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Abstract 
Chemical water treatment problems such as disinfection by-products (DBPs) 
generation have urged on the search for better water treatment technologies 
such as electrochemical water technologies that have been applied successfully 
in different water/wastewater pollutants removal. However, their large expan-
sion is hindered by similar DBPs troubles. Throughout the electrochemical 
process, such carcinogenic substances can be produced depending on the elec-
trode material and applied voltage. This work aims to discuss recent advances 
recorded in dealing with DBPs formation in electrochemical devices. Numer-
ous sophisticated techniques are lately suggested such as an interesting me-
thod employing carbon felt cathodes in which DBPs are less formed, and 
another judicious method utilizing boron-doped diamond anodes in which 
perchlorate production is decreased. Many action plans for removing halides 
from water to reduce DBPs are also listed. Combining electrochemical processes 
and their merging with nanotechnologies for better efficiency in dealing with 
pathogens and DBPs removal are suggested. Secure multi-barrier techniques, 
like distillation, granular activated carbon, and membrane processes have prov-
en their excellent effectiveness in eliminating pathogens and pollutants. Em-
ploying those invincible technologies, thanks to their relatively low costs and 
ease of applications, is an encouraging domain of research with a perspective 
to bypass the DBPs formation during the efficient electrochemical processes. 
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1. Introduction 

Distributed small-scale water treatment units have been generally employed both 
in residents’ buildings and in public facilities (like hospitals, schools, and malls), 
to meet the search for high-quality potable water via eliminating heavy metals, 
hardness, toxins, etc. [1] [2] [3]. Such cleaners do not every time work in a con-
tinuous manner, because of work schedule or vacation leave [4] [5] [6]. Discon-
tinuous functioning of the apparatus leads to the occurrence of water stagnation 
and then augments the microbiome development and pathogenic communities, 
making possible biological hazards to consumers [7] [8] [9]. However, such dis-
tributed cleaners are habitually out of the range of inspection thus they were not 
paid sufficient notice to [10] [11] [12]. Cleaners behave like microbial contami-
nation sources at a certain level and re-disinfection procedures are urgently re-
quired [13] [14] [15]. Re-disinfection remains a professional procedure; howev-
er, it is not handy for residents [1] [16] [17]. Therefore, it arises a problem that 
cleaners could ameliorate water quality whereas intermittent water supply leads 
to possible microbial pollution [18] [19] [20]. Electrolysis is encouraging to re-
solve the problem at the last meter of drinking water supply [1] [21] [22]. 

Investigations on disinfection via electrolysis in the potable water treatment 
field were mentioned rarely [1] [23] [24]. Electrolysis has been considered as a 
substitutional technique for disinfecting potable water [25] [26] [27]. Electrolysis 
is not recently born [28] [29] [30]; however, it is less utilized or less current, 
since power was so costly when electrolysis first came out to the world and elec-
trode materials were also an obstacle [31] [32] [33]. Lately, cost of power di-
minished obviously and green power such as solar gradually expanded [34] [35] 
[36], and more innovative electrode materials have been established well efficient 
in resistance to corrosion and in reducing disinfection by-products (DBPs) pre-
cursors [37] [38] [39]. For instance, platinum anode depicted elevated efficacy in 
forming more active chlorine [40] [41] at lower current densities and that their 
lifetime was not diminished via regular polarity reversal [42] [43] [44]. Stainless 
steel was usually selected as a cathode for hygiene and anti-corrosion perfor-
mances [45] [46] [47]. Such signs of progress are improving the competitiveness 
and technical maturity of electrolysis technology [48] [49] [50]. Further, the most 
implemented event was to furnish electrolyzed sodium hypochlorite in more 
distributed water supply systems for chlorination lately [21] [51] [52]. Research-
ers [53] suggested the disinfection techniques of “liquid-liquid” via moderately 
acidic electrolysis [54] [55] [56]. Nevertheless, there is a lag phase (10 - 50 min) 
in the phenomenon of electrolysis disinfection or chlorination [26] [37] [57]. 
This implicates that the consumer has to wait for at least 10 min to drink safe 
water biologically, even if he commonly directly collects water and drinks it at 
the same time, making the hazard of absorbing pathogenic microbes [58] [59] 
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[60]. Conserving electrolyzed water safe biologically in the intermittent system is 
very important [29]. Despite the fact that much effort for enhancing electrolysis 
utilization in potable water disinfection has been performed until now, more re-
searches require to be dedicated to improving electrolysis disinfection in the in-
termittent drinking water supply to remove microbial pollution provoked by 
water stagnation [1] [29] [61]. 

