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Abstract 
The statistical arbitrage strategy is one of the most traditional investment 
strategies. There are many theoretical and empirical studies until now. How-
ever, almost all of the statistical arbitrage strategies focus on the price differ-
ence (spread) between two similar assets in the same asset class and exploit 
the mean reversion of spreads, i.e. pairs trading. In this study, we extend the 
strategy to multiple assets in the multi-asset market. Although mean-reverting 
portfolios were derived based on a single criterion in related researches, we 
derive a mean-reverting portfolio by optimizing multiple mean-reversion cri-
teria. We expect that a mean-reverting portfolio based on multiple indicators 
leads to a higher return/risk. We perform an empirical analysis in multi-asset 
market and show the profitability of our strategy. 
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1. Introduction 

Portfolio selection is one of the most important topics in mathematical finance. 
Modern portfolio theory has its genesis in the seminal works of Markowitz [1]. 
In Markowitz analysis, the investment return should be maximized for a given 
level of risk. Therefore, the main problem of portfolio selection is how to derive 
a portfolio with a higher return/risk. Several researchers have been built some 
models to maximize return/risk of the portfolio. For example, there are many 
studies based on methods such as machine learning [2] and uncertainty theory 
[3] in recent years. In addition to maximizing return/risk, there have been pro-
posed methods for constructing portfolios based on various criteria. Risk-based 
portfolio that focuses only on risk such as risk parity [4], factor risk parity [5] 
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and complex valued risk parity [6] is a typical example. 
Also, deriving a mean reverting portfolio is one of the most popular methods 

in portfolio selection [7] [8]. Traditionally, a mean reverting portfolio originated 
from pairs trading. There are many studies on the mean reversion of the price 
difference between two similar assets, i.e. spread until now. A broad range of in-
vestors from individual investors to institutional investors invest in pairs trading 
strategy exploiting the mean reversion of spread [9]. According to [10], there are 
many approaches to the pairs trading strategy such as stocks distance, time series 
model e.g. co-integration and stochastic control. However, since many related 
works of the pairs trading strategy focused on the spread only between similar 
stocks, the investment universe was stocks in a single asset class. In this study, 
we propose pairs trading strategy which invest on assets in different asset classes, 
by deriving the mean-reverting portfolio in not a single asset market but the 
multi-asset market. When the portfolio is far away to a certain extent from the 
average level, we take a position in the direction of mean reversion. Specifically, 
we construct the portfolio based on multiple criteria for the mean reversion de-
fined based on different perspectives. By using the technique of a multi-objective 
optimization problem called Polynomial Goal Programming (PGP), we propose 
a fair approach to combine the quantitative criteria of the mean reversion. We 
aim to obtain the arbitrage opportunity between global asset classes in the mul-
ti-asset market. 

The remaining sections of this paper are organized as follows. In Section 2, we 
briefly describe the related studies of the mean reverting portfolio using the 
time-series model. In Section 3, we introduce multiple indicators denoting the 
“goodness” of the mean reversion and a method of integrating the indicators 
called PGP. In Section 4, we describe the pairs trading strategy in the multi-asset 
market and in Section 5, we verify its effectiveness through empirical analysis 
with the actual financial market data. Finally, we conclude. 

2. Related Work 

Quantitative indicators of the mean reversion have been proposed in various 
forms. Here, we use three types of indicators describing the mean reversion: 
Predictability, Portmanteau Statistics and Crossing Statistics. Predictability in-
dicates how close to the white noise in terms of the variance of time series [11] 
[12]. Portmanteau Statistics indicates how close to the white noise in terms of 
the correlation of time series [13]. Crossing Statistics indicates how many times 
the time series crosses the average level in the unit time interval [14]. As pairs 
trading strategies using predictability, portmanteau statistics, crossing statistics 
alone respectively, there are related researches investing on the implied volatility 
of the U.S. stocks [7] and U.S. stocks [8]. Although these researches are useful in 
that they evaluate the effectiveness of the single quantitative indicator of the 
mean reversion, they do not construct a mean reverting portfolio based on mul-
tiple perspectives. Our method combines Predictability, Portmanteau Statistics 
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and Crossing Statistics by solving the multi-objective optimization problem. We 
expect that a mean-reverting portfolio based on multiple indicators leads to a 
higher return/risk. However, there remains a problem that we have no idea how 
to combine the multiple indicators fairly. As a method of solving such mul-
ti-objective optimization problems fairly, a method called PGP is often used for 
portfolio optimization problems with higher-order moments [15]. In this study, 
we apply PGP to solve the multi-objective optimization problem. Furthermore, 
we extend the strategy to multiple assets in the multi-asset market. The compar-
ison of our research and related work is summarized in Table 1.  

