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Abstract 
Avian Influenza, with a high mortality rate in human population, is consi-
dered to be one of the most significant potential threats to human beings. 
Based on a recent avian influenza SI-SIR model with logistic growth for birds, 
we propose a stochastic model with generalized incidence rate. For the sto-
chastic avian-only system, sufficient conditions for the extinction of infected 
birds are established, and the existence of a unique ergodic stationary distri-
bution is also obtained. For the stochastic avian-human system, a threshold 
number 0

sR  is established, and hence the extinction of disease is investi-
gated. From the viewpoint of biology, the noise intensity in the infected birds 
plays a key role in the evolutionary dynamics. Moreover, we also analyze the 
asymptotic behavior around the endemic equilibrium of the corresponding 
deterministic model. 
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1. Introduction 

Avian Influenza, an acute infectious disease caused by influenza A virus, is a 
complicated disease that can not only infect poultry but also infect humans who 
have direct exposure to infected birds or contaminated environments. Because 
humans generally lack immunity to avian influenza virus, the disease has a high 
mortality rate. For instance, an outbreak of the avian influenza AH7N9 in China 
caused 134 cases with 45 deaths, from March 31 to August 31, 2013 [1]. Accord-
ing to the data reported by the World Health Organization (WHO), 860 human 
infections have been reported worldwide since 2003, with about half of those 
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people dying [2]. Hence, the WHO considers the disease to be one of the most 
significant potential threats to human beings. To better analyze the spread of 
avian influenza, an increasing amount of research has been studied from the 
viewpoint of epidemiology and biomathematics. Alexander et al. [3] introduced 
the pathogenicity of four avian influenza viruses for chickens, turkeys and ducks. 
Grais et al. [4] and Ferguson et al. [5] took humans as the core and proposed 
some strategies to retard the spread of avian influenza in the population. Me-
nach [6] regarded poultry farm as a unit to establish a model of infectious dis-
ease and focused on the transmission to humans. For more mathematical epi-
demic models on avian influenza, one can refer to [7] [8] [9] [10] and the refer-
ences therein.  

Recently, under the assumption that avian influenza virus does not spread 
from person to person and mutate, Liu et al. [1] proposed the following avian 
influenza bird-to-human transmission model 
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where ( )aS t , ( )aI t  denote the number of the susceptible and infective avian 
population (i.e. birds) at time t, respectively, aβ  is the transmission rate from 
infective birds to susceptible birds, aµ  is the natural death rate of the birds, aδ  
is the disease-related death rate of the infected birds; ( )hS t , ( )hI t  and ( )hR t  
denote the number of the susceptible human, infective human and recovered 
human at time t, respectively, hβ  is the transmission rate from the infective 
birds to the susceptible human, hµ  is the natural death rate of the human pop-
ulation, hδ  is the disease-related death rate of the infected human; γ  is the 
recovery rate of the infective human. The function ( )ag S  describes the net 
growth rate of the avian population, and two cases are studied in the reference 
[1]. In the present article, we pick the case that the avian population is subject to  

the logistic growth, then ( ) 1 a
a a a

a

S
g S r S

k
 

= − 
 

, where ar  is the intrinsic  

growth rate, ak  is the maximal carrying capacity of the avian population. 
The incidence rate of epidemic model plays a quite important role in describ-

ing the evolution of infectious disease, and system (1) chose bilinear ones, that is, 

a a aS Iβ  and h h aS Iβ . However, bilinear incidence rate becomes unrealistic 
when the number of the infective individual is getting larger [11]. Hence a large 
amount of research selects nonlinear incidence rates, such as saturated incidence  
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rate of the form 
1

SI
I

β
α+

 [11], and incidence rate with media coverage effect of  

the form e mI SIβ −  [12]. In practice, the incidence function is frequently diffi-
cult to obtain because the details of disease transmission vary in different condi-
tions. Therefore choosing generalized incidence rates may allow epidemic mod-
els to be more flexible in handling realistic data. For model (1), we replace 

a a aS Iβ  with ( )a a aS f Iβ  to denote the generalized incidence rate between 
susceptible and infective birds, and replace h h aS Iβ  with ( )h h aS G Iβ  to denote 
the generalized incidence rate between susceptible human and infective birds, 
then the model becomes 
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                (2) 

where the logistic function ( ) 1 a
a a a

a

S
g S r S

k
 

= − 
 

 is plugged in, and the recovered  

population is removed since it has no effect on the dynamics of susceptible pop-
ulation and infective population. Furthermore, the transmission of influenza is 
disturbed by various noises in the environment, such as the unpredictable con-
tact with infected ones, population mobility and meteorological factors. It is 
shown that environment fluctuations have a important effect on the develop-
ment of infectious disease [13] [14] [15]. For instance, Meng et al. [14] showed 
that a large stochastic disturbance can cause infectious diseases to go to extinc-
tion, and Li et al. [15] also found that the average number of infected individuals 
always with the increase of noise intensity. 

