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Abstract 
In this paper, a modified Polak-Ribière-Polyak conjugate gradient projection 
method is proposed for solving large scale nonlinear convex constrained 
monotone equations based on the projection method of Solodov and Svaiter. 
The obtained method has low-complexity property and converges globally. 
Furthermore, this method has also been extended to solve the sparse signal 
reconstruction in compressive sensing. Numerical experiments illustrate the 
efficiency of the given method and show that such non-monotone method is 
suitable for some large scale problems. 
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1. Introduction 

This paper is dedicated to solving the following nonlinear convex constrained 
monotone equations: 

( ) 0, ,F x x= ∈Ω                        (1) 

where : n nF R R→  is a continuous nonlinear mapping and the feasible region 
nRΩ ⊂  is a nonempty closed convex set, e.g. an n-dimensional box, namely, 

:nx R l x uΩ = ∈ ≤ ≤ . Monotone means that 

( ) ( ) , 0, , ,nF x F y x y x y R− − ≥ ∀ ∈                (2) 

where the ,⋅ ⋅  denotes the inner product of vectors. The problems (1) emerges 
in many fields such as economic equilibrium problems [1], chemical equilibrium 
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systems [2] and the power flow equations [3]. Based on the work of Solodov and 
Svaiter [4], Wang et al. [5] proposed a projection type method to solve Equation 
(1). The obtained method in [5] possesses global convergence property without 
any regularity assumptions. Nevertheless the method needs to solve a linear eq-
uation at each iteration. To avoid solving the linear equation and improving the 
effectiveness, some projected conjugate gradient methods [6] [7] [8] [9] are stu-
died based on the projection technique of Solodov and Svaiter [4]. The numeri-
cal results gained in [6] [7] [8] [9] indicate that the projected conjugate gradient 
type methods for solving problem (1) are indeed efficient and promising. In this 
paper, by combining the well-known Polak-Ribière-Polyak [10] [11] method 
with the projection technique of Solodov and Svaiter [4], a conjugate gradient 
projected method with fast convergent property is proposed for the nonlinear 
monotone equations with convex constraints. Under some mild conditions, the 
global convergent results are established for the given method. The obtained 
method possesses the following three beneficial properties: 1) The search direc-
tion satisfies the sufficient descent condition, 2) The global convergence is inde-
pendent of any merit function, and 3) It is derivative-free method and is effec-
tive for large scale nonlinear convex constrained monotone equations (with a 
maximum dimension of 100,000). Furthermore, the obtained method is ex-
tended to solve the 1l -norm problem by reformulating it as non-smooth mo-
notone equations. 

In Section 2, the modified PRP-type conjugate gradient projected method is 
proposed, and some preliminary properties are studied. The global convergence 
results are established in Section 3. The numerical experiments, and the applica-
tions of the obtained method for 1l -norm regularized compressive sensing 
problems are discussed in Section 4. Finally, we have a conclusion section. 

2. The Proposed Method and Corresponding Algorithm  

We firstly introduce the definition of the projection operator [ ]PΩ ⋅  which is 
defined as the mapping from nR  to Ω , 

[ ] { }arg min | , ,nP x y x y x RΩ = − ∈Ω ∀ ∈  

where ⋅  denotes the Euclidean norm of vectors, Ω  is a nonempty closed 
convex subset of nR . 

The projection operator is non-expansive, namely, for any , nx y R∈ , the fol-
lowing condition holds 

[ ] [ ] .P y P x x yΩ Ω− ≤ −                     (3) 

Let’s review the Polak-Ribière-Polyak [10] [11] conjugate gradient method 
briefly. The PRP method is firstly designed for solving the unconstrained opti-
mization problem: 

( ){ }min | ,nf x x R∈                        (4) 
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where : nf R R→  is continuously differentiable. It generates the iteration se-
quence { }kx  in the form 

1 ,k k k kx x dα+ = +                       (5) 

where kx  is the current iteration point, 0kα >  is a step-length, and kd  is 
the search direction given by 

1 1, if 0,
, if 0,

PRP
k k k

k
k

g d k
d

g k
β − −− + >= 

− =
               (6) 

where 
T

1
1 2

1

PRP k k
k

k

g y
g

β −
−

−

= , 1 1k k ky g g− −= − . 

