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Abstract 
Considering that the probability distribution of random variables in stochas-
tic programming usually has incomplete information due to a perfect sample 
data in many real applications, this paper discusses a class of two-stage sto-
chastic programming problems modeling with maximum minimum expecta-
tion compensation criterion (MaxEMin) under the probability distribution 
having linear partial information (LPI). In view of the nondifferentiability of 
this kind of stochastic programming modeling, an improved complex algo-
rithm is designed and analyzed. This algorithm can effectively solve the non-
differentiable stochastic programming problem under LPI through the varia-
ble polyhedron iteration. The calculation and discussion of numerical exam-
ples show the effectiveness of the proposed algorithm. 
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1. Introduction 

The stochastic programming with recourse, as an important method for solving 
optimization problems with uncertain parameters, was first proposed by G. 
Dantzig, the founder of linear programming. In the design of the optimal num-
ber of airline flights, he first considered a two-stage stochastic programming 
problem with recourse [1], considering the Randomness of passenger flow. With 
a lot of research by scholars such as G. Tinter and D. Walkup [2] [3], the theory 
and application of stochastic programming have been systematically developed, 
gradually showing its advantages in practical applications. Stochastic program-
ming has the characteristics of many variables, many constraints, and large-scale 
problems. Therefore, solving stochastic programming problems has always been 
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a difficult point, and it is also one of the problems that many scholars at home 
and abroad are keen to study. The dual decomposition L-algorithm given in [4] 
is considered to be one of the classical algorithms for solving stochastic pro-
gramming problems. This method is a cutting plane method which belongs to 
the external linear approximation. By using the constraints of feasibility cut-
ting and optimal cutting, it gradually reduces the feasibility area, and finally 
makes the algorithm converge to obtain the optimal solution. With the birth of 
the L-algorithm, a large number of researches have focused on the improve-
ment of the L-algorithm, including the improvement of the simplicity multip-
lier, the improvement of the optimal cutting scheme and so on. The research of 
L-algorithm is becoming more and more mature [5] [6]. 

Generally, in the study of the stochastic programming with recourse, the 
second stage function with recourse is determined by the expectation criterion 
on the premise that the probability distribution of the random variable has com-
plete information, so that the stochastic programming problem is equivalent to a 
definite mathematical programming problem. However, in practical problems, 
due to the lack of historical data and the limitation of statistical methods, the 
probability distribution information of random variables is not easily obtained, 
and only partial information may be obtained. Thus, the classic stochastic pro-
gramming algorithms are no longer applicable. In order to solve this problem, 
the linear partial information theory (LPI) was proposed in reference [7], which 
can determine the fuzzy variables through the form of linear constraints. This 
method provides ideas for dealing with the problem of incomplete random va-
riable information in stochastic programming. In reference [8], the paper intro-
duced in detail the use of α -cut technology to transform the probability con-
straints with fuzzy relations in stochastic programming into LPI form, and ob-
tained the stochastic programming model under the linear partial information 
probability distribution. 

Considering that the stochastic programming problem is transformed into the 
corresponding equivalent problem, the problem can be regarded as a kind of 
nonlinear programming problem, which can be solved by nonlinear program-
ming method. With the continuous development of nonlinear programming 
methods, a large number of nonlinear programming methods have been applied 
to stochastic programming problems. In reference [9], the paper studied the 
quadratic stochastic programming model with recourse, which was transformed 
into quadratic programming model by B-regular [10] and semi smooth concept 
[11] [12]. Finally, quasi Newton method was introduced to solve the stochastic 
programming problem. The complex method [13] [14] is a kind of variable po-
lyhedron algorithm that can determine the search direction only by comparing 
the value of the objective function to solve the constrained nonlinear program-
ming problem. This method is simple and easy to implement for the require-
ments of the function. It can effectively solve the problem that the stochastic 
programming model with probability constraints can’t be derived. Therefore, the 
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complex method becomes a solution to the two-stage stochastic programming 
problem with uncertain probability distribution. 