These observations imply that stochastic disturbance is conductive to epi-
demic diseases control. Many researches choose white noise as an appropriate 
representation of environmental random fluctuations and study the effect of 
stochastic disturbance on the dynamics of epidemic models. Motivated by the 
approach in [16], we introduce Gaussian white noise which is directly propor-
tional to ( ) ( ) ( ), ,a a hS t I t S t  and ( )hI t , respectively, and finally arrive at the 
following stochastic model 
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  = − + +  
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  = − + + +  

        (3) 
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where ( ) , 1, 2,3, 4iB t i = , are independent standard Brownian motions with 
( )0 0iB = , and ( )0 1,2,3,4i iσ > =  denote the intensities of white noise. 

Moreover, let ( { }( )0
, , ,t t
F F

≥
Ω   be a complete probability space with a filtra-

tion { } 0t t
F

≥
 satisfying the usual conditions (i.e., it is increasing and right con-

tinuous while 0F  contains all  -null sets), then ( ) , 1, 2,3, 4iB t i =  are de-
fined on this complete probability space. We also introduce the notations:  

( ){ }1 2, , , 0, 1, 2, ,n
n n iR x x x x R x i n+ = = ∈ > = : , { }min ,a b a b∧ = , 

{ }max ,a b a b∨ = .
 

Throughout the paper, we further assume that 
(H1) ( ) ( ): , :f R R G R R+ + + +⋅ → ⋅ →  and ( ) ( )0 0, 0 0f G= = ,  

( ) ( )0 ,a a af I G I I< ≤  hold for all 0aI > ;
 

(H2) ( )h x  is Lipschitz on [ )0, ∞+ , namely, there exists a constant 0θ > , 
such that ( ) ( )1 2 1 2h x h x x xθ− ≤ −  for any [ )1 2, 0,x x ∈ +∞ , where  
( ) ( )h x f x x= ; 
(H3) ( ) ( )0 1, 0 1f G′ ′= = , where ( ) ( )0 , 0f G′ ′  denote the derivative of the 

function ( ) ( ),f x G x  at 0x = , respectively. 
Our generalized incidence rates can be applied to some specific forms that 

have been frequently used, such as 
(i) Linear type: ( ) ( ),a a a af I I G I I= = ; 

(ii) Saturated incidence rate: ( ) ( ) 2,
1 1

a a
a a

a a

I I
f I G I

I Iα α
= =

+ +
. 

The article is dedicated to investigating the dynamics of the stochastic avian 
influenza epidemic model (3). The rest of the paper is organized as follows. In 
the next section, the existence and uniqueness of positive solution is proved for 
system (3). In Section 3, we discuss the dynamics of the avian-only subsystem, 
and obtain the sufficient conditions for the extinction of the disease as well as 
the existence of an ergodic stationary distribution. In Section 4, the dynamics of 
the avian-human system are discussed, and the asymptotic behavior of system (3) 
around the unique endemic equilibrium of system (2) is also investigated. 

2. Dynamics of the Stochastic Avian-Only Subsystem 

Since , ,a a hS I S  and hI  in system (3) denote the number of individuals, they 
should be nonnegative from the viewpoint of biology. We first introduce some 
basic definitions that will be used in the reminder of the article. In general, let 
X(t) be a homogeneous Markov process in the d-dimension Euclidean space 
Rddescribed by the stochastic differential equation 

( ) ( ) ( ) ( )
1

d d d ,
k

r r
r

X t f X t X B tσ
=

= +∑                  (4) 

then the diffusion matrix is defined as follows 

( ) ( )( ) ( ) ( ) ( )
1

, .
k

i j
ij ij r r

r
A x a x a x x xσ σ

=

= = ∑  

Furthermore, the differential operator L is defined by 
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d d

i ij
i i ji i j

V x V x
LV x f x a x

x x x= =

∂ ∂
= +

∂ ∂ ∂∑ ∑  

where V(x) is an arbitrary twice continuously differential real-value function. 
To begin with, we present the following fundamental theorem which guaran-

tees the existence and uniqueness of positive solution for system (3). 
Theorem 2.1. For any initial value ( ) ( ) ( ) ( )( ) 40 , 0 , 0 , 0a a h hS I S I R+∈ , there is 

a unique positive solution ( ) ( ) ( ) ( )( ), , ,a a h hS t I t S t I t  of system (3) on 0t ≥  
and the solution will remain in 4

+R  with probability one, namely,  
( ) ( ) ( ) ( )( ) 4, , ,a a h hS t I t S t I t R+∈  for all 0t ≥  almost surely. 