3. Mean Reverting Portfolio 

When N assets exist at the time of t, { }1, ,, ,t t N ty y=y   denotes the log prices 
at the time. When { }1, , Nw w=w   denotes the weight vector of each assets, the 
portfolio can be described as below. 

T
t tz = w y                            (1) 

Logarithmic return of the portfolio tr  can be described as below. 

( )T
1 1t t t t tr z z y y− −= − = −w                    (2) 

The problem in this study is to determine the weight w  in which the portfo-
lio tz  in the Equation (1) is mean reverting. In other words, the object is to 
calculate the weight as much mean reverting as possible between multiple assets. 

3.1. Indicators of the Mean Reversion 

We introduce multiple indicators which show the goodness in terms of the mean 
reversion of the portfolio tz . Specifically, we introduce (1) Predictability, (2) 
Portmanteau Statistics, (3) Crossing Statistics to quantify the mean reversion. 
We start by defining the ith order (lag-i) autocovariance matrix for a stochastic 
process ty  as 

( ) [ ]( ) [ ]( )T
: Cov , .i t i t t t i t i+ + +

 = = − −  tM y y y y y y           (3) 

Note that 0M  represents the covariance matrix. 

3.1.1. Predictability 
Predictability shows how the time series is close to the white noise in terms of  

 
Table 1. Comparison of our research and related work. 

Paper Criteria Investment assets 

Cuturi and d’Aspremont [2017] Pred, Port, Cross 
Implied volatility of 

U.S. stocks (single asset) 

Zhao and Palomar [2018] Pred, Port, Cross U.S. stocks (single asset) 

Our research 
Pred, Port, Cross 

Pred + Port + Cross 
Global futures (multi-asset) 

a. Pred, Port and Cross represent Predictability, Portmanteau Statistics, and Crossing Statistics respectively. 
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the variance. We consider the following stationary time-series. 

1ˆt t ty y ε−= +                          (4) 

1ˆty −  denotes the predicted value of y based on the information of the time of 
1t − . The simplest example of Equation (4) is AR (1) model representing 

1 1ˆt ty yα− −= . tε  denotes the white noise which is independent from 1ˆty −  and 
whose variance is 2

εσ . Taking the variance of Equation (4), 2 2 2
ˆy y εσ σ σ= + . 2

yσ  
denotes the variance of ty  and 2

ŷσ  denotes the variance of 1ˆty − . Predictability 
is defined as follows. 

2
ˆ
2predictability y

y

σ
σ

=                        (5) 

From the definition of predictability, predictability means that the smaller, the 
more mean revering and vice versa. Here, we assume 1ˆty −  can be modeled by 
the following VAR (1) model. Notice that we can extend to VARMA model be-
cause VARMA (p, q) model can be reduced to VAR (1) model [16]. 

1t t t−= +y Ay e                          (6) 

where te  is the white noise. 
Multiplying VAR (1) of Equation (6) by Tw , we can get T T T

1t t t−= +w y w Ay w e . 
Taking its variance, the term on the left hand side is 0

Tw M w  and the first term 
on the right hand side 1

T
t−w Ay  is T T

0w AM A w . Since T 1
1 0

−=A M M  accord-
ing to the property of VAR (1) model, the first term on the right hand side is 

( )1 1 1
0 1 0 0 1

TT T T T T T T
0 1 0 1

− − −= =w AM A w w M M M M M w w M M M w . 
Therefore, predictability of VAR (1) model is as follows. 

( )
T

T

1
1 0 1

0

T

predictability
−

=
w M M M w

w
w M w

                (7) 

3.1.2. Portmanteau Statistics 
Portmanteau Statistics indicator shows how the time series is close to the white 
noise in terms of the correlation. We consider stationary time-series with lag-p. 

1ˆ ˆt t t p ty y y ε− −= + + +                      (8) 

Portmanteau statistics are defined as follows. 

2

1
portmanteau

p

i
i
ρ

=

= ∑                       (9) 

where iρ  is the ith order autocorrelation, and defined as [ ] 2
t t i tz z z+     . 

Autocorrelation of the white noise is zero and portmanteau ≥ 0 by its defini-
tion. The time series is close to the white noise when portmanteau is close to 0. 
Therefore, we can get a mean reverting portfolio by minimizing Portmanteau 
statistics. For a mean reverting portfolio T

t tz = w y , we can get the expression 
for Portmanteau statistics as 

( )
2

0

T

T
1

portmanteau
p

i

i=

 
=  

 
∑

w M w
w

w M w
                (10) 
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3.1.3. Crossing Statistics 
Crossing Statistics indicator counts how many times the time series crosses the 
average level in the time interval T. 

For a stationary Gaussian process, the crossing statistics is defined as follows. 

( )
2

1crossing
1

T

E t
t

y
T =

=
− ∑1                    (11) 

where ( )E ty1  denotes an indicator function that returns 1 when { }1 0t tE y y −= ≤ , 
or 0 otherwise. 