This work discussed many advances recorded in dealing with DBPs formation 
in ED devices. DBPs control procedures in distributed potable water supply us-
ing electrolysis are presented. An interesting technique employing carbon felt ca-
thodes (CFCs) in which DBPs are less formed is also discussed. Another judicious 
method utilizing boron-doped diamond (BDD) anodes in which perchlorate pro-
duction is decreased is presented. Reducing DBPs generation via cathodic H2O2 
production through electro-peroxone (E-peroxone) technique is briefly reviewed. 
Several action plans for removing halides from water to reduce DBPs are also 
listed. Combining electrochemical techniques for treating water is proved effi-
cient in reducing DBPs, an illustration of such integrations is discussed. 

2. Distributed Potable Water Supply Employing Electrolysis:  
DBPs Monitoring 

Recently, Chen et al. [1] investigated and juxtaposed the anti-bacterial efficacy 
and DBPs potential in various stagnated water samples with techniques of elec-
trolysis and chlorination. They found that electrolysis must be performed during 
at least 30 min to reduce heterotrophic plate counts under the hygiene standard 
(<500 colony-forming units (CFUs)/mL), which was identical to chlorination 
and was better than hydraulic cleaning. They suggested a viable but non-culturable 
calculation model to estimate the viability of bacteria following electrolysis and 
chlorination. Electrolysis depicted better effectiveness than chlorination in re-
ducing the fraction of viable but non-culturable bacteria and opportunistic pa-
thogens. Moreover, electrolysis participated in DBPs monitoring. They employed 
differential spectra to estimate DBPs potential, and the estimates of DlnA350 
and DA272 were smaller in electrolyzed water than those in chlorinated water. 
They utilized standard queueing theory and multi-objective programming to re-
gulate electrolysis. Reducing the waiting time of disinfection and the total run-
ning time were the main objectives of optimization. Circulation flow electrolysis 
and pulse chlorination can keep outlets from distributed purifiers safe biologi-
cally in full time, and decrease the waiting period for consumers to collect safe 
water. The ideal running and pausing time were 0.5 h and 2 h, to diminish the 
mathematical expectation of waiting time to none [1]. 

3. Electrochemical Remedy of Urban Wastewater via Carbon  
Felt Cathodes (CFCs) 

Cotillas et al. [62] used electrolysis with CFCs for the remedy of real effluents 
from urban wastewater treatment facilities (WWTFs) in integration with nu-
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merous anode materials (dimensionally stable anodes-DSAs, conductive diamond 
anodes-CDAs and iron-Fe). The efficiency of electrodisinfection (ED) with CDA 
and DSA was evaluated, proving that total removal of Escherichia coli could be 
obtained at applied electric charges under 0.03 Ah/dm3, and that the disinfection 
technique is more efficacious when employing CDA. In addition, the generation 
of hydrogen peroxide (H2O2) on CFCs restricts the concurrence of DBPs (chlo-
rates, perchlorates, and organic chlorinated by-products (CBPs)), an important 
finding that widens the potential of CDA for the restoration of domestic waste-
water. Utilizing Fe anodes illustrates that it is easy to reach the total elimination 
of microbes with analogous performance to that of CDA (thanks to the partici-
pation of Fenton’s response) and that it is probable to fully eliminate the turbid-
ity of the effluent when running at current densities from 12.50 A/m2. Further, 
Fe is established as the most efficacious anode material (lowest power consump-
tion) at low current densities and CDA is the most suitable one at current densi-
ties bigger than 5 A/m2. The anode-cathode CDA-carbon felt and Fe-carbon felt 
pairs seem to be the most encouraging electrode materials to be utilized in waste-
water remedy technologies. 