The proof is similar to those of [17] and hence is omitted. 
Consider the stochastic avian-only subsystem as follows 

( ) ( ) ( )
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a a a a a a a
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a a a a a a a a
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   
= − − +        

 = − + +

        (5) 

It is obviously observed that the avian system is independent of the human 
system. Therefore in this section we will focus on the dynamics of the stochastic 
system (5), and our main goal is to discuss the extinction of disease and the ex-
istence of stationary distribution. 

The threshold parameter 0R  of the deterministic system with respect to (5) 
can be computed by application of the next-generation matrix approach as 

0 .a a

a a

k
R

β
µ δ

=
+

 

Motivated by the approach in [7], we introduce Gaussian white noise to 0R . 
Let 

0 2
2

.

2

s a a
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k
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β
σµ δ

=
+ +

 
Theorem 2.2. Let ( ) ( )( ),a aS t I t  be a solution of system (5) with any initial 

value ( ) ( )( ) 2
+0 , 0a aS I R∈ . If 0 1sR < , and 2

2 2 arσ <  then 
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a s

a at

I t
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t
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µ δ
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≤ + + − < 
 

, 

namely,
 ( )aI t  will tend to zero exponentially a.s. and the disease will tend to 

extinction with probability one.  
The proof is similar to those of [17] and hence is omitted. 
On the other hand, if we define 

( )
0

0 2
2

dˆ

2

a

a a

x x x
R

β π

σµ δ

∞

=
+ +

∫ , 

where ( )
22
11

22
2

e
aa

a

r xr

kx Qx σσπ
−− +

= , ( )0,x∈ ∞ , then we will arrive at the following 
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theorem which describes the extinction of the disease. 
Theorem 2.3. If 0

ˆ 1R < , then the solution ( ) ( )( ),a aS t I t  of system (5) satis-
fies 

( )lim 0 . .at
I t a s

→∞
=  

and the distribution of ( )aS t  converges weakly to the measure which has the 
density 

( )
22
11

22
2

e
aa

a

r xr

kx Qx σσπ
−− +

= , ( )0,x∈ ∞ , 

where Q is a constant such that ( )
0

d 1x xπ
∞

=∫ . 
Proof. Consider the following auxiliary logistic equation with random pertur-

bation 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1d d d , 0 0 0,a
a a

a

r
x t x t r x t t x t B t x S

k
σ

 
= − + = > 

 
     (6) 

set ( ) 1a
a

xb x r x
k

 
= − 

 
, ( ) 1x xσ σ= , ( )0,x∈ ∞ , then we can obtain 

( )
( )2 2 2

1 1

1d d ln .a a a
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b u r r r uu u u Q
u k kuσ σ σ

   
= − = − +   

   
∫ ∫  

Therefore, 
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e e e e .
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σ σ σσ
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= =  
It is clear that 
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( )1 2 22
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2 22d 2

120 0

1 e d e d ,
x aa

a
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kx Q x x
x

τ
τ

σ τ σσ

σ

−− +∞ ∞∫
= < ∞∫ ∫            (7) 

where 2
1 2

1

1 e QQ
σ

= . 

Consequently, the condition of Theorem 1.16 in [18] follows from (7). Thus 
system (6) has the ergodic property, and the invariant density is given by 

( )
22
11

22
2

e
aa

a

r xr

kx Qx σσπ
−− +

= , ( )0,x∈ ∞ , 

where Q is a constant such that ( )
0

d 1x xπ
∞

=∫ . From the ergodic theorem it 
follows that 

( ) ( )
0 0

1lim d d a.s.
t

x s s x x x
t

π
∞ ∞

→∞
=∫ ∫                  (8) 

Let x(t) be the solution of (6) with the initial value ( ) ( )0 0 0ax S= > , then the 
comparison theorem of stochastic differential equation [19] yields 

( ) ( ) a.s.aS t x t≤                         (9) 

On the other hand, according to (9), we get 
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( ) ( ) ( )
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∫

∫
      (10) 

Take the superior limit on both sides of (10), and note that 0
ˆ 1R < , then 
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∫