Aiming at the problem of stochastic programming under the uncertain prob-
ability distribution, this paper discusses a kind of stochastic two-stage program-
ming model based on the maximal minimum expectation criterion under LPI 
based on the literature [8] [13] [14], which is a robust decision-making model 
under the linear partial information probability distribution and has high prac-
tical value. Considering the discreteness of the random variables and the uncer-
tainty of the probability distribution in the model, this paper introduces the 
complex method and designs a stochastic programming algorithm based on the 
complex method. The validity of the algorithm is verified by solving the exam-
ples. 

2. The Stochastic Programming Model with Recourse under  
LPI 

Let ( ), 2 , PΩΩ  be a probability space, where { }1 2, , , lω ω ωΩ =   is a finite 
sample space, 2Ω

 
is the power set of sample space Ω , and  

( )T
1 2, , , lP p p p=   is the probability distribution corresponding to sample set

 
{ }1 2, , , lω ω ωΩ =  , that is { }( )Pr , 1, ,i ip w w i l= = =  , where ( )Pr θ  is the 

probability function of event θ , ( ) 1P Ω = . In reference [9], the following sto-
chastic programming problems are considered: 

( ) ( )min   

s.t.   ,
nx R

f x g y

Cx b
∈

+


≤
                     (1) 

where,  

( ) ( )( )

( ) ( )( )TT

,

1, max  
2

               s.t.  

m

P

y R

g y E x

x y Hy x y

Wy q

φ ω

φ ω σ ω
∈

=

= − + −

≤

             (2) 

here, ,n mx R y R∈ ∈  are the decision variables in the first and second stages, 
m mH R ×∈  is a symmetric positive definite matrix, ( ) mRσ ω ∈  is a random va-

riable in space Ω , 1 1, ,,k tn k t mC R b R W R q R× × ×× ∈ ∈∈ ∈  are all known coeffi-
cient matrices, ( )f x  is a convex function with x as the decision variable, and 
( )g y  is the second stage function with recourse. 
Assuming that the random variables in the model are finitely discrete, the 

second stage compensation function ( )g y  can be expressed as 

( ) ( )
1

,
l

i i
i

g y p xφ ω
=

= ∑                       (3) 

The establishment of the above model is based on the assumption that the 
probability distribution information of the random variables in the model is 
complete, that is, ( )T

1 2, , , lP p p p=   is completely determined. But due to the 
limitations of historical data, such complete probability distribution information 
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is not easy to obtain. Based on the literature [8], the paper considers compre-
hensively the structure of the stochastic programming model and its application 
scenarios in practical problems, and makes the following assumptions about the 
probability distribution of random variables in stochastic programming:  

Suppose that the probability distribution information of random variables 
aren’t known completely, but have linear partial information, that is, the follow-
ing constraint condition is satisfied: 

( )T
1

1
, , | , 1; 0, 1, ,

l
l

l i i
i

P p p R BP d p p i lϕ
=

 = = ∈ ≤ = ≥ = 
 

∑        (4) 

In the formula, 1m lB R ×∈  and 1md R∈  are both known matrices.  
From the above assumption, it can be concluded that the solution space ϕ  

composed of LPI (P) of probability distribution P of random variables is a 
bounded convex polyhedron. The value on this convex polyhedron ϕ  is the 
probability distribution of random variables in the model. 

Since the probability distribution of random variables has linear partial in-
formation, simply using the expectation criterion to determine the second stage 
function with recourse will no longer be applicable. The paper expands the 
second stage function with recourse of the model, and combines the maximal 
minimum expectation criterion in the expectation model to give the two-stage 
stochastic programming model with recourse under the LPI discussed in the 
paper: 

( ) ( )
1

min   max ,

s.t.   ,

n

l

i iPx R i
f x p x

Cx b
π

φ ω
∈∈ =

 +

 ≤

∑                  (5) 

where, 

( ) ( )( )TT1, max  
2

               s.t.  

my R
x y Hy x y

Wy q

φ ω σ ω
∈

= − + −

≤
             (6) 