For a centered stationary Gaussian process, we can get the expression for 
Crossing Statistics as 

( )1
1crossing arccos .ρ=
π

                    (12) 

In order to get a spread having many zero-crossing, we minimize 1ρ . There-
fore, for mean reverting portfolio T

t tz = w y , we define the crossing statistics as 

( )
T

1
T

0

crossing =
w M ww
w M w

                    (13) 

3.2. Formulation by Polynomial Goal Programming 

In this section, we determine the optimal weights of the portfolio, integrating 
three mean reversion indicators introduced in the previous section by PGP. Goal 
programming (GP) was first proposed in [17]. GP is a technique that is often 
useful in assisting us to find good solutions to optimization problems with mul-
tiple objectives. 

The GP has many extensions and applications. For example, Liu and Chen 
proposed an uncertain goal programming and [18] constructs expected value 
goal programming model and chance-constrained goal programming model for 
the bicriteria solid transportation problem. 

PGP method is originally proposed in [19] for another extension of GP. The 
PGP method was introduced in the portfolio optimization problem including 
higher moments [20]. The PGP method has the benefit that it can normalize 
sub-objective functions and reflect the preferences of investors. 

The first step in PGP is to get the optimal values *pred , *port , *cross  by 
solving independent minimizing problems whose objective functions are Equa-
tion (7), Equation (10), and Equation (13). We can get the optimal weights of the 
portfolio by solving the problem as follows. 

1 2 3
31 2

* * *arg min
pred port cross

dd d
λ λ λ

+ +
w

              (14) 

where ( ) *
1 predictability predd = −w  

( ) *
2 portmanteau portd = −w  

( ) *
3 crossing crossd = −w  

where 1 2 3, ,λ λ λ  are variables of investor preferences for predictability, port-
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manteau statistics, and crossing statistics. We show the conceptual figure of 
three indicators of the mean reversion and PGP in Figure 1. 

4. Investment Strategy 

In this study, we propose the pairs trading strategy by deriving the mean revert-
ing portfolio based on the three mean reversion indicators introduced in the 
previous section. 

Specifically, the pairs trading strategy includes following three steps. 
Step 1 
For investing on multi-assets, we select the order p that minimize AIC of VAR 

(p) model under the condition that p is equal to or less than the full-order se-
lected in advance. 

Step 2 
We derive the mean reverting portfolios by minimizing the functions, which 

are 1) Predictability, 2) Portmanteau Statistics, 3) Crossing Statistics, 4) the mul-
ti-objective function integrated with Predictability, Portmanteau Statistics, and 
Crossing Statistics. 

Step 3 
We calculate the spread from the moving average of past return of the portfo-

lio derived in Step 2. We get the position when the spread is ±1 standard devia-
tion farther from the average. As a loss cut, we unwind the position if the spread 
is ±2 standard deviations farther from the average. 

 

 
Figure 1. Three indicators of the mean reversion and those integration by PGP. 
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5. Empirical Results 

This section describes the empirical study with real market data. 

5.1. Datasets 

We test our method using real market data from global futures. We show the 
investment universe in Table 2 and the performance statistics in Table 3. The 
data are retrieved from Bloomberg and adjusted Friday-closed weekly return is 
employed. The trading experiment is carried out from March 23th, 2007 to Au-
gust 30th, 2019. Sample size during the period is 650. 

 
Table 2. Investment assets. 

 Investment assets 

Equity 
future 

(16 assets) 

S & P500 
(SP) 

NAS 
DAQ 
(NQ) 

CA 
(PT) 

GB 
(Z) 

FR 
(CF) 

DE 
(GX) 

EU 
(VG) 

ES 
(IB) 

NL 
(EO) 

NO 
(OI) 

CH 
(SM) 

NIKKEI 
(NK) 

TOPIX 
(TP) 

HK 
(HI) 

AU 
(XP) 

SG 
(QZ) 

Bond 
future 

(13 assets) 

US2Y 
(TU) 

US5Y 
(FV) 

US10Y 
(TY) 

US20Y 
(US) 

AU3Y 
(YM) 

AU10Y 
(XM) 

CA10Y 
(CN) 

DE2Y 
(DU) 

DE5Y 
(OE) 

DE10Y 
(RX) 

DE30Y 
(UB) 

GB10Y 
(G) 

JP10Y 
(JB) 

   

a. words in parentheses denote tickers. 
 

Table 3. Summary of statistics of investment assets. 