∫  

Which shows that ( )lim 0at
I t

→∞
=  a.s.. Hence for any small 0ε > , there exists 

a 0 0t >  and a set εΩ ⊂ Ω  Such that ( ) 1ε εΩ > −  and ( )a a a aS f I Sβ ε≤ , 
for 0t t>  and εω ∈Ω . Hereon, 

( ) ( ) ( )
2

1 1 1 11 d d d d d ,a a a
a a a a a a

a a

S r S
r S S t B t S t r S t B t

k k
ε σ σ

    
− − + ≤ ≤ − +    

     
 

it follows that the distribution of the process ( )aS t  converges weakly to the 
measure with the density π . This completes the proof. 

We now concentrate on verifying the existence of an ergodic stationary dis-
tribution for system (5). The following lemma is fundamental in the paper. 

Lemma 2.4. ([20]) The Markov process ( )X t , the solution of system (4), has 
a unique ergodic stationary distribution ( )π ⋅ , if there exists a bounded domain 

lD R⊂  with regular boundary Γ and (B.1) there is a positive number M such  

that ( ) 2

, 1

l

ij i j
i j

a x Mξ ξ ξ
=

≥∑ , x D= , lRξ ∈ , (B.2) there exists a nonnegative  

2C -function V such that LV is negative for any \lR D . Then  

( )( ) ( ) ( )
0

1lim d d 1,
l

T
x Et

f X t t f x x
T

µ
→∞

 = = 
 ∫ ∫  

for all lx R∈ , where ( )f ⋅  is a function integrable with respect to the measure 
π . 

Theorem 2.5. If 0 2
1

2
2

s a

a

r
R

r σ
>

−
 and ( )2

20 2 a aσ µ δ< < +  hold, then for any  

initial value ( ) ( )( ) 2
+0 , 0a aS I R∈ , there exists a unique stationary distribution 

for system (5) and it has the ergodic property. 
Proof. We have obtained that for any initial value ( ) ( )( ) 2

+0 , 0a aS I R∈ , there 
exists a unique global solution ( ) ( )( ) 2

+,a aS t I t R∈ . In order to prove Theorem 
2.5, it suffices to verify the conditions (B.1) and (B.2) in Lemma 2.4. Firstly, we 
are trying to verify that there exists a neighborhood 2

+D R∈  and a nonnegative 
2C -function V such that for any ( ) ( )( ) 2

+, \a aS t I t R D∈ , LV is negative. 
Define 
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( ) ( )22
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It is standard to verify that ( ),a ah S I  has a unique minimum value point 
( ),a aS I

 
in 2

+R . 
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Let ( ) ( )
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a
a
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F I

I
= − , due to the hypotheses (H2) and (H3), there exists a  

constant 0θ > , such that 
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According to inequality (14), we can obtain 

( ) ( )

( )

( )

( )( ) ( )

2
2 1

1 1

32
2

2
2

32
1

1 0

2

2

2

2
1 1

2

1

a a a aa a a a
a a a a

a a a

a a
a a a a a

a a a

a a a
s a

a a
a a a a

aa a
a a a a

a a

r S f Ir S
LV C r f I

k k I
r

f I S I
k

r
C R f I S

k r

f Ir
f I I S

k I

ββ β σ
β β

βσ
µ δ

µ δ

σµ δ
βσ

µ δ

β
β


= − − − − +


 

− + + − +  
+   

  
+ +      = − − − −    +  


 

− − + −  
 

( )
3

1 1 1 1

3

1 1 1 1 .

a a a
a a a a

a a a

a a a
a a

a a a

r
C C f I S C S I

k
r

C C C S I
k

β θβ
λ

µ δ
β θβ

λ
µ δ




≤ − + +
+

 
≤ − + + 

+ 
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Moreover, 

( ) ( )
2 2 2 2

2 1 2
2

2 2
3 2 2 21 2

2 2
3 2 21 2

+
2 2

2 2

.
2 2

a a a
a a a a a a a a

a

a a
a a a a a a a a a a a a a

a a

a
a a a a a a a a a a a

a

r S I
LV S I r S S I

k

r r
S r S r S I I S I

k k

r
S r S r S I I

k

σ σ
µ δ

σ σ
µ δ µ δ

σ σ
µ δ µ δ

 
= + − − + + 

 

   
≤ − + + + + − − + − −   

   

   
≤ − + + + + − − + −   

   

 