Combining the projected technique of Solodov and Svaiter [4] with the PRP 
method formed by Equation (5) and Equation (6), the following modified PRP 
formula is defined given in this paper 

{ }
T T

1 1 1 1
2T

1 1 1 1 1

, if 0
max 2 , ,

, if 0,

k k k k k k
k

k k k k kk

k

g y d d g y
g k

d y d y gd

g k

γ
− − − −

− − − − −

 −
− + >= 

− =

       (7) 

where 1 1k k ky g g− −= −  and 0γ >  is a constant. 
It is show be noted that the proposed direction formula Equation (7) reduces to 

PRP formula if the exact line search is used. Furthermore, the sufficient descent 
condition automatically holds for all k, since ( ) ( ) 2T

k k kd g x g x= − . There are 
some conjugate gradient methods with similar idea concerning Equation (7) have 
been studied in the papers [12]-[19]. 

The corresponding modified PRP conjugate gradient projection algorithm for 
solving problem (1) starts as follows. 

Algorithm 1: 
Step 0 Choose any initial point 0x ∈Ω , and select constants ( )0,1ρ ∈ , 

0γ > , 0σ > , 0ξ > , ( )0,1∈  and ( )0 0d F x= − . Let : 0k = . 
Step 1 If ( )kF x ≤  , stop. Otherwise compute search direction kd  by Eq-

uation (7) with kg  and 1kg −  replaced by kF  and 1kF − , respectively. 
Step 2 Let k k k kz x dα= + , where { }max | 0,1,i

k iα ξρ= =   such that 

( ) 2, .k k k k k kF x d d dα σα− + ≥                 (8) 

Step 3 If ( )kF z ≤  , stop and let 1k kx z+ = . Otherwise compute the next 
iteration by 

( )1 ,k k k kx P x F zβ+ Ω  = −                     (9) 

where 

( )
( ) 2

,k k k
k

k

F z x z

F z
β

−
=                    (10) 

Step 4 Let : 1k k= + , and go to Step 1. 
Remark 1: In the algorithm 1, the step size kα  given by Equation (8) satisfies 
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( ) , 0,k k kF z x z− >  

where k k k kz x dα= + , kd  is the search direction. Moreover, for any *x  such 
that ( )* 0F x = , 

( ) *, 0.k kF z x z− ≤  

comes from the monotonicity property of ( )F x . This means that the hyper-
plane 

( ){ }| , 0n
k k kH x R F z x z= ∈ − =  

strictly separates the current point kx  from the solution set of the problem. 
The above facts and Step 3 indicate that the next iteration 1kx +  is computed by 
projecting kx  onto the intersection of the feasible set Ω  with the halfspace 

kH . 

3. Convergence Analysis 

In this section, we are going to discuss the convergence property of the given 
method. Before that, there are some basic assumptions on problem (1) needs to 
been given. 

Assumption 1: The mapping F is Lipschitz continuous with constant 0L >  
in a set Ω , written ( )LipF ∈ Ω , for every ,x y∈Ω , 

( ) ( ) .F x F y L x y− ≤ −                     (11) 

Assumption 2: The solution set of the problem (1), denoted by S, is nonemp-
ty convex. 

For conjugate gradient method, the sufficient descent property is essential in 
the convergence analysis, the following lemma shows that the search direction 
{ }kd  generated by Algorithm 1 satisfies the sufficient descent condition inde-
pendent of line search. 