( )T
1

1
, , | , 1; 0, 1, ,

l
l

l i i
i

P p p R BP d p p i lξ
=

 = = ∈ ≤ = ≥ = 
 

∑       (7) 

Models (5)-(7) are the stochastic programming models with linear partial in-
formation probability distributions given in the paper. It can be seen that this 
model is a generalized form of the stochastic programming model in reference 
[9]. When P takes a certain value in ϕ , that is, the probability distribution in-
formation of the random variable is complete, the model is consistent with the 
model in [9]. The biggest difference between the two models is that the probabil-
ity distribution information assumed in the paper is incomplete, so when deter-
mining the function with recourse in the second stage, the paper uses the me-
thod of maximizing the expectation of the compensation value. This strategy is a 
robust choice, which can ensure that the optimization goal of the final deci-
sion-making scheme is not worse than the optimization goal of any possible sit-
uation. This is a conservative and robust decision model. 
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Because the second stage compensation function ( )
1

max ,
l

i iP i
p x

π
φ ω

∈ =
∑  is not 

differentiable, the gradient information of the model does not exist, and the pre-
vious gradient-based method will not be applicable. In order to solve the 
two-stage stochastic programming problem with linear partial information 
probability distribution given in this paper, the complex optimization algorithm 
based on direct optimization method is introduced. By improving the complex 
method, it is adapted to the solution process of the model, and then a stochastic 
programming algorithm based on the improved complex method under the un-
certain probability distribution is given. Then, several examples are used to veri-
fy the effectiveness of the designed model and the algorithm. 

3. Complex Method 

As a direct optimization algorithm, the complex method is simple and easy to 
implement, so it is widely used in engineering optimization problems [15] [16]. 
This method can be regarded as the variable polyhedron method derived from 
simplex method. The biggest difference between the method and simplex method 
is that this method can be directly used to solve the optimization problem with 
constraints, and does not limit the number of vertices of complex shape, so it is 
more widely used than simple method. Assuming that the variables of the opti-
mization problem are in the n-dimensional space, the complex shape with itera-
tion in the complex method is a polyhedron composed of more than 1n +  ver-
tices, which is formed by the combination of multiple simplexes. Considering the 
nondifferentiability of the stochastic programming model established in this pa-
per, the complex method is introduced into the solution of stochastic program-
ming under LPI, and the optimal value of the problem is obtained by using the 
variable polyhedron iterative process of the complex method in the optimization. 

The complex method is an optimization method that only needs to compare 
the objective value of the optimization function to determine the optimization 
direction. Its basic idea is that we should first construct an initial complex shape 
in the feasible region. Then by comparing the objective function values of each 
vertex, we can find a new point in the feasible region where the objective func-
tion values are improved, and use it to replace the vertices with poor objective 
function values to form a new complex shape. By repeating the above process, 
the complex shape is continuously deformed, transferred and shrunk, gradually 
approaching the best. When the objective function value of each vertex in the 
complex shape is not much different or the distance between each vertex is very 
close, the vertex with the lowest objective function value can be regarded as the 
best [17] [18]. The following is a detailed description of the iterative process of 
the complex method. 

In n-dimensional space, a polyhedron composed of 1k n≥ +  points is called 
a complex shape. Referring to the previous literature, there are two main me-
thods to generate initial complex shape: manual definition of initial complex 
shape and random generation of initial complex shape. Considering the com-
plexity of the stochastic programming model, the paper uses the second method. 

https://doi.org/10.4236/jamp.2020.86079


Y. P. Luo, X. S. Ma 
 

 

DOI: 10.4236/jamp.2020.86079 1021 Journal of Applied Mathematics and Physics 
 

The following is the specific operation of randomly generating the initial com-
plex shape: 

1) Suppose that the vertices of the complex shape are n-dimensional, the 
number of vertices of the initial complex shape is determined to be k, and an ini-
tial vertex is selected manually in a given feasible region; 