Thus 

( )( )1 2

3
3

1 1 1 1

2 2
2 21 2

3
3

1 1 1 1

2 2
22 1

,

2 2

2 2

a a

a a a a
a a a

a a a a

a a a a a a a a a a

a a a a
a a a a a a

a a a a

a a a a

LV L V V h S I

r r
C C C S I S

k k

r S r S I I

r r
C S C C r S I

k k

I r S

β θβ
λ

µ δ

σ σ
µ δ µ δ

β θβ
λ µ δ

µ δ

σ σ
µ δ

= + −

 
≤ − + + − 

+ 

   
+ + + + − − + −   
   

 
= − − + + + + − 

+ 

   
− + − + +   
   

2 .a

 

Choose a sufficiently small ε  such that 

2
213

1 1 1
1

20 min , , ,
4 2 2

a a
a a a a

a a a
a a a a

C r rCC r
k k

σµ δβ θβ λ
ε µ δ

µ δ

−
 

+ −    < < + + + −   
+   

  

 (15) 

2
2

1 1 13
2min , 1 .

22

a a
a

a

r
C K

k

σµ δ
λ

ε

 
+ −   ≥ − + 

 
  

              (16) 

To confirm condition (B.2) of Lemma 2.4, we consider the bounded open set 

( ) 2 1 1, , .a a a aD S I R S Iε ε ε
ε ε+

 
= ∈ < < < < 
 

 

Define 

( ){ } ( ){ }

( ) ( )

1 2 2 2

3 2 4 2

, 0 , , 0 ,

1 1, , , .

a a a a a a

a a a a a a

D S I R S D S I R I

D S I R S D S I R I

ε ε

ε ε

ε ε

ε ε

+ +

+ +

= ∈ < ≤ = ∈ < ≤

   = ∈ ≥ = ∈ ≥   
   

 

Obviously, 1 2 3 4cD D D D Dε ε ε ε ε=   
. Next we will show that 1LV ≤ −  on 

cDε . 
Case 1. If ( ) 1,a aS I Dε∈ , then ( )21a a a aS I I Iε ε≤ ≤ + , and we have 
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3
3

1 1 1 1

2 2
2 22 1

3
1 1 1 1

1 1

2
2

3

1 1

2 2

4 4

2+
2

a a a a
a a a a a a

a a a a

a a a a a

a a a
a a a

a a a

a a
a a a

a a a
a a a

r r
LV C S C C r S I

k k

I r S

rC C C C r
k

r
C C r

k

β θβ
λ µ δ

µ δ
σ σ

µ δ

β θβλ λ
µ δ ε

µ δ

σµ δ β θβ
µ δ

µ δ

 
≤ − − + + + + − 

+ 
   

− + − + +   
   

  
≤ − + − + + + + −   +  

+ −  
− + + + + −

+ 
2

2
2

2
2 3 21 1 1 2 ,

2 2 2 2

a

a a
a

a a a a
a

I

rC r S S I
k

ε

σµ δλ σ

 
 
 
 
 
 
 

+ −  
 + − + + − − 
   
 

 

where ( )( )1 2 ,a aLV L V V h S I= + − . According to the definition of 1C  and  

Inequality (15), we can obtain that 1 1 1
4

CLV λ
≤ − ≤ −  on 1Dε . 

Case 2. If ( ) 2,a aS I Dε∈ , then ( )31a a a aS I S Sε ε≤ ≤ + , and we have 

3
1 1 1 1

1 1

3
3

1 1

2
2

2
2 3 21 1 1

4 4

2

2 .
2 2 2 2

a a a
a a a

a a a

a a a a
a a a a

a a a a

a a
a

a a a a
a

rC CLV C C r
k

r r
C C r S

k k

rC r S S I
k

β θβλ λ
µ δ ε

µ δ

β θβ
µ δ ε

µ δ

σµ δλ σ

  
≤ − + − + + + + −   +  

  
+ − + + + + −   +  
 

+ −  
 + − + + − − 
   
 

 

where ( )( )1 2 ,a aLV L V V h S I= + − . By virtute of the definition of 1C  and  

Inequality (15), we can obtain that 1 1 1
4

CLV λ
≤ − ≤ −  on 2Dε . 