Lemma 1: Let the sequence { }kx  and { }kd  be generated by Algorithm 1. 
Then, for all 0k ≥ , 

( ) ( ) 2T ,k k kF x d F x= −                     (12) 

and 

( )11 .k kd F x
γ

 
≤ + 
 

                     (13) 

Proof: For 0k = , Equation (12) and Equation (13) follows from the direct 
application of ( )0 0d g x= − . For 1k ≥ , using Equation (7), the definition of the 
search direction 1kd + , it follows that 

{ }

T
T T

2 2T 1 1
1 1 1 1 12T

 ,
max 2 , ,

k k k k k k
k k k k k

k k k k k

F y d d F y
d F F F F

d y d y Fγ
+ +

+ + + + +

 
− = − + = − 

  

 

similarly, 
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{ }

{ }

T T
1 1

1 1 2T

1 1
1 2T

1

max 2 , ,

max 2 , ,

11 ,

k k k k k k
k k

k k k k k

k k k k k k
k

k k k k k

k

F y d d F y
d F

d y d y F

F y d d F y
F

d y d y F

F

γ

γ

γ

+ +
+ +

+ +
+

+

−
= − +

+
≤ +

 
≤ + 
 

 

where the last inequality follows from the fact 

{ }2max 2 , 2 .k k k k kd y F d yγ γ≥  

In the remaining part of this paper, we assume that 0kF ≠  for all 0k∀ ≥ , 
otherwise, the solution of the problem (1) has been found. 

Lemma2: Let the sequence { }kx  and { }kz  be generated by Algorithm 1. 
Suppose that the Assumption 1 holds. Then there exists a positive number kα  
satisfying Equation (8) for all 0k ≥ . 

Proof: The line search ensure that if kα ξ≠ , then 1
k kα ρ α−′ =  does not sa-

tisfy Equation (8), namely, 

( ) 2, ,k k k kF z d dσα′ ′− <  

where k k k kz x dα′ ′= + . From Equation (12) and Assumption 1 we have 

( ) ( ) ( )
( )

2

2 2 21

, , ,k k k k k k k k

k k k k k k

F F d F z F x d F z d

L d d L dα σα ρ α σ−

′ ′= − = − −

′ ′≤ + ≤ +
 

which means that 
2

2min , .k
k

k

F
L d
ρα ξ
σ

  ≥  
+  

                   (14) 

The above result Equation (14) shows that the line search procedure Equation 
(8) always terminates in a finite number of steps. 

Lemma3: Let sequences { }kx  and { }kz  be generated by Algorithm 1. Sup-
pose that Assumptions 1 and 2 hold. Then both { }kx  and { }kz  are bounded. 
Moreover, we have 

lim 0,k kk
x z

→∞
− =                        (15) 

and 

1lim 0.k kk
x x+→∞

− =                       (16) 

Particularly, Equation (15) implies that 

lim 0.k kk
dα

→∞
=                        (17) 

Proof: *x S∈  denotes any arbitrary solution of the problem (1). The mono-
tonicity of F and the line search Equation (8) deduce 
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( ) ( ) 2* 2, , 0.k k k k k k kF z x x F z x z dσα− ≥ − ≥ ≥          (18) 

Equation (3), Equation (9) and Equation (18) imply  

( ) ( )

( ) ( )

( ) ( )

( )
( )

( )

22 2* * *
1

2 2* * 2

2 2* 2

2
2*

2

42
2*

2

2 ,

2 ,

,

.

k k k k k k k

k k k k k k

k k k k k k k

k k k
k

k

k k
k

k

x x P x F z x x F z x

x x F z x x F z

x x F z x z F z

F z x z
x x

F z

x z
x x

F z

β β

β β

β β

σ

+ Ω  − = − − ≤ − − 

= − − − +

≤ − − − +

−
≤ − −

−
≤ − −

    (19) 

Since the sequence { }*
kx x−  is decreasing and convergent, the sequence 

{ }kx  is bounded. Equation (19) shows that * *
0kx x x x− ≤ −  for all k. Then, 

by Assumption 1, we have 

( ) ( ) ( )* * *
0 .k k kF x F x F x L x x L x x= − ≤ − ≤ −       (20) 

Let *
1 0M L x x= − , 

( ) 1, 0.kF x M k≤ ∀ ≥                    (21) 

From the Cauchy-Schwarz inequality, the line search Equation (8), the mo-
notonicity of F and Equation (18), it follows that 

( ) ( ) ( )20 , , .k k k k k k k k k k kx z F z x z F x x z F x x zσ< − ≤ − ≤ − ≤ −  