4. Formation of Perchlorate throughout Water Electrolysis  
Employing Boron-Doped Diamond (BDD) Anodes 

Bergmann et al. [63] performed electrochemical investigations to assess the pos-
sibilities of perchlorate production in potable water disinfected via direct elec-
trolysis. They employed BDD anodes in the laboratory and commercially ob-
tainable cells at 20˚C. They varied the current density from 50 to 500 A/m2. 
Further, additional anode materials like platinum and mixed oxide were also tried. 
They noted that BDD anodes have a thousand fold higher perchlorate forma-
tion potential juxtaposed to the other electrode materials that were verified. In 
long-term discontinuous tests, all the chloride finally reacted to produce per-
chlorate. The identical finding was obtained when probable oxychlorine inter-
mediates (OCl−, ClO− 

2 , ClO− 
3 ) were electrolyzed in synthetic waters in the ppm 

domain of levels. The trend to generate perchlorate was affirmed when the flo-
wrate of potable water was changed between 100 and 300 L/h and the tempera-
ture augmented to 30˚C. In a continuous flow mode of operation, a higher chlo-
ride level in the water resulted in a lower perchlorate production. This would be 
interpreted via reaction competition of species near and on the anode surface for 
trials both with synthetic and local potable waters. They concluded that the usage 
of electrodes forming highly reactive species must be more carefully restrained 
in hygienically and environmentally oriented uses. 

5. Chlorine Dioxide Generation in the Electrodisinfection  
(ED) of Drinking Water 

Bergmann and Koparal [64] focused on issues of chlorine dioxide generation 
and responses throughout and following electrolysis. They worked on synthetic 
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and actual potable waters employing titanium anodes with IrO2/RuO2 coatings. 
They followed the impact of chloride level up to 250 mg/L, current density (up 
to 500 A/m2), and additional variables on ClO2 production. The ClO2 generation 
is proportional to the Cl− level. Important effects of pH and rotation rate could 
not be found until now studying the electrochemical method. They showed an 
electrochemical pathway of ClO2 formation possibly from chloride or active 
chlorine. 

6. Reducing DBPs Generation via Cathodic H2O2 Production  
through E-Peroxone Technique 

Yao et al. [65] studied the generation of CBPs during surface water treatment by 
a recent suggested electrochemical advanced oxidation process (EAOP), the elec-
tro-peroxone (E-peroxone) process, which combines ozonation with in situ elec-
tro-generation of H2O2 from cathodic oxygen reduction. Because of the improved 
ozone (O3) transformation to hydroxyl radicals (●OH) via electro-generated H2O2, 
the E-peroxone process significantly increased the reduction of ozone-refractory 
micropollutants like clofibric acid and chloramphenicol in the chosen surface 
water confronted to traditional ozonation. Further, the cathodically produced 
H2O2 efficiently quenched hypochlorous acid (HOCl) derived from the anodic 
oxidation of chloride in the surface water. Consequently, the generation of trich-
loromethane (TCM) and chloroacetic acids (CAAs) from the reactions of HOCl 
with dissolved organic matter (DOM) was negligible through the E-peroxone 
process, and comparable concentrations of TCM and CAAs were mostly detected 
in the traditional ozonation and E-peroxone treated water. In contrast, impor-
tant quantities of HOCl can be produced from the anodic oxidation of chloride 
and then gathered in the surface water throughout the traditional electrolysis 
method, which conducted to considerably higher levels of TCM and CAAs in the 
electrolysis treated water. Such findings propose that the E-peroxone method 
could overcome the main restriction of traditional electrochemical techniques 
and furnish an efficient and secure EAOP choice for micropollutant removal via 
water treatment. 

7. Combining Sonochemical and Electrodisinfection (ED)  
with DSA Anodes 

Cotillas et al. [66] worked on the disinfection of real domestic wastewater via 
merging ultrasound (US) irradiation and ED with DSAs. They examined the in-
activation of E. coli throughout the sonochemical disinfection at elevating US 
power. It was not easy to obtain total disinfection, even at the highest US power 
(200 W) dosed by the experimental setup employed. Disinfecting electrochemi-
cally with DSA anodes at various current established that it was required a mini-
mum current density of 11.46 A/m2 to attain the total disinfection. A merged 
sono-electrodisinfection process depicted an interactive effect when integrating 
US irradiation with DSA ED, with a synergy coefficient greater than 200% of the 
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disinfection rate obtained for the highest US power utilized. During such a tech-
nique, hypochlorite and chloramines were found as the major products for the 
disinfection process (neither chlorate nor perchlorate was detected), and the oc-
currence of trihalomethanes (THMs) was far under admissible values. Establishing 
such interactive influence with DSA anodes suggests new efficacious disinfection 
technology, restricting the production of toxic DBPs. 

