produce good results, but it could not overcome some of the prob-
lems, with the results of [9]. With the hybrid it was able to overcome these prob-
lems and the best results found in [9].

Specifically, for BP, its simple form was used [6]. The difference is in the be-
havior of a BP parameter and more specifically, the learning rate. In the pro-
posed method, an adapted learning rate was used. So, the algorithm starts with a
relatively large learning rate and during the training process its value progres-
sively decreases. This behavior is due to the fact that for small iteration numbers,
namely after the beginning of the training process, the large variation in the val-
ues of the neuron weights is not a major issue. On the contrary, it helps in faster
growth. However, as the number of epochs increases and the optimum solution
is approached, smaller changes in the weight values are required in order for the
system to reach the optimum solution as close as possible.

Another feature of our system is the ability to develop EA with a variable
neural network, given two parameters. The first of these parameters controls the
range of the number of layers, while the other one controls the range of number
of neurons per layer. Therefore, the EA in the creation phase of the first popula-
tion, construct different random neural networks, based on the two previous
parameters.

This process creates individuals with a variable set of genes, which implies
that a different method is needed for recombination and mutation, simply to

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1055 Journal of Applied Mathematics and Physics

support individuals with a variable set of genes. There are many implementa-
tions for EA with variable number of genes. The problems we have encountered
are that these implementations require the addition or removal of random N
genes in the individual, as well as other actions such as the transfer of a number
of genes from one position to another during the population mutation phase
[17]. This task is impossible for our system: in our case, a “person” is a neural
network and his genes are all the weights of the network; therefore all we can do
is to add or subtract neurons only to the hidden layers of the network. So, the
above mutation method can be applied to our system but with some limitations.
Also, if we consider that a set of N genes is a neuron, then we cannot transfer
this neuron to another layer safely, as the neurons of the layer intended to go
may not have the same number of inputs as the one we transport, so that a valid
network remains after the transport. The recombination we have proposed and
implemented in the system consists of one function, which is a map between two
one-dimensional arrays A and B, each having a different size. Each array is an
individual and each array element is a gene. This map shows, given a position in
A, what should be the corresponding position in Array B. Of course, all the posi-
tions of the two arrays cannot be fully matched. This function can be easily
combined with previous fixed size recombination methods. Given a position in
Array A, the corresponding position in Array B is given by Equation (2).

A B
B

A

P LP
L
⋅

= (2)

where:

BP is the position of B we are looking for;

AP is the position of A that we know;

BL is the size of array B;

AL is the size of array A.
One of the major problems of conventional neural networks is overtraining.

This means that the network loses the ability to generalize and specializes only in
some cases. It is a destructive case of training that is usually solved by defining a
set of data called a validation set. All of this is used by the system during train-
ing, not to train the network, but to be able to monitor whether it loses its gene-
rality.

Our system supports this, as it provides the ability to interrupt training or
finish normally completing all epochs and selecting the best person from all
epochs based on the validation set. Our experiments generally show that the sys-
tem achieves the best validation error relatively close to the end of the epochs.
This indicates that the system does not lose generalization easily and that the use
of validation set is only necessary in a few problems (see Figure 3).

5. Experiments and Analysis

During the simulation and the experimentation stage, five different datasets
were used and more specifically, the following:

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1056 Journal of Applied Mathematics and Physics

Figure 3. The diagram shows that fitness validation decreases over time. This shows the
continuous improvement of the network, without losing its generality.

1) Sunspot [12]. The magnetic field of the Sun makes a periodic motion and
each period lasts about 11 years. At the end of each period the poles of the sun
have changed their position with each other. It has been observed that during
this time period of eleven years, dark spots are formed on the surface of the sun,
due to the change in their polarity. This phenomenon greatly affects our solar
system and the climate on Earth. The proposed system is configured to predict
the number of spots during these periods. It has been observed that this number
is difficult to predict, as there are unexpected changes affecting the number of
spots.