2) Suppose that the upper and lower bounds of the vertices of the complex 
shape are ,n nupb R lob R∈ ∈  respectively, where upb  are the upper bounds of 
the vertices and lob  are the lower bounds of the vertices. Then the remaining 

1k −  vertices are generated by using the random number in [ ]0,1 . The build 
rule is ( )i ix lob r upb lob= + − , where ir  is the random number in interval 
[ ]0,1 , 2, ,i k=  ; 

3) Check whether the generated k vertices are in the feasible region: assuming 
that w vertices are in the feasible region and the remaining k w−  vertices are 
not in the feasible region, the k w−  vertices that are not in the feasible region 
can be translated into the feasible region by the following methods: 

a) The geometric centers of w vertices in the feasible region are calculated and 

recorded as 
1

1 w

gc i
i

x x
w =

= ∑ ; 

b) If k w−  vertices that are not in the feasible region are recorded as ,out jx ,
1, ,j k w= − , then a vertex ,out jx′  in the feasible region can be found on the 

line between gcx  and ,out jx . The specific searching method is as follows: 

( ) ( ), , , 0,1 , 1, ,out j ge out j gex x x x j k wρ ρ′ = + − ∈ = −           (8) 

If the result ,out jx′  is not in the feasible region, the formula 0.5ρ ρ=  can be 
used to continuously reduce ρ  until the vertex is translated into the feasible 
region. Through the above steps, we can get the initial complex shape that meets 
the conditions. 

In the generated complex shape, let the worst point be recorded as hx , the 
secondary bad point as sx , and the best point as lx . The centroid of other ver-
tices with the worst points removed in the complex shape is calculated by for-

mula 1c i

i h
x x

n ≠

= ∑ , which is recorded as cx . In the process of the complex 

shape optimization, several methods of vertex transformation for polyhedron in 
the iterative process are as follows: 

1) Mapping method: 
Transformation thought: We expect to find a better value in the opposite of 

the worst point hx , to replace hx . 
Search direction: It searches along the direction from the worst point hx  to 

the centroid cx , i.e. along the direction of h cx x→ . 
Step factor: Mapping factor : 1α α > , representing the step size of the map-

ping. 
Mapping iteration formula: ( )r c c hx x x xα= + − , where rx  is called map-

ping point. 
Rule of judgement: If rx  is in the feasible region and ( ) ( )r hf x f x< , rx  
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will be used instead of hx  to form a new complex shape and carry out the next 
iteration. 

2) Expansion method: 
Transformation thought: According to the advantages and disadvantages of 

mapping point rx  obtained by mapping method, we expect to get better trans-
formation vertices. If the function value of the mapping point is less than the 
function value of the best lx , i.e. ( ) ( )r lf x f x< , then the direction from cx  
to rx  is the current optimal direction and it can be expanded in this direction. 

Expansion iteration formula: ( )e c r cx x x xβ= + − . 
Expansion coefficient : 1β β ≥ . 
Rule of judgement: 
a) if ( ) ( )e lf x f x< , the expansion is successful, and ex  replaces hx  to 

form a new complex shape. 
b) If ( ) ( )e lf x f x> , expansion fails, and rx  replaces hx  to form a new 

complex shape. 
3) Shrinkage method: 
Transformation thought: If ( ) ( )h rf x f x<  in the mapping method, it indi-

cates that the step size of the mapping method is too large, let 0.5α α= , and we 
repeat the mapping method. If it still fails until 510α −< , it indicates that the 
current optimization direction is not right. In this case, shrinkage method is 
considered to find the search direction in the complex shape. 

Shrinkage direction: through the failure of the mapping method, it shows that 
the optimization direction h cx x→  of the mapping method is not correct, so 
the complex shape is shrunk along the direction from the center of the centroid 

cx  to the worst point hx , i.e. along the direction of c hx x→ . 
Shrinkage coefficient: : 0 1γ γ< < . 

Shrinkage formula: ( )k c c hx x x xγ= − − . 