( ) 1,k k kx z F x Mσ − ≤ ≤                     (22) 

which shows that the sequence { }kz  is bounded. Furthermore, the sequence 

{ }*
kz x−  is also bounded, there exists 2 0M > , 0 0k ≥ , such that 

*
2 0, .kz x M k k− ≤ ∀ ≥                      (23) 

Based on Equation (23) and Assumption 1 it follows 

( ) ( ) ( )* *
2 .k k kF z F z F x L z x LM= − ≤ − ≤             (24) 

Substituting the above relationship into Equation (19), it deduces 

( ) ( )2 2 24 * *
12 0 0

2

,k k k kk kx z x x x x
LM
σ ∞ ∞

+= =
− ≤ − − − < ∞∑ ∑       (25) 

which implies 

lim 0.k kk
x z

→∞
− =  

From the definition of kz  and Equation (15), it holds that 

lim 0.k kk
dα

→∞
=  

Combining the definition of kβ , Equation (3), and the Cauchy-Schwarz in-
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equality, we have 

( )
( )

( )
( )

1

,

k k k k k k

k k k k

k k k

k

k k

x x P x F z x

x F z x

F z x z

F z

x z

β

β

+ Ω  − = − − 

≤ − −

−
=

≤ −

 

which together with Equation (15), proves Equation (16). 
Theorem1: Let sequences { }kx  and { }kz  be generated by Algorithm 1. 

Suppose that Assumptions 1 and 2 hold. Then 

lim inf 0.kk
F

→∞
=                        (26) 

Proof: We prove this Theorem by contradiction. Assume that Equation (26) 
does not hold, namely, there exists 0ε >  such that 

, 0.kF kε≥ ∀ ≥                       (27) 

From Equation (12) and Equation (27), 
2 2

2 2

2

2

2 ,

2 ,

,

k k k k

k k k k k k

k k k

k

d d F F

d F d F F F

d F F

F

= + −

= + − + +

≥ − −

=

 

which implies 

, 0.kd kε≥ ∀ ≥                        (28) 

On the other hand, Equation (13), Equation (21) and the definition of kd  
deduce 

1
1 11 1 , 0.k kd F M k
γ γ

   
≤ + ≤ + ∀ ≥   
   

 

Finally, from Equation (14), Equation (27) and Equation (28), 

( )( )

2

2

2

1
1

min ,

min ,
1

k
k k k

k

F
d d

L d

L M

ρα ξ
σ

ρεξε
σ γ −

  ≥  
+  

  ≥  
+ +  

 

which contradicts with Equation (17). Thus, Equation (26) holds. 

4. Numerical Experiments 

The numerical performances of the proposed Algorithm 1 for large scale non-
linear convex constrained monotone equations with various dimensions and 
different initial points are studied in this section. Furthermore, the given Al-
gorithm 1 is extended to solve the 1l -norm regularized problems which de-
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code a sparse signal in compressive sensing. The algorithm is coded in 
MATLAB R2015a and run on a PC with Core i5 CPU and 4 GB memory. 

4.1. Experiments on Nonlinear Convex Constrained Monotone  
Equations 

The testing problems are listed as follows. 
Problem 1. (Wang et al. [5]) The elements of ( )F x  are given by 

( ) e 1, 1,2,3, , .ix
iF x i n= − =   

and nR+Ω = . 
Problem 2. The example is taken from [7]. The elements of ( )F x  are given 

by 

( ) ( )2 sin , 1,2,3, , .i i iF x x x i n= − =   

and nR+Ω = . 
Problem 3. The example is taken from [9]. 

( )

( )

( )

1 2

1 1

1

cos
1

1 1

cos
1

cos
1

e ,

e , 2,3, , 1,

e .

i i i

n n

x x
n

x x x
n

i i

x x
n

n n

g x x

g x x i n

g x x

− +

−

+ 
 + 

+ + 
 + 

+ 
 + 

= −

= − = −

= −

  

and nR+Ω = . 
Problem 4. The example is taken from [20]. 

( ) ( )sin 1 , 1,2,3, , .i i iF x x x i n= − − =   

and { }1| , 1, 1, 2, ,nn
i iix R x n x i n

=
Ω = ∈ ≤ ≥ − =∑  . 