2) Mackey-Glass [14]. The situation is associated with a set of functions that
produce diverse waveforms, which apparently have limitless or “chaotic” solu-
tions. More specifically, these results are related to dynamic breathing and he-
matopoietic diseases. Essentially, some chronic or even acute diseases have been
observed that some of their symptoms exhibit a periodicity and attempt to cor-
relate mathematical functions in this study to predict the periodicity of the
symptoms.

3) Lazer [15]. This data set is composed of data recorded using a remote
infrared laser, produced for benchmark use, which has been used in many com-
petitions. Its data is low dimensional, non-linear and constant time series.

4) Lorenz [13]. It is made up of data from observations of various hydrody-
namic flows that exhibit general periodicity, but over time it appears volatility in
its data. It is another natural observation, so it contains the element of the un-
predictable.

5) Taiwan Trading Index Exchange (TWI Exchange) [11]. Simple recording of
the Taiwanese exchange rate within a given time, this dataset is quite different
from the others, as its values range in a much smaller range.

We use the already split format of the datasets, with 60%/20%/20% data,
training/validation/testing respectively, where they are taken from their own
system (https://github.com/gary-wong-fiji/Meme-Collection-SEQ).

https://doi.org/10.4236/jamp.2020.86082
https://github.com/gary-wong-fiji/Meme-Collection-SEQ

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1057 Journal of Applied Mathematics and Physics

5.1. Experiments Plan

In order to be able to properly compare the two systems, the datasets [11] [12]
[13] [14] [15] from the research [9] had to be used for simulation, just as they
divided them into their subsets. Therefore, the error is measured using the same
root mean square error method (RMSE). The same method is the one that
guides the evolution of subpopulations. The best person for each run is selected
based on the fitness of the individual in the validation set. The C cost of each
experiment is calculated from Equation (3).

1n r
C m t z

+ = ⋅ +

∑ ∑ (3)

where:
n the epochs of the evolutionary algorithm;
m the crowd of people in the population;
t the multitude of subpopulations;
r the number of times that BP algorithm will be executed (see Equation (5));
z the number of epochs the BP algorithm will execute each time.

z p n= ⋅ (4)

nr
z

= (5)

There is a parameter N that is increased one by one to take into account fit-
ness calculation when initializing the system. Another parameter is the so-called
“percentage” p, that defines two things:

1) The number of epochs of the evolutionary algorithm, that the BP algorithm
execute.

2) The number of epochs of the BP algorithm.
The motivation for using a variable value for the p parameter, was to keep a

balance between how often and for how many epochs BP will executed. For ex-
ample, if the p parameter increases its value, the BP algorithm will execute for
more epochs, but less often.

5.2. Parameters of the Experiments

The experiments were divided into four types. The formulas have some common
parameters Table 1 and differ Table 2 with respect to some others, whereby the
final conclusions will be drawn on the overall picture of the system as well as its
efficiency. All four types were applied to all datasets and thirty system executions
were performed for each type. This is due to the fact that the evolutionary algo-
rithms by they own nature are characterized by the property of randomness to a
large extent. The conclusions are produced via statistical methods applied to the
results emerged from all executions.

The parameters described as common, have been selected after many repeated
system tests on the datasets [11] [12] [13] [14] [15]. Observing the results of the
tests as well as how the system reacts to the changes in the values of the parame-
ters, we came to the following values Table 1.

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1058 Journal of Applied Mathematics and Physics

Table 1. Common parameters, for all test types.

Parameter Value

Epochs 2000

Population size 15

Selection method Tournament Κ = 3 (Size of tournament group)

Recombination method Random K = 5 (Crossover break size)

Mutation method Simple random (Add or subtract a random value)

Value range, for variable learning rate [0.3, 0.00001]

Range of values for the probability of mutation [200, 80]

Range of values for the mutation value [−1, 1]

Neural network size
A hidden layer with 9 neurons
A neuron in the output layer

Activation function, for hidden layer neurons Logistic sigmoid [18]

Network Output Function
Ground-relu [19] (except for the Lorenz dataset

[13], where it has the linear)

Table 2. Different parameters.