Rule of judgement: If ( ) ( )k hf x f x< , we use shrinkage point kx  to replace 
the worst point hx  to form a new polyhedron; If the shrinkage fails, we carry 
out the compression step. 

4) Compression method: 
Transformation thought: shrinkage failure means that the effect of iteration 

points in the search direction composed of the most nearly hx  and the center 
of mass cx  is not good. In this case, we generally compress the compound 
shape to the best point lµ , so as to find the compound shape with good per-
formance. 

Compression formula: ( ) , 1, ,i l i lx x x x i kδ= + − =  , use this formula to re-
place all points except the best point in the current composite shape. 

Compression factor: : 0 1δ δ< <  
The basic thought of the complex method is to change the complex shape step 

by step through continuous iteration, so that the final approximation of complex 
shape can be compressed to the optimal solution, and the iteration can be com-
pleted [19]. Therefore, the termination condition of the complex method is giv-
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en here, that is 

( ) ( ) 2

1

1 k
i j

i
f x f x

k
ε

=

  − ≤   
∑                  (9) 

where 
1

1 , 1, ,
k

j i

i
x x i k

k =

= =∑  . 

The following is the specific steps of the complex method: Set the parameter 
, , ,α β γ δ , and the convergence parameter 0ε > . The number of vertices of the 

complex shape is determined. If the decision variable is n-dimensional, the 
number of vertices of the complex shape should be between 1n +  and 2n . 

1) Generate the initial complex shape. The steps of generating the initial com-
plex shape by using the random method given in this paper are used to get the 
initial complex shape satisfying the requirements; 

2) Calculate the function value of each vertex in the current complex shape, 
and sort out the worst point hx , the secondary bad point sx , the best point lx , 
and calculate the centroid cx  of the current complex shape; 

3) According to the mapping coefficient α  and the mapping formula, the 
mapping point rx  is calculated: 

a) If the mapping point rx  is within the feasible region, step 4) is carried out; 
b) If the mapping point rx  is not in the feasible region, we reduce the map-

ping coefficient α , that is 0.5α α= , and then repeat step 3); 
4) Calculate the function value of the mapping point rx , and compare the 

function value of rx  with the vertex of the current complex shape: 
a) If ( ) ( )r lf x f x< , the expansion step is carried out. Using the expansion 

formula, the expansion point ex  can be got. If ( ) ( )e rf x f x< , then we re-
place hx  with ex  to get a new polyhedron, and carry out step 6); otherwise, 
we replace hx  with rx  to get a new polyhedron, and carry out step 6); 

b) If ( ) ( ) ( )l r hf x f x f x< < , rx  is used instead of hx  to get a new poly-
hedron, and step 6) is carried out; 

c) If ( ) ( )r hf x f x≥ , compare the value of mapping coefficient α : if 
510α −> , we reduce α , and set 0.5α α= . Then step 3) is carried out; other-

wise, we carried out the contraction step of the complex method, and use the 
contraction formula ( )k c c hx x x xγ= − −  to calculate the contraction point kx . 
Then step 5) is carried out; 

5) Compare the function values of the contraction point and the worst point 
hx : if ( ) ( )k hf x f x< , we replace hx  with kx  to get a new polyhedron, and 

carry out step 6); otherwise, the compression step of the complex method is car-
ried out to get a new complex shape. Then step 2) is carried out; 

6) Judge whether the current complex shape meets the termination condition 

( ) ( ) 2

1

1 k
i j

i
f x f x

k
ε

=

  − ≤   
∑ . If it does, we stop the iteration. At this time, the 

best solution is the best solution and the best function value is the best value. 
Otherwise, step 2) is carried out. 

Through the concrete steps of the complex method, the nonlinear program-
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ming problem can be solved. The stochastic programming problem under LPI 
proposed in this paper can also be regarded as a nondifferentiable nonlinear 
programming problem. Therefore, the paper innovatively introduces the com-
plex method into the solution of the model, which provides a feasible way for the 
stochastic programming algorithm under the uncertain probability distribution. 