For convenience, MPRP denotes the proposed Algorithm 1. We compare the 
MPRP method with CGD method [8] on problems 1-4. For both methods, set 

1ξ = , 0.4ρ = , 410σ −= . In order to evaluate the efficiency and the robustness 
of both methods, we test the Problems 1-4 with various dimensions  

10000,50000,100000n =  and different initial points:
T

1
11,0.5, ,x
n

 =  
 

 ,  

( )2
1 ones ,1x n
n

= , ( )3 ones ,1x n= , ( )4 2ones ,1x n= , ( )5 rand ,1x n= , where 

( )ones ,1n  returns a n-by-1 array of ones and ( )rand ,1n  returns a n-by-1 array 

of rand values in MATLAB. 

Numerical results are shown in Tables 1-4, in which Init (Dim), NI and NF 
denote initial points (dimension), the number of iterations and the number of 
function evaluations respectively. ( )F x  is the final Euclidean norm of the 
function values, and CPU-time in seconds. 

Tables 1-4 indicate that the dimension of the problem has little effect on the 
number of iterations of the algorithm. However, the computing time is relatively 
large in high dimension cases. Moreover, we can see from the results of Tables 
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1-4 that Algorithm 1 is more competitive than CGD algorithm as Algorithm 1 
can get the solution of all the test data at a smaller number of iterations and 
smaller CPU time. So the results of Tables 1-4 show that our method is very ef-
ficient. 

The numerical performances of the both methods are also evaluated by using 
the performance profile tool of tool of Dolan and Moré [21]. Figure 1 shows the 
performance of two methods, it is obviously that the proposed MPRP method is 
more efficient and robust than CGD method. 

 
Table 1. Numerical results for MPRP/CGD on problem 1. 

 MPRP  CGD  

Init (Dim) NI/ NF/||f(x)|| Time NI/ NF/||f(x)|| Time 

x1(10000) 
x2(10000) 
x3(10000) 
x4(10000) 
x5(10000) 

11/25/3.84830e-006 
5/11/9.76367e-006 

11/24/2.98167e-006 
11/27/6.30895e-006 
14/31/8.16510e-006 

0.13 
0.08 
0.15 
0.14 
0.15 

16/185/5.84301e-006 
5/11/9.59824e-006 

10/21/4.63815e-006 
12/28/5.36760e-006 
30/61/9.55151e-006 

0.50 
0.09 
0.13 
0.16 
0.28 

x1(50000) 
x2(50000) 
x3(50000) 
x4(50000) 
x5(50000) 

11/25/3.84897e-006 
5/11/4.36715e-006 

11/24/6.66722e-006 
12/29/3.52681e-006 
15/33/5.67816e-006 

0.42 
0.21 
0.45 
0.56 
0.63 

19/261/5.42831e-006 
5/11/4.29309e-006 

11/23/2.07424e-006 
13/30/2.40047e-006 
32/65/7.69276e-006 

2.92 
0.25 
0.49 
0.62 
1.26 

x1(100000) 
x2(100000) 
x3(100000) 
x4(100000) 
x5(100000) 

11/25/3.84906e-006 
5/11/3.08810e-006 

11/24/9.42888e-006 
12/29/4.98767e-006 
15/33/8.06362e-006 

0.78 
0.39 
0.86 
1.03 
1.22 

16/192/7.19276e-006 
5/11/3.03573e-006 

11/23/2.93342e-006 
13/30/3.39477e-006 
33/67/6.52318e-006 

3.26 
0.47 
0.94 
1.21 
2.61 

 
Table 2. Numerical results for MPRP/CGD on problem 2. 