Case 3. If ( ) 3,a aS I Dε∈ , then we have 
55
322 3

5 5a a a aS I S I≤ +  by Young inequali-

ty.  
Hence, 

553
3 32

1 1 1 1

2 2
2 2

2
3 2 2 21

1 1 13

2 3
5 5

2 2
2 2 2 2

,
2

a a a a
a a a a a a

a a a a

a a a a
a

a a a a a
a

a

a

r r
LV C S C C r S I

k k

r
S r S I I

k

r
C K

k

β θβ
λ µ δ

µ δ

σ σµ δ µ δσ

λ
ε


   

≤ − − + + + + − +    +  



+ − + − 

− + + − − 
 


≤ − − +
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where ( )( )1 2 ,a aLV L V V h S I= + − , 

( ) ( )

553
32

1 1 1, 0,

2
2

2
3 2 21

2 3max
5 5

2 .
2 2 2

a a

a a a
a a a a aS I

a a a

a a
a

a a a a
a

r
K C C r S I

k

r
S r S I

k

β θβ
µ δ

µ δ

σµ δσ

∈ +∞


   = + + + − +    +  



+ −   − + + −  

  


 

According to Inequality (16) we can obtain that 1LV ≤ −  on 3Dε . 
Case 4. If ( ) 4,a aS I Dε∈ , similar to the case 3, it is easy to get 

2 2
2 2

2 2
1 1 1 1 1 1

2 2 1.
2 2

a a a a

aLV C I K C K

σ σµ δ µ δ
λ λ ε

+ − + −
≤ − − + ≤ − − + ≤ −

 
According to inequality (16), we obtain that 1LV ≤ −  on 4Dε . That is, the 

condition (B.2) holds. 
The diffusion matrix of system (5) is given by 

2 2
1

2 2
2

0
.

0
a

a

S
A

I
σ

σ
 

=  
 

 

Choose 
( )

{ }2

2 2 2 2
1 2

,
min ,

a a
a a

S I D R
M S Iσ σ

+∈ ⊂
= , we have 

( ) ( ) ( )
2 22 2 2 2 2 2 2

, 1 2
, 1

, , , , , .i j a a i j a i a j a a i j
i j

a S I S I M S I D Rξ ξ σ ξ σ ξ ξ ξ ξ ξ +
=

= + ≥ ∈ = ∈∑  

Then the condition (B.1) in Lemma 2.4 holds. Consequently, system (5) has a 
unique stationary distribution and it is ergodic. The proof is completed. 

From the biological perspective, stationary distribution can be considered as a 
weak stability of the system, and the ergodicity tells us that it is persistent in the 
time average. Moreover, under the assumption 2

1 2 arσ < , the condition in the  

above theorem implies 0 2
1

2
1

2
s a

a

r
R

r σ
> >

−
. It should be mentioned that the long 

time behavior is remained to be unknown if 0 2
1

2
1

2
s a

a

r
R

r σ
< <

−
. The observation  

also indicates that it is difficult to obtain a threshold number for system (5), be-
cause of the logistic growth rate in the avian population. 

3. The Asymptotic Behavior of Stochastic Full System 

For any initial value ( ) ( ) ( ) ( )( ) 40 , 0 , 0 , 0a a h hS I S I R+∈ , system (3) has a unique 
positive solution ( ) ( ) ( ) ( )( ), , ,a a h hS t I t S t I t  on 0t ≥ , and the solution will 
remain in 4

+R  with probability one. In this section, we will investigate the dy-
namical behavior of the stochastic full system. From analysis of Section 3, we can 
easily deduce the following result. 

Theorem 3.1. If 0 1sR < , then for any initial value  
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( ) ( )( ( ) ( )) 40 , 0 , 0 , 0a a h hS I S I R+∈ , the disease of system (3) will tend to extinc-
tion, almost surely. 

The proof is similar to those of theorem 2.3 and hence is omitted. 
If the deterministic system (2) has an endemic equilibrium, then it means the 

disease will persist in the long term. Since stochastic system does not exist en-
demic equilibrium, it is interesting to investigate the asymptotic behavior of 
global positive solution of system (3) around endemic equilibrium. 

Lemma 3.2. Suppose that the function 
( )
x

f x
 is monotone increasing on  

( )0,+∞ , then there exists a unique endemic equilibrium for system (2) if 

01 2R< < . 
Proof. An endemic equilibrium *E  of system (2) satisfie 

( )

( ) ( )

( )
( ) ( )

* *2 * *

* * *

* * *

* * *

0

0

0

0.

a
a a a a a a

a

a a a a a a

h h h a h h

h h a h h h

r
r S S S f I

k

S f I I

S G I S

S G I I

β

β µ δ

β µ

β µ δ γ

 − − =

 − + =

Π − − =


− + + =  
Furthermore, 

( )
( ) ( )
( ) ( )

( ) ( )( )