4. Example Analysis 

Combined with the compensation two-stage stochastic programming model (5) 
- (6) given above, this paper presents a complex method of decision variable 

6x R∈  to solve the stochastic programming model. At the same time, in view of 
the different probability distribution information of random variables, the paper 
discusses the examples according to different probability distribution informa-
tion, so as to compare and analyze the two-stage stochastic programming model 
under different probability distribution information. 

In the model (5) - (6), ( )f x  in the first stage is a general convex function 
form. Here, it is set as a quadratic function form in the calculation example, in 
which the decision variable is 6x R∈ . As for the random variable in the com-
pensation function of the second stage, the capacity of the calculation example is 
set to 7, i.e. 7l = , so ( )T 7

1 7, ,P p p R= ∈ . Therefore the paper considers the 
following stochastic programming problems: 

( )
6

7
T T

1

1min   max ,
2

s.t.   ,

i iPx R i
x Ax D x p x

Cx b
π

φ ω
∈∈ =

 + +

 ≤

∑             (10) 

( ) ( )( )
6

TT1, max  
2

                s.t.  

i i
y R

x y Hy x y

Wy q

φ ω σ ω
∈

= − + −

≤
           (11) 

The parameters of correlation matrix and variables used in the model are: 
( )2,2,3,1,2,1A diag= , a diagonal matrix; 3 3H R ×∈ , a unit matrix; other para-

meters of correlation matrix are as follows: 

2
3
1
4
2
1

D

 
 
 
 

=  
 
 
  
 

; 
3 1 0 2 1 3
1 1 2 0 1 2
2 3 1 4 0 3

C
 
 =  
 
 

; 
12
5
20

b
 
 =  
 
 

; 

1 0 2 1 1 3
2 1 0 3 1 2
3 2 1 0 1 1

W
 
 = − 
 
 

; 
7
7
7

q
 
 =  
 
 

; 

In the paper, the corresponding value of random variable is fixed, and the 
probability of occurrence of random variable is uncertain information, that is, 
the probability of occurrence of random variable is variable. In order to make 
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the example more universal, the value of the random variable  
( ) ( ) ( ) ( ) ( ) ( ) ( )( )T4 5 6, , , , , , 1, ,7i i i i i i iw w w w w w w iσ σ σ σ σ σ σ= = 

1 2 3  is gen-
erated by a random number with lower bound ( )T1,2,3,4,5,6  and upper 
bound ( )T6,7,8,9,10,11 , and determined. The value of ( )σ ω  is 

( )

3.0851    5.6016    3.0006    5.5117    5.7338    6.4617
3.1800    2.1296    5.7483    6.1766    7.1018    7.6517
3.7540    5.5407    4.4545    6.5541    9.4647   10.4815
5.8351    4.7362    7.8634   σ ω =  7.5741    8.4886    7.0804
2.1100    6.3537    4.0336    8.5931    7.4421    9.0587
5.4643    3.6599    7.1061    4.2085    5.5383    8.9753
1.3815    5.8996    5.1920    7.6173    9.8899    8.6925













 
 
 
 
 
 



 

Combined with the matrix parameters of the model given above, according to 
the completeness of the probability distribution information of the designed 
random variables, the paper analyzes and discusses the examples in three cases. 

Case (1): 
It is assumed that the probability distribution of random variables involved in 

the model does not have too much effective information, and only has the fol-
lowing linear partial information constraints: 

( )
7T 7

1 7
1

, , | 1, 0, 1, ,7i i
i

P p p R p p iξ
=

 = = ∈ = ≥ = 
 

∑   

This means that the occurrence of random variables in the case is accidental, 
and we cannot know the exact value of random variables in the case. For such a 
specific problem, we use the robust decision-making scheme designed in this 
paper to find the optimal decision-making result under the condition of max-
imizing the compensation function, so as to ensure that the actual result will not 
be worse than the expected decision-making result. 