Parameters

percentage (P) Threads

Experiment type

A 0.1 5

B 0.3 5

C 0.1 10

In more detail, the greater the number of epochs, the better, but the epochs

are costly in time. So after a point the performance/cost ratio will be very small
and unprofitable.

The size of the population helps the system to make great leaps in improve-
ment, from the earliest epochs, due to the larger volume of genetic material in
the population. And that, in turn, adds a lot of time cost. Experiments have
shown that our system does not need a large population.

Due to the selection of the small population, the total selection method must
be small. The break size for the recombination method is small enough to keep
the knitting of the genes satisfactory because the neural networks we have cho-
sen are small in size.

The learning rate for the conventional BP [6] method is also small because
most progress must be made by the EA [2] and the conventional method has the
auxiliary role.

The relatively high probability of mutation was chosen because through the
experiments the system showed that it can withstand them. In an even higher
probability of mutation, we would see a sharp drop in the course of the popula-
tion, because it’s best individuals are killed, the high probability of mutation de-
stroys their genetic material.

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1059 Journal of Applied Mathematics and Physics

Once our data is normalized, the range we selected for the mutation values is
sufficient. In their research [9], they use five neurons in the hidden layer, we
chose to have nine. In our test D, where the network has a variable size, in its
hidden layer it can have from five to nine neurons. However, the results show
that most neurons do not help much in our system for these datasets. Even when
we tried it with a hundred neurons in the hidden layer it did not produce better
results and made the execution of the program very slow.

The sigmoid function in the hidden layer and the ground-relu at the output of
the network, are two simple but efficient methods and very fast in execution
time. For the dataset Lorenz [13] we have the linear function at the output be-
cause in this dataset there are negative values and the ground-relu method does
not produce negative values.

5.3. Extra Experiments

During simulation, another type of experiment, called the D experiment, was
performed. With this type of experiment, we can draw conclusions regarding the
effectiveness of variable evolution. This experiment has the same parameters as
the previous types, except from the parameters descripted at Table 3.

To be able to understand the effectiveness of using a percentage method, the
test type E was created. It is essentially just like the test D, but without the use of
the percentage method. Finally, we have five types of problems A, B, C, D, E.

5.4. Results

After all executions were done, all data were collected from the system output
and the following tables were generated (see Table 4). In these tables, the results
of our system (A, B, C, D, E) are compared with the results of the existing study
(Sequential, Concurrent, MCNE) [9]. As mentioned above, EA have the element
of randomness to a large extent, and because of this, an additional column,
namely the Mean error bias (MEB) has been added in Table 4. MEB column
values are in the interval [−100, 100], indicating how close (in percentage) the
Mean error is to the best error (Best error column). A value of 100% means that
the average error is equal to the best error, while a value of −100% means that it
is equal to the worst error. This is a very important column, since we can see if
the value we got at the best error is a pretty likely value or we just got lucky.
However, MEB cannot be compared from one test to another because they have
different values in the maximum and minimum error. The type that MEB de-
scribes is Equation (6).

MEB 2 1 100
m

M m
ε ε

ε ε

µ −
= − ⋅ − ⋅ −

 (6)

where:

εµ is the average error;
mε is the minimum error;
Mε is the maximum error;

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1060 Journal of Applied Mathematics and Physics

Table 3. Different parameters for the extra experiment D.

Parameter Value

Percentage (P) 0.1

Threads 5

Recombination method Variable size

Percent of fitness method Current best ranked

Variable size neural network
Hidden layer: [5, 9] neurons
A neuron in the output layer

Table 4. All tests results.