Performance statistics SP NQ PT Z CF GX VG IB 

Return(%, Ann) 8.4 15.1 5.2 5.8 5.9 6.9 5.2 2.8 

Risk(%, Ann) 18.0 19.2 17.1 17.8 21.1 22.2 21.9 23.4 

Return/risk 0.46 0.79 0.30 0.33 0.24 0.31 0.24 0.12 

Maximum drawdown (%) −56.8 −51.6 −49.1 −49.3 −58.8 −57.8 −61.6 −54.5 

 
Performance statistics EO OI SM NK TP HI XP QZ 

Return(%, Ann) 6.4 7.5 5.8 5.8 3.4 7.9 3.7 4.4 

Risk(%, Ann) 21.0 23.1 18.3 22.7 21.5 22.7 16.8 18.9 

Return/risk 0.30 0.32 0.32 0.26 0.16 0.35 0.22 0.23 

Maximum drawdown (%) −64.2 −64.4 −57.6 −60.4 −58.5 −59.5 −55.6 −60.2 

 
Performance statistics TU FV TY US YM XM CN DU 

Return(%, Ann) 1.2 2.9 4.3 5.8 1.3 3.7 3.8 1.0 

Risk(%, Ann) 1.2 3.5 5.6 10.0 2.5 6.7 5.4 1.1 

Return/risk 1.01 0.84 0.77 0.58 0.51 0.55 0.71 0.91 

Maximum drawdown (%) −2.4 −5.9 −8.8 −17.7 −5.6 −13.0 −10.0 −3.1 
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Performance statistics OE RX UB G JB 

Return(%, Ann) 3.2 5.6 9.2 5.0 2.0 

Risk(%, Ann) 3.0 5.5 12.6 6.4 2.4 

Return/risk 1.03 1.02 0.72 0.78 0.85 

Maximum drawdown (%) −6.0 −7.2 −18.3 −10.0 −5.8 

5.2. Parameters Settings 

We determine the weights of the optimal portfolio on condition that the 
full-order equals to 5 and data in the past 52 weeks are used for the model selec-
tion. Portfolio leverage is determined so that ex-ante risk of the portfolio equals 
to 5% calculated by the covariance matrix based on the data in the past 52 weeks. 
Note that model of predictability is VAR (1) model for the integration of indi-
cators. It is decided to unwind the position every quarter even though we have 
the position. If we have a loss cut, we don’t have the position in the quarter. All 
preferences of predictability, portmanteau statistics, and crossing statistics in 
PGP equal to 1. Moving average of portfolio return is calculated based on data in 
past 13 weeks and average and standard deviation of the spread are calculated 
based on data in past 52 weeks. We call the period from getting the position to 
unwinding the position a strategy. 

5.3. Results 

We show the performance summary of the portfolio based on the indicators of 
the mean reversion in Table 4 and the cumulative return in Figure 2. 

The performance statistics in Table 4 are defined as follows. Return, risk, re-
turn/risk in the investment period are derived from the data in the period we 
have a position. It is better that return and return/risk are larger and risk is 
smaller. Winning percentage of the strategy represent the percentage of the 
number of strategies whose return is positive to the number of all strategies. It is 
better that winning percentage is larger. Maximum drawdown of the strategy 
represents the value of the lowest return of all strategies, indicating that it is bet-
ter that its absolute value is smaller. The proportion of the investment period 
represents the percentage of the period that we have a position to the entire pe-
riod. Average investment period is average weeks in a strategy. 

The return/risk and winning percentage of the strategy in Table 4 show that 
PGP is better than the other single indicator and it suggests the effectiveness of 
combining multiple indicators of the mean reversion. According to Figure 2, 
PGP can integrate all methods effectively although periods that each single me-
thod is valid are different. 

6. Conclusion 

In this study, we propose pairs trading strategy where we derive the mean re-
verting portfolio in the multi-asset market by using the time series model. We  
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Table 4. Performance statistics of mean-reverting portfolios. 

 PGP Predictability Portmanteau Crossing 

Return in investment period (%, Ann) 11.9 9.9 3.1 4.3 

Risk in investment period (%, Ann) 6.9 8.9 4.5 4.8 

Return/risk in investment period 1.73 1.11 0.70 0.90 

Winning percentage of the strategy (%) 59.8 57.3 50.6 54.8 

Maximum drawdown of the strategy (%) −2.5 −4.4 −1.7 −2.0 

Proportion of the investment period (%) 28.0 24.5 30.0 27.7 

Average investment period (weeks) 1.9 1.8 2.4 2.1 

 

 
Figure 2. Comparison of cumulative return. 

 
derive the portfolios based on predictability, which is measured in terms of the 
variance, portmanteau statistics, which is measured in terms of the correlation, 
crossing statistics, which represents how many times the time series crosses the 
average level, and the indicator integrated by a method called PGP. We get the 
empirical results that the return/risk and winning percentage of the strategy are 
best in the case of PGP, and it suggests that it is effective to combine multiple 
indicators of the mean reversion for deriving the mean reverting portfolio in the 
multi-asset market. 
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