In this paper, the first initial point of the initial complex shape is taken as 
( )T

0 0,0,0,0,0,0x = , the number of vertices of the complex shape is set as 12. As 
the paper introduces in the vertex transformation method of complex shape, the 
mapping coefficient 1α > , expansion coefficient 1β ≥ , contraction coefficient 
0 1γ< < , the compression coefficient 0 1δ< <  and the smaller the conver-
gence parameter ε , the higher the accuracy of the algorithm. Therefore these 
parameters adopted in the complex method are respectively taken as 1.3α = , 

1β = , 0.7γ = , 0.5δ = , 610ε −= . Through the operation of the program, the 
iterative process is shown in Table 1. 

As shown in the above table, the algorithm stops iteration after the 448th time, 
and the optimal solution x = (−2.1646, 0.7194, −0.3065, −0.4003, 1.3779, −0.7288) 
is obtained. At the same time, the optimal value 1 62.2188W =  of stochastic 
programming is obtained. In order to more intuitively explain the iterative 
process of the complex method in solving stochastic programming, the paper 
presents the iterative graph of the optimal value changing with the number of 
iterations w, as shown in Figure 1. 
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Figure 1. Iterative figure of optimal value. 

 
Table 1. Iterative process of optimal solution. 

Iteration times w optimal solution x optimal value W 

1 (−1.7197, 1.5025, 0.4358, 1.4467, 2.7328, −2.2133) 71.8494 

2 (−1.7197, 1.5025, 0.4358, 1.4467, 2.7328, −2.2133) 71.8494 

… … … 

19 (−1.1580, 2.5627, −0.4518, −0.0830, 1.2015, −2.5338) 69.2828 

20 (−0.0872, 1.3478, −0.0326, 0.7095, 1.5657, −0.2709) 67.9572 

21 (−0.0872, 1.3478, −0.0326, 0.7095, 1.5657, −0.2709) 67.9572 

… … … 

447 (−2.1646, 0.7194, −0.3065, −0.4003, 1.3779, −0.7288) 62.2188 

448 (−2.1646, 0.7194, −0.3065, −0.4003, 1.3779, −0.7288) 62.2188 

 
It can be seen that the optimal value of the model gradually decreases with the 

increase of the number of iterations, and keeps approaching to the optimal solu-
tion. The final optimal value converges to 62.2188, which shows that for the so-
lution of stochastic programming, the complex method has good convergence 
and the designed algorithm is effective. 

Case (2): 
Compared with case (1), we set the probability distribution information of 

random variables in case (2) more complete, and its probability distribution has 
some linear constraint information. Under the constraint of case (1), case (2) 
supposes that the probability distribution of random variables has the following 
linear constraints: 
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Let 

1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1

B

 
 
 
 =
 
 
 − 

, 
T1 1 1 1 1

2 3 3 5 9
d  = − 

 
, then the 

probability distribution of random variables in case (2) has the following linear 
partial information: 

( )
7T 7

1 7
1

, , | , 1, 0, 1, ,7i i
i

P p p R BP d p p iξ
=

 = = ∈ ≤ = ≥ = 
 

∑   

In this case, the other relevant parameters set in case (1) are kept unchanged. 
The complex method is used to solve the stochastic programming problem in 
case (2), and the robust decision scheme and result in case (2) are given. The re-
sults of the iterative process are shown in Table 2. 

The program is terminated after 431 iterations, and the optimal solution x is 
(−2.0086, 0.6482, −0.4208, −0.7191, 0.9701, −0.2265). At this time, the optimal 
value of stochastic programming problem is obtained, that is 2 56.1144W = . It 
can be seen that the optimal value of case (2) is better than that of case (1), 
which shows that when the probability distribution information of random va-
riables is more complete, the decision result is better. The optimal value of the 
model changes with the number of iterations w, as shown in Figure 2.  