8. Action Plans for Eliminating Halides from Water to  
Diminish DBPs 

The occurrence of bromide (Br−) and iodide (I−) in source waters conducts to the 
generation of brominated and iodinated DBPs, which are frequently more poi-
sonous than their chlorinated analogs. Watson et al. [67] published a summary 
of research into bromide and iodide reduction from potable water sources. Bro-
mide and iodide elimination methods have been generally categorized into three 
classes: membrane [68] [69] [70], electrochemical and adsorptive technologies. 
They discussed reverse osmosis (RO) [71] [72], nanofiltration (NF), and electro-
dialysis membrane processes. The electrochemical methods examined are elec-
trolysis, capacitive deionization, and membrane capacitive deionization [73]. In-
vestigations on bromide and iodide removal employing adsorptive methods in-
cluded layered double hydroxides (LDHs), impregnated activated carbons, car-
bon aerogels, ion exchange resins, aluminum coagulation [74] [75] [76]. They jux-
taposed halide removal techniques have been compared, and defined areas for 
future study. Research trends may be summarized as follows [67]: 

1) Numerous fields in which more investigation is required to evaluate the bro-
mide and iodide removal potential of treatment engineering have been deter-
mined. The major fields related to DBPs control in potable water via reducing 
halide precursors are optimization of techniques like electrodialysis reversal, elec-
trolysis, LDHs, silver-doped aerogels, and resins for the water treatment plant 
scale; adaptation for commercial production/application of resins, soils and aero-
gels; diminishing the impacts of competing anions and natural organic matter 
(NOM) [28] [77] [78] on adsorptive methods for halide reduction; enhancing 
energy efficiency of membrane processes, etc. [67]. 

2) There is a global demand for more expansion of halide reduction technolo-
gies able to be utilized in industrial water treatment implementations [79] [80] 
[81]. Most halide reduction researches have examined reductions of particular 
anions in isolation from other halides and other potentially competing anions. 
There is a demand to evaluate halide removal techniques towards both bromide 
and iodide, as well as competing anions. Eliminating both halides and NOM at 
the same time constitutes the ideal solution for DBP monitoring via precursor 
elimination [82] [83] [84]. Further potential is in the expansion of hybrid tech-
nologies from the integration of less efficient/limited methods, to attain this op-
timum objective, of efficacious NOM and halide elimination for DBP minimiza-
tion [67] [85] [86]. 
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9. Electrodisinfection-Electrocoagulation (ED-EC) Process  
for Wastewater Reclamation 

Cotillas et al. [87] suggested the scale-up of a merged electrodisinfection-electro- 
coagulation (ED-EC) technique, particularly adapted to the recuperation of real 
domestic treated wastewater, equipped with BDD anodes and Fe bipolar elec-
trodes. The setup works in continuous mode and in the prototype the anode area 
was augmented three times (anodic oxidation) and the bipolar electrode area fif-
teen times (EC) with respect to the system employed at bench scale (Figure 1). It 
is feasible to reach the full and concomitant disinfection and turbidity elimina-
tion through applying current densities within the domain 5 - 10 A/m2. Free and 
combined chlorine species were electrogenerated from the chloride contained in 
the effluents (no reagents were injected) being these species in charge of killing 
pathogens. Also, Fe coagulant species coming from the electro-dissolution of the 
anodic side of bipolar electrodes support turbidity elimination. In the scaled-up 
prototype, a more performant turbidity reduction was attained, thanks to the 
 

 
Figure 1. Electrodisinfection-electrocoagulation (ED-EC) pilot plant for wastewater rec-
lamation [87]. 
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augmentation of the bipolar electrode area. It was established that for electric 
charges under 0.07 kAh/m3 the recuperation of domestic treated wastewater can 
be obtained, averting the generation of toxic chlorates and perchlorates even at 
current densities bigger than 7 A/m2. 

10. Conclusions 

From this work, the following conclusions can be drawn: 
1) Transforming traditional ozonation to the E-peroxone method will not greatly 

augment the production of CBPs throughout the treatment of chloride-containing 
water [65]. Even with comparatively elevated Cl− levels and an anode that pos-
sesses elevated electrocatalytic activity for chlorine formation, the rate of chlo-
rine generation at the anode was much slower than that of H2O2 formation from 
O2 reduction at the cathode. Because of the quenching of HOCl via H2O2, resi-
dual chlorine was not observed throughout the E-peroxone treatment of the 
chosen surface water. Consequently, identical concentrations of TCM and CAAs 
were usually detected in the water