 MPRP  CGD  

Init (Dim) NI/ NF/||f(x)|| Time NI/ NF/||f(x)|| Time 

x1(10000) 
x2(10000) 
x3(10000) 
x4(10000) 
x5(10000) 

10/21/5.34065e-006 
5/11/3.20000e-006 

10/21/3.73273e-006 
9/20/5.61741e-006 

13/27/3.34488e-006 

0.09 
0.07 
0.09 
0.11 
0.11 

17/141/7.20891e-006 
5/11/9.60000e-006 

11/23/4.43164e-006 
11/23/4.83649e-006 
31/63/9.40955e-006 

0.25 
0.07 
0.11 
0.10 
0.21 

x1(50000) 
x2(50000) 
x3(50000) 
x4(50000) 
x5(50000) 

10/21/5.34094e-006 
4/9/7.15542e-006 

10/21/8.34663e-006 
10/22/2.51218e-006 
13/27/7.50144e-006 

0.21 
0.12 
0.21 
0.22 
0.27 

16/125/9.89342e-006 
5/11/4.29325e-006 

11/23/9.90944e-006 
12/25/2.16294e-006 
19/67/3.81389e-006 

0.61 
0.14 
0.24 
0.28 
0.47 

x1(100000) 
x2(100000) 
x3(100000) 
x4(100000) 
x5(100000) 

10/21/5.34097e-006 
4/9/5.05964e-006 

11/23/2.36078e-006 
10/22/3.55276e-006 
14/29/2.96451e-006 

0.12 
0.06 
0.14 
0.13 
0.18 

16/125/8.77333e-006 
5/11/3.03579e-006 

12/25/2.80281e-006 
12/25/3.05886e-006 
19/95/7.73838e-006 

1.17 
0.22 
0.51 
0.48 
1.03 
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Table 3. Numerical results for MPRP/CGD on problem 3. 

 MPRP  CGD  

Init (Dim) NI/ NF/||f(x)|| Time NI/ NF/||f(x)|| Time 

x1(10000) 
x2(10000) 
x3(10000) 
x4(10000) 
x5(10000) 

13/27/4.52180e-006 
13/27/4.52370e-006 
13/27/2.86185e-006 
12/25/4.29188e-006 
13/27/4.47547e-006 

0.24 
0.25 
0.23 
0.23 
0.24 

13/62/5.75833e-006 
13/70/3.46424e-006 
20/41/4.30230e-006 
12/46/6.14493e-007 
14/62/7.25107e-006 

0.40 
0.43 
0.34 
0.32 
0.42 

x1(50000) 
x2(50000) 
x3(50000) 
x4(50000) 
x5(50000) 

13/27/7.25565e-006 
13/27/7.25860e-006 
13/27/4.59974e-006 
12/25/6.91496e-006 
13/27/8.32203e-006 

1.00 
0.98 
0.99 
0.93 
1.00 

13/54/8.81290e-006 
12/39/9.12282e-006 
13/43/2.72069e-006 
13/49/6.63736e-006 
13/64/4.25399e-006 

1.61 
1.23 
1.36 
1.52 
1.82 

x1(100000) 
x2(100000) 
x3(100000) 
x4(100000) 
x5(100000) 

13/27/9.92424e-006 
14/29/2.85975e-006 
13/27/6.47855e-006 
12/25/9.70603e-006 
14/29/2.82988e-006 

1.91 
2.06 
1.96 
1.82 
2.11 

13/38/3.45225e-006 
13/34/1.70785e-006 
13/41/8.71814e-006 
13/51/2.66088e-006 
14/46/6.28570e-006 

2.42 
2.30 
2.60 
2.99 
2.80 

 
Table 4. Numerical results for MPRP/CGD on problem 4. 

 MPRP  CGD  

Init (Dim) NI/ NF/||f(x)|| Time NI/ NF/||f(x)|| Time 

x1(10000) 
x2(10000) 
x3(10000) 
x4(10000) 
x5(10000) 

16/49/3.81881e-006 
11/34/4.33069e-006 
11/34/2.49346e-006 
11/32/8.70634e-006 
13/40/3.26840e-006 

0.17 
0.11 
0.11 
0.10 
0.12 

17/83/4.26081e-006 
18/54/5.36860e-006 
19/56/7.93477e-006 
20/58/9.36855e-006 
31/91/6.47378e-006 

0.21 
0.17 
0.17 
0.17 
0.23 

x1(50000) 
x2(50000) 
x3(50000) 
x4(50000) 
x5(50000) 