*
* *

* *

* * *
*

*

, ,

,

a a a h
a h

a a h h a

h h a h h a
h

h h h h h h a

I
S S

f I G I

S G I G I
I

G I

µ δ

β µ β

β β

µ δ γ µ δ γ µ β

+ Π
= =

+

Π
= =

+ + + + +

 

and 

( )
( )

( )
( ) ( )

22* *
*

2* *
0.a a a a a a a a

a a a
a aa a a

r I r I
I

kf I f I
µ δ µ δ

µ δ
ββ

 + +  − − + =
 
 

 

Set 

( ) ( )
( )

( )
( ) ( )

( )
( ) ( )

22

2

22
0

2

:

,
2 4

a a a a a a a a
a a a a

a a aa a

a a a a a a
a a a

aa a

r I r I
H I I

f I f Ik

r I R r k
I

f Ik

µ δ µ δ
µ δ

β β

µ δ
µ δ

β

 + +
= − − +  

 

 +
= − − + − +  

 
 

Recall that ( ) 1a aI f I ≥ , and 
( ) ( )

1lim 1
0

a

t
a

I
f I f→∞

= =
′

, then ( )lim 0at
H I

→∞
>  if  

0 1R > . Since the function ( )x f x  is monotone increasing on ( )0,+∞ , 
( )aH I  has a unique positive zero point *

aI  if 01 2R< < . Hence, system (2) 
has a unique endemic equilibrium ( )* * * * *, , ,a a h hE S I S I= . The proof is completed. 

Theorem 3.3. Suppose the conditions in Lemma 3.2 hold, then system (2) 
possesses a unique endemic equilibrium ( )* * * * *, , ,a a h hE S I S I= . Let  
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( ) ( ) ( ) ( )( ), , ,a a h hS t I t S t I t  be the solution of system (3) with any initial value  

( ) ( )( ( ) ( )) 40 , 0 , 0 , 0a a h hS I S I R+∈ . If 1
3 2: 0

3
a

a
a

r
m

k
β+

= − > ,  

( )2
2 2

3 4: 2 0
3a a a h h hm µ δ σ β β µ δ γ+

= + − − − + + > ,  

( ) ( ) ( )
*

2
3 3*: 2 2 0h a

h h h h
h

G I
m

I

β
µ σ β µ δ γ= − − + + >  and  

( ) ( )
*

2
4 4*: 0h a

h h
h

G I
m

I

β
µ δ γ σ= + + − >   

hold, then 

( )( ) ( )( ) ( )( ) ( )( )( )2 2 2 2* * * *
1 2 3 40

1limsup d ,
t

a a a a h h h ht
E m S s S m I s I m S s S m I s I s

t
η

→∞
− + − + − + − ≤∫  

where 

( ) ( ) ( )

( ) ( )
( )

2 * 2
2 *2 * * * *1
2

* 2 *
2 *2 2 *2 * *2 3
3 4 *

3
3

2 2 2

2 2 .
2

a a a
a a a a a a a

h a h
h h h h h a h h

h

f I
I S S I f I

G I I
S I S I

I

β β σ
η β σ β

β σ
σ σ β β µ δ γ

 
= + + + + + 

 

 
+ + + + + + + 

 

 

Proof. Define 2C  functions as follows 

( )

( )

2*
* *

1 2*

2* *
* *

3 4 *

ln , ,
2

, ln .
2

a aa
a a a

a

h h h h h
h h h

h

I IS
V S S S V

S

S S I I I
V V I I I

I

−
= − − =

− + −
= = − −

 
Using the Itô’s formula, we have 

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

* 2
2 *1

1

2 *
* * 1

2 *
* * * 1

2* *

2 *
* * * 1

2

2

2

2

a a a
a a a a a a a

a a

a a
a a a a a a

a

a a a
a a a a a a a a

a a

a
a a a a a a a a

a

a
a a a a a a

S S r
LV r S S S f I S

S k

r S
S S r S f I

k

r r S
S S S f I S f I

k k
r

S S S f I S f I
k

S
S f I S f I

σ
β

σ
β

σ
β β

β β

σ
β β

 −
= − − + 

 
 

= − − − + 
 
 

= − + − − + 
 

= − − + −

+ − +

 

  

( ) ( ) ( )

( ) ( )

( ) ( )

2 *2* * * 1

2 *2* * * 1

2 2 * *2 2 2 *2* 1

2

+
2

2 2 2

a a
a a a a a a a a

a

a a
a a a a a a a a

a

a aa a a a
a a a a

a

r S
S S S f I S f I

k

r S
S S S f I S I

k

S f Ir S I S
S S

k

σ
β β

σ
β β

σ
β β

≤ − − + + +

≤ − − + +

+ +
≤ − − + + +
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( ) ( ) ( )