Case (3): 
In order to compare the influence of the completeness of the probability dis-

tribution information of the random variables on the decision result, the proba-
bility of the random variables in case (3) is set as a fixed value. Next, the other 
parameters of the stochastic programming model are consistent with the situa-
tions (1) and (2), and the probability distribution of the random variables is set 

as 
T3 3 1 3 3 1 3, , , , , ,

25 25 5 25 25 5 25
P  =  

 
, that is, the example in this paper is streng-

thened to the classical stochastic programming model. In this paper, the result of 
case (3) obtained by the complex method under the condition that the probabil-
ity information of the random variables is complete is shown in Table 3. 

The experimental result shows that the program ends after 385 iterations. The 
optimal solution and the optimal value of the example are: x = (−1.6394, 0.1992, 
−0.1810, −1.0080, 0.5954, −0.6059), 3 45.1761W = , respectively. At this time, 
the optimal value of case (3) is far less than that of case (1) and case (2), which 
also shows that when the probability distribution information of random va-
riables in the stochastic programming problem is complete, the better decision 
result can be obtained. The trend chart of the optimal value iteration in case (3) 
is shown in Figure 3. 

In order to illustrate the significance of stochastic programming model under 
uncertain probability distribution in reality, the paper brings the optimal solu-
tion of case (3) into the objective function of case (1), and the optimal value dif-
ference value between them is 64.3512 - 62.2188, that is 2.1324; similarly, the  
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Figure 2. Iterative figure of optimal value. 

 

 
Figure 3. Iterative figure of optimal value. 

 
Table 2. Iterative process of optimal solution. 

Iteration times w optimal solution x optimal value W 

1 (0, 0, 0, 0, 0, 0) 63.7740 

2 (0, 0, 0, 0, 0, 0) 63.7740 

… … … 

29 (0.1711, 0.3808, −0.1774, 0.7904, 0.3968, 0.2465) 63.5492 

30 (0.1711, 0.3808, −0.1774, 0.7904, 0.3968, 0.2465) 63.5492 

31 (−1.3699, 1.2283, −0.2804, 0.6253, −0.0063, −1.1811) 60.6809 

… … … 

431 (−2.0086, 0.6482, −0.4208, −0.7191, 0.9701, −0.2265) 56.1144 

431 (−2.0086, 0.6482, −0.4208, −0.7191, 0.9701, −0.2265) 56.1144 
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Table 3. Iterative process of optimal solution. 

Iteration times w optimal solution x optimal value W 

1 (0, 0, 0, 0, 0, 0) 49.6901 

2 (0, 0, 0, 0, 0, 0) 49.6901 

… … … 

31 (−0.5435, 0.3253, −0.5615, −0.0954, 1.3423, −0.8559) 47.7653 

32 (−1.6089, 0.8900, −0.8656, −0.1203, 0.1785, −0.4645) 47.6223 

33 (−2.1276, 0.3484, 0.2670, 0.0070, 1.2468, −0.6278) 47.3861 

… … … 

384 (−1.6394, 0.1992, −0.1810, −1.0080, 0.5954, −0.6059) 45.1761 

385 (−1.6394, 0.1992, −0.1810, −1.0080, 0.5954, −0.6059) 45.1761 

 
optimal solution of case (3) is brought into case (2), and the optimal value dif-
ference value between them is 57.1422 - 56.1144, that is 1.0278. It can be seen 
that the difference values 2.1324 and 1.0278 are the loss value caused by the in-
accuracy of the probability distribution information of the random variables 
when using the classical stochastic programming model. This also fully shows 
the significance of the stochastic programming model based on the maximum 
minimum expectation criterion under the uncertainty probability distribution in 
the actual problem. The model can effectively reduce the loss caused by deci-
sion-making in the face of the stochastic programming problem with incomplete 
information of the probability distribution of random variables. 

5. Conclusion 

Under the guidance of linear partial information theory, the stochastic pro-
gramming model with uncertain probability distribution is established based on 
the maximum minimum expectation criterion. According to the nondifferentia-
bility of the model, the paper designs a solution method based on the complex 
method. Finally, the solution algorithm is used to solve several specific examples, 
which show the value of the model in practical problems and the effectiveness of 
the designed solution algorithm. 
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