Santa Fe Laser [15]

Test type Best error Mean error Mean error bias Worst error Cost
Cost per
thread

Mean (best validation
error epoch)

A 0.0122094 0.0369875 5.63% 0.0647200 200,075 40,015 1619

B 0.0151571 0.0430133 −17.93% 0.0624001 195,075 39,015 1742

C 0.0138906 0.0323462 11.01% 0.0553674 500,150 50,015 1715

D 0.0186784 0.0606052 38.98% 0.1560946 200,075 40,015 1509

E 0.0203611 0.0656812 54.02% 0.2174987 200,075 40,015 1269

Sequential [9] 0.0571243 0.0695330 −65.25% 0.0721420 269,421 - -

Concurrent [9] 0.0634781 0.0768557 −68.66% 0.0793412 121,200 - -

MCNE [8] [9] 0.1471420 0.1949820 −33.44% 0.2188464 100,000 - -

Lorenz [13]

Test type Best error Mean error Mean error bias Worst error Cost
Cost per
thread

Mean validation
error epoch

A 0.0027403 0.0052443 24.78% 0.0093983 200,075 40,015 1897

B 0.0022897 0.0096347 33.82% 0.0244856 195,075 39,015 1813

C 0.0019629 0.0038730 28.18% 0.0072823 500,150 50,015 1949

D 0.0022847 0.0144763 32.90% 0.0386242 200,075 40,015 1767

E 0.0037872 0.0146563 62.75% 0.0621459 200,075 40,015 1809

Sequential [9] 0.0713540 0.0731450 48.59% 0.0783210 260,668 - -

Concurrent [9] 0.3214887 0.3445700 22.62% 0.3811421 121,200 - -

MCNE [8] [9] 0.0747062 0.0753210 73.42% 0.0793321 100,000 - -

Mackey Glass [14]

Test type Best error Mean error Mean error bias Worst error Cost
Cost per
thread

Mean validation
error epoch

A 0.0027723 0.0037160 45.77% 0.0062529 200,075 40,015 1880

B 0.0027492 0.0037760 14.47% 0.0051503 195,075 39,015 1864

C 0.0023960 0.0033838 11.41% 0.0046261 500,150 50,015 1966

D 0.0010170 0.0040382 6.24% 0.0074617 200,075 40,015 1814

E 0.0020943 0.0043915 36.02% 0.0092757 200,075 40,015 1873

Sequential [9] 0.0019264 0.0045463 −37.10% 0.0057482 271,031 - -

Concurrent [9] 0.0032004 0.0059527 −56.75% 0.0067121 121,200 - -

MCNE [8] [9] 0.0123215 0.0252556 −16.57% 0.0345122 100,000 - -

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1061 Journal of Applied Mathematics and Physics

Continued

Sunspot [12]

Test type Best error Mean error Mean error bias Worst error Cost
Cost per
thread

Mean validation
error epoch

A 0.0077448 0.0100750 13.07% 0.0131057 200,075 40,015 1909

B 0.0083803 0.0109812 13.68% 0.0144062 195,075 39,015 1817

C 0.0063976 0.0077735 30.12% 0.0103354 500,150 50,015 1877

D 0.0078447 0.0128080 27.05% 0.0214516 200,075 40,015 1578

E 0.0077889 0.0134720 38.76% 0.0263481 200,075 40,015 1485

Sequential [9] 0.0107341 0.0127696 53.78% 0.0195412 205,039 - -

Concurrent [9] 0.0146470 0.0193530 10.14% 0.0251210 121,200 - -

MCNE [8] [9] 0.0246412 0.0478444 -9.27% 0.0671124 100,000 - -

TWI Exchange [11]