16/49/9.28932e-006 
11/34/9.68593e-006 
11/34/5.57554e-006 
12/35/4.06815e-006 
13/40/7.33466e-006 

0.37 
0.26 
0.25 
0.28 
0.36 

18/66/4.06062e-006 
19/57/4.81014e-006 
20/59/7.11258e-006 
21/61/8.39779e-006 

43/127/9.90609e-006 

0.52 
0.49 
0.50 
0.51 
0.95 

x1(100000) 
x2(100000) 
x3(100000) 
x4(100000) 
x5(100000) 

17/52/4.28438e-006 
12/37/2.86250e-006 
11/34/7.88501e-006 
12/35/5.75324e-006 
14/43/2.89653e-006 

0.25 
0.18 
0.18 
0.17 
0.20 

19/59/1.32958e-006 
19/57/6.80218e-006 
21/62/4.03228e-006 
22/64/4.76089e-006 
18/52/7.84045e-006 

0.95 
0.98 
0.98 
1.09 
0.89 

 

 
Figure 1. Performance profiles for two methods MPRP and CGD, where the left and the 
right figures are represented as the number of function evaluations and the CPU time, 
respectively. 
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4.2. Experiments on the l1-Norm Regularization Problem 

The problem of the combination of 2l  and 1l  norms in the cost function often 
emerges for the signal reconstruction, i.e.: 

2

2 1

1min ,
2

y Ax xλ− +                     (28) 

where 2.  is the Euclidean norm, and 

1
1

m

j
j

x x
=

= ∑  

is the 1l  norm, A is a system matrix, my R∈  is the observed data, nx R∈  is 
the signal to be reconstructed, and λ  is a positive regularization parameter. 

The optimization problems of the form Equation (28) appear in several signal 
reconstruction problems, such as sparse signal de-blurring [22], medical image 
reconstructions [23], compressed sensing [24], and super-resolution [25]. Itera-
tive line search method or fixed point iteration schemes are commonly used to 
solve problem (28). By using the technique proposed by Figueiredo et al. [26], we 
can reformulate problem (28) as a convex quadratic program problem. Let 
x u v= − , 0u ≥ , 0v ≥ , where , nu v R∈ , ( )max 0,i iu x=  for all 1, ,i n=   
and ( )min 0,i iv x= −  for all 1, ,i n=  . The 1l  norm can be formulated as 

T T
1 n nx e u e v= + , where ( )T1,1, ,ne n=  . The problem (28) is expressed as the 

bound-constrained quadratic program: 

( ) 2 T T
2,

1min , s.t. 0, 0.
2 n nu v

y A u v e u e v u vλ λ− − + + ≥ ≥        (29) 

Furthermore, the problem (29) can be rewritten as a standard convex qua-
dratic program problem: 

T T1min , s.t. 0,
2z

z Bz c z z+ ≥                    (30) 

where 

u
z

v
 

=  
 

, 2n

u
c e

v
λ

 
= +  

 
, Tb A y= , 

T T

T T

A A A A
B

A A A A
 −

=  
− 

, 

B is a semi-definite positive matrix. Recently, the problem (30) was reformu-
lated as a linear variable inequality (LVI) problem by Xiao et al. [8] [27]. They 
pointed out that this LVI problem is equivalent to a linear complementary prob-
lem, and z is a solution of the linear complementary problem if and only if it is a 
solution of the following nonlinear monotone equations: 

( ) { }min , 0,F z z Bz c= + =                    (31) 

where ( )F z  is Lipschitz continuous. This result indicates that problem (28) 
can be solved by MPRP projection method. 