( )

( ) ( )

2 2 2* * *

2 * *2 2 *
*21

2 2* *
1

3
2 2 2

+ ,

a
a a a a a a a a

a

a a a a a
a a

a
a a a a a a

a

r
S S S S I I

k

f I S S
I

r
S S I I

k

β β

β β σ
β

β β η

≤ − − + − + −

+ + + +

 
≤ − − − + − 

 

              (17) 

( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )
( )( )

2 2
* 2

2

* * *

22 * 2 *2
2 2

* * * * * *

22 * 2 *2
2 2

2
a

a a a a a a a a

a a a a a a a a a a a a a a

a a a

a a a a a a a a a a a a a a a a

a a a a a

I
LV I I S f I I

I I S f I I I I

I I I

S I f I S I f I S I f I S I f I

I I I

σ
β µ δ

β µ δ µ δ µ δ

σ σ

β β β β

µ δ σ σ

= − − + +

≤ − − + + + − +

+ − +

= + − −

− + − − +

 

( )( ) ( )

( )( ) ( )

( ) ( )

( )

( )

22 2 * 2 *2 * * *
2 2

2 2 22 * 2 *2 * * *
2 2

2 2* 2 *
2

2 *2 * * * *2
2

2* 2
2

2
3

2 4
3 3

4 2
3 3

2
3

a a a a a a a a a a a a

a a
a a a a a a a a a a

a a
a a a a a a

a a
a a a a a a

a
a a a a

S I I I I S I f I

S I
I I I S I f I

S S I I

I S I f I S

S S

β µ δ σ σ β

β µ δ σ σ β

β β
µ δ σ

β β
σ β

β
µ δ σ

≤ − + − − + +

+
≤ − + − − + +

 
≤ − − + − − − 

 
 

+ + + + 
 

≤ − − + − − ( )2*
2

4
,

3
a

a aI I
β

η 
− + 

 

   (18) 

where the basic inequality ( )
2 2 2

, ,
3

x y zxyz x y z R+
+ +

≤ ∈  is used. Similarly, 

   

( ) ( )( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( )( )

( ) ( )

2 2 2 2
* * 3 4

3

* * * *
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+ − + − + 2 *2 2 *2
3 4h hS Iσ+
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       (19) 

And 
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due to the hypotheses (H1) 
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 (20) 

Now, define a 2C  function 4:V R R+ +→  as follows 

( )
( )

( )
*

1 2 3 4*, , , 2 .h a
a a h h h h
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G I
V S I S I V V V V

I

β
µ δ γ= + + + + +  

Combining (17), (18), (19) and (20), we derive that 
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It then follows from Theorem 6 in [21]that 
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1 20
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d .

t
a a a at

h h h h

E m S s S m I s I
t

m S s S m I s I s η

→∞
− + −

+ − + − ≤

∫
 

4. Conclusion 

Most systems in the real world are disturbed by various stochastic factors, such 
as population mobility and meteorological factors including humidity, tempera-
ture and precipitation. Hence the effects of environmental fluctuation on the 
transmission of infectious diseases cannot be neglected. In this paper, we studied 
a stochastic avian-human influenza epidemic model with logistic growth for 
birds. To begin with, we proved the existence and uniqueness of global  

positive solution. For the stochastic avian-only system, set 0 2
2

2

s a a

a a

k
R

β
σµ δ

=
+ +

,  

then the disease will tend to extinction if 0 1sR < , while system (5) will exist a  

unique ergodic stationary distribution if 0 2
1

2
2

s a

a

r
R

r σ
>

−
 and ( )2

20 2 a aσ µ δ< < + .  

Hence it is interesting to note that a threshold number is difficult to obtain be-
cause of the logistic growth rate. For the full stochastic system, the disease will 
tend to extinction if 0 1sR < . From the viewpoint of biology, 0

sR  is a proper 
threshold parameter and the noise intensity in the infected avian population 
plays a key role. Moreover, we also discussed the asymptotic behavior and 
proved that the solution of the system (3) oscillates around corresponding en-
demic equilibrium under some conditions.  

Some interesting topics deserve further consideration. For instance, it has not 
been confirmed that avian influenza virus does not spread from person to per-
son and mutate. Furthermore, the seasonal effect for the transmission of avian 
influenza is neglected in the present model. We hope to study the comprehen-
sive impacts of seasonal variation and environmental noises in the future. 
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