Test type Best error Mean error Mean error bias Worst error Cost
Cost per
thread

Mean validation
error epoch

A 0.0118479 0.0127522 48.92% 0.0153886 200,075 40,015 1658

B 0.0120645 0.0130102 42.49% 0.0153533 195,075 39,015 1576

C 0.0115597 0.0123720 46.37% 0.0145887 500,150 50,015 1701

D 0.0121878 0.0134124 53.20% 0.0174216 200,075 40,015 1465

E 0.0113766 0.0133122 40.42% 0.0178735 200,075 40,015 1604

Sequential [9] 0.0354120 0.0394227 −38.23% 0.0412148 272,318 - -

Concurrent [9] 0.0363142 0.0397674 0.59% 0.0432614 121,200 - -

MCNE [8] [9] 0.0745214 0.0852743 −28.59% 0.0912457 100,000 - -

The Cost column is calculated by the type of cost mentioned above. Also,

there is an additional “Cost per thread” column, because as the initial cost is
calculated, it’s like implying that the execution of the program is serial, while in
fact it is a parallel task, because of the threads. The Mean (best validation error
epoch) (MBVE) column is the average of the epochs, from which the best valida-
tion error occurred. It follows that the larger the MBVE, the less the system de-
pendence on the validation error, in order to find the optimal network. All of the
above explains, whether the validation dataset is useful for the system and
therefore the validation error (Figure 4).

5.5. Initial Conclusions

In their most recent study [9] the authors have shown that their system performs
better with their Sequential strategy than the other two strategies (Concurrent,
MCNE), considering MCNE worse. Although our system is generally based on
MCNE, it achieves and produces better results than all of the strategies used in
[9], both in the average error and the smallest error, at approximately the same
cost. The dominant tests are C and A.

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1062 Journal of Applied Mathematics and Physics

5.6. Additional Analysis

An additional statistical analysis was performed to determine the effectiveness of
our own tests with each other. One-way ANOVA [20] was used for statistical
analysis, using the PSPP graphic program [21]. In order for the ANOVA method
to work, it requires at least two parameters, one factor and one dependent varia-
ble. In our problem, the factor is the tests which are a qualitative variable and the
dependent variable is the evaluation error, which is a quantitative variable. The
first conclusion from the statistical analysis is that the test with the best results in
all datasets is C. Having the best average performance, it also has the smallest
dispersion, which means that it produces often and consistently the best results.
The next best result comes from test A, which is not statistically very different
from C, regarding its performance. The remaining tests are ranked in the order
B, D and E. From the performance of D relative to E, we can conclude that the
method of Percent of fitness helps, but not to a great extent, because statistically
the performance of the two tests is not much different. One of the major deci-
sion problems, analyzed in [9], is how often and how many times the BP algo-
rithm needs to be executed. By carefully examining the low performance of B, we

(a) Lorenz problem

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1063 Journal of Applied Mathematics and Physics

(b) Mackey problem

Figure 4. Prediction, error (RMSE) and subpopulation development from a run for
Lorenz [13] (see (a)) and Mackey problems [14] (see (b)).

can see that many successive BP epochs with low frequency does not help the
system, whereas the small number of BP epochs with high frequency of execu-
tions increase the system performance.

The general conclusion we get is that the larger the number of subpopulations,
the better and more efficient the system is. This implies a larger population sam-
ple during migration, which helps the weaker populations, which in turn means
more people for evolution than BP. Of course, this comes at a great cost only if
multiple threads are not used and at the same time there is no such support from
the computer hardware, in particular from its processor. Consequently, if the
conditions are met, then the subpopulations will develop in real time, each in its
own thread.

6. Future Work

A feature of the problem that deserves further development is that of the variable
size of the chromosomes of persons, since it is associated with a proper imple-

https://doi.org/10.4236/jamp.2020.86082

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1064 Journal of Applied Mathematics and Physics

mentation of the recombination and mutation methods, based on existing tech-
niques [17]. This feature has to be customized so that it can work harmoniously
with the neural networks. Combining EA with different networks such as recur-
rent neural network (RNN) [22] or long short-term memory (LSTM) [23] will
also be very useful to further make the system suitable for dealing with a larger
variety of problems. It would also be wise to upgrade BP to a potential learning
rate, using a different method from a simple function. For example, one such ef-
fective method has been proposed by Adam [24], which has proven its effective-
ness, through the multitude of libraries, which generally uses it in machine
learning. Another major area for research is deep learning [5] [25] as it appears
to be used in a wide range of real problems with great success.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this
paper.

References
[1] Islam, M.R., Lu, H.H., Hossain, M.J. and Li, L. (2019) A Comparison of Perfor-

mance of GA, PSO an Differential Evolution Algorithms for Dynamic Phase Recon-
figuration Technology of a Smart Grid. IEEE Congress on Evolutionary Computa-
tion, Wellington, 10-13 June 2019, 858-865.
https://doi.org/10.1109/CEC.2019.8790357

[2] Mühlenbein, H., Gorges-Schleuter, M. and Krämer, O. (1988) Evolution Algorithms
in Combinatorial Optimization. Parallel Computing, 7, 65-85.
https://doi.org/10.1016/0167-8191(88)90098-1

[3] Rodzina, L., Rodzina, O. and Rodzin, S. (2016) Neuroevolution: Problems, Algo-
rithms, and Experiments. IEEE 10th International Conference on Application of
Information and Communication Technologies, Baku, 12-14 October 2016, 1-4.
https://doi.org/10.1109/ICAICT.2016.7991745

[4] Stanley, K.O., Clune, J., Lehman, J. and Miikkulainen, R. (2019) Designing Neural
Networks through Neuroevolution. Nature Machine Intelligence, 1, 24-35.
https://doi.org/10.1038/s42256-018-0006-z

[5] LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539

[6] Robert, H.-N. (1992) Theory of the Backpropagation Neural Network. Neural Net-
works for Perception, 3, 65-93.

[7] Palmer, A., Montaño, J.J. and Sesé, A. (2006) Designing an Artificial Neural Net-
work for Forecasting Tourism Time Series. Tourism Management, 27, 781-790.
https://doi.org/10.1016/j.tourman.2005.05.006

[8] Wong, G., Chandra, R. and Sharma, A. (2016) Memetic Cooperative Neuro-Evolution
for Chaotic Time Series Prediction. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee,
M. and Liu, D., Eds., Neural Information Processing, Springer, Cham, 299-308.
https://doi.org/10.1007/978-3-319-46675-0_33

[9] Wong, G., Chandra, R. and Sharma, A. (2018) Information Collection Strategies in
Memetic Cooperative Neuroevolution for Time Series Prediction. International
Joint Conference on Neural Networks, Rio, 12-14 October 2016, 1-6.

https://doi.org/10.4236/jamp.2020.86082
https://doi.org/10.1109/CEC.2019.8790357
https://doi.org/10.1016/0167-8191(88)90098-1
https://doi.org/10.1109/ICAICT.2016.7991745
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.tourman.2005.05.006
https://doi.org/10.1007/978-3-319-46675-0_33

G. Naskos et al.

DOI: 10.4236/jamp.2020.86082 1065 Journal of Applied Mathematics and Physics

https://doi.org/10.1109/IJCNN.2018.8489184

[10] Gardner, M. and Dorling, S. (1998) Artificial Neural Networks (the Multilayer Per-
ceptron)—A Review of Applications in the Atmospheric Sciences. Atmospheric En-
vironment, 32, 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0

[11] Admin. Exchange Rate (TWI). https://datamarket.com/data/set/22tb

[12] S.W.D. Center. The International Sunspot Number (1843-2001), International
Sunspot Number Monthly Bulletin and Online Catalogue. Royal Observatory of
Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium [Online].
http://www.sidc.be/silso

[13] Lorenz, E. (1963) Deterministic Non-Periodic Flows. Journal of Atmospheric Science,
20, 130-141.

[14] Mackey, M.C. and Glass, L. (1997) Oscillation and Chaos in Physiological Control
Systems. Science, 197, 287-289. https://doi.org/10.1126/science.267326

[15] Weigend, A.S. and Gershenfeld, N.A. (1994) Laser Problem Dataset: The Santa Fe
Time Series Competition Data.
https://github.com/gary-wong-fiji/Meme-Collection-SEQ/tree/master/Datasets/Las
er

[16] Grosan, C. and Abraham, A. (2007) Hybrid Evolutionary Algorithms: Methodologies,
Architectures, and Reviews. In: Hybrid Evolutionary Algorithms, Springer, Berlin,
1-17. https://doi.org/10.1007/978-3-540-73297-6_1

[17] Hutt, B. and Warwick, K. (2007) Synapsing Variable-Length Crossover: Meaningful
Crossover for Variable-Length Genomes. IEEE Transactions on Evolutionary Com-
putation, 11, 118-131. https://doi.org/10.1109/TEVC.2006.878096

[18] Karlik, B. and Olgac, A.V. (2011) Performance Analysis of Various Activation
Functions in Generalized MLP Architectures of Neural Networks. International
Journal of Artificial Intelligence and Expert Systems, 1, 111-122.

[19] Li, Y. and Yuan, Y. (2017) Convergence Analysis of Two-Layer Neural Networks
with ReLU Activation. Neural Information Processing Systems Conference, Long
Beach CA, 4-9 December 2017, 597-607.

[20] Cuevas, A., Febrero, M. and Fraiman, R. (2004) An Anova Test for Functional Data.
Computational Statistics & Data Analysis, 47, 111-122.
https://doi.org/10.1016/j.csda.2003.10.021

[21] GNU PSGNU Free Software Foundation. https://www.gnu.org/software/pspp

[22] Mikolov, T., Karafiát, M., Burget, L., Černocký, J. and Khudanpur, S. (2010) Recur-
rent Neural Network Based Language Model. 11th Annual Conference of the Inter-
national Speech Communication Association, Makuhari Chiba, Japan, 26-30 Sep-
tember 2010, 1045-1048. https://doi.org/10.1109/ICASSP.2011.5947611

[23] Gers, F., Schmidhuber, J. and Cummins, F. (1999) Learning to Forget: Continual
Prediction with LSTM. 9th International Conference on Artificial Neural Networks,
Edinburgh, 7-9 May 2015. https://doi.org/10.1049/cp:19991218

[24] Kingma, D.P. and Jimmy, B. (2015) Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations (ICLR2015).

[25] Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O. and Clune, J. (2017)
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for
Training Deep Neural Networks for Reinforcement Learning.
https://arxiv.org/abs/1712.06567

https://doi.org/10.4236/jamp.2020.86082
https://doi.org/10.1109/IJCNN.2018.8489184
https://doi.org/10.1016/S1352-2310(97)00447-0
https://datamarket.com/data/set/22tb
http://www.sidc.be/silso
https://doi.org/10.1126/science.267326
https://github.com/gary-wong-fiji/Meme-Collection-SEQ/tree/master/Datasets/Laser
https://github.com/gary-wong-fiji/Meme-Collection-SEQ/tree/master/Datasets/Laser
https://doi.org/10.1007/978-3-540-73297-6_1
https://doi.org/10.1109/TEVC.2006.878096
https://doi.org/10.1016/j.csda.2003.10.021
https://www.gnu.org/software/pspp
https://doi.org/10.1109/ICASSP.2011.5947611
https://doi.org/10.1049/cp:19991218
https://arxiv.org/abs/1712.06567

	Neuroevolution Strategy for Time Series Prediction
	Abstract
	Keywords
	1. Introduction
	2. Artificial Neural Network
	3. Evolutionary Algorithms
	4. Proposed Neuroevolution Architecture
	4.1. Existing Study
	4.2. Our System

	5. Experiments and Analysis
	5.1. Experiments Plan
	5.2. Parameters of the Experiments
	5.3. Extra Experiments
	5.4. Results
	5.5. Initial Conclusions
	5.6. Additional Analysis

	6. Future Work
	Conflicts of Interest
	References