In this part of numerical experiments, a compressive sensing scenario is consi-
dered, which aims to reconstruct a length-n sparse signal from significantly fewer 
m observations, where m n . The quality of restoration is measured by the 
mean of squared error (MSE) to the original signal x , that is 
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*1MSE ,x x
n

= −  

where *x  is the restored signal. In practice, 122n =  and 102m = , and the 
original contains 26 randomly non-zero elements. A is the Gaussian matrix gen-
erated by Matlab’s code ( )rand ,m n , the measurement y contains noise, 

,y Ax ω= +  

where ω  is the Gaussian noise distributed as ( )40,10N − . The merit function 
is 

( ) 2

2 1

1
2

f x y Ax xτ= − + , 

where τ  is forced to decrease as the measure in. The experiment starts at the 
measurement image, i.e. T

0x A y= , and terminates when the relative change of 
the iteration satisfies: 

1 5

1

Tol 10 ,k k

k

f f
f

− −

−

−
= <  

where kf  is the function value at kx . 
We compare the proposed MPRP method with CGD method for this problem. 

In both methods, the parameters are taken as 10ξ = , 410σ −=  and 0.5ρ = . 
The same initial point and continuation technique on parameter τ  are used in 
both methods. 

Figure 2 shows simulation results of MPRP and CGD for a signal sparse re-
construction. As we can see in Figure 2, the original sparse signal is restored 
highly exactly both by MPRP and CGD. Figure 3 provides a series of compari-
sons among the objective function values and relative error as the iteration num-
bers and computing time increase. As we can see in Figure 3, the descent rates of 
MSE and objective function values of MPRP method are faster. The experiments 
are repeated for 15 random different noise samples in Table 5. We report the  
 

 
Figure 2. From top to bottom: the original signal, the measurement, and 
the recovery signals by two methods MPRP and CGD, respectively. 

https://doi.org/10.4236/jamp.2020.86077


Y. P. Hu, Y. J. Wang 
 

 

DOI: 10.4236/jamp.2020.86077 995 Journal of Applied Mathematics and Physics 
 

 
Figure 3. Comparison results of MPRP and CGD methods. From left to right: the changed trends of 
MSE and the changed trends of the objective function values goes along with the number of iterations 
and CPU time in seconds, respectively.  

 
Table 5. The experiment results for MPRP/CGD on 1l -norm regularization problem. 

MSE Niter CPU(s) MSE Niter CPU(s) 

9.152e-006 119 2.69 2.278e-005 227 6.73 

1.562e-005 120 3.23 6.210e-005 172 4.72 

6.780e-006 127 3.47 2.520e-005 209 5.83 

8.236e-006 124 3.05 3.367e-005 236 7.48 

1.446e-005 120 3.09 8.207e-005 167 4.64 

9.091e-006 110 2.25 4.870e-005 221 6.09 

8.346e-006 122 3.31 5.382e-005 174 5.47 

8.669e-006 117 3.23 4.233e-005 216 5.91 

6.977e-006 123 3.33 3.839e-005 210 5.78 

8.973e-006 122 3.70 3.789e-005 225 6.88 

1.050e-005 119 3.30 5.531e-005 208 5.86 

1.204e-005 128 2.63 5.370e-005 204 5.27 

6.265e-006 111 3.52 1.873e-005 202 6.66 

8.977e-006 129 3.70 3.035e-005 222 6.28 

7.975e-006 126 3.47 6.946e-005 172 4.78 

https://doi.org/10.4236/jamp.2020.86077


Y. P. Hu, Y. J. Wang 
 

 

DOI: 10.4236/jamp.2020.86077 996 Journal of Applied Mathematics and Physics 
 

number of iterations (Niter) and the CPU time (in second) required for the whole 
testing process. From Table 5, we can see that MPRP method is better than CGD 
method. For example, the new method’s iteration number and CPU time are 
much less than those of the CGD method. To summarize, these experiment re-
sults show that the proposed algorithm MPRP can work well in an efficient man-
ner. 

5. Conclusion 

In this paper, we proposed a conjugate gradient projection algorithm for solv-
ing large-scale nonlinear convex constrained monotone equations based on the 
well-known Polak-Ribière-Polyak conjugate gradient method which is one of 
the most effective conjugate gradient methods to solve the unconstrained op-
timization problems. The algorithm combines CG technique with projection 
scheme and is a derivative-free method, so it can be applied to solve large-scale 
non-smooth equations for its low storage requirement. Under some technical 
conditions, we have established the global convergence. Another contribution of 
this paper is to use the given method to solve the 1l -norm regularized problems 
in compressive sensing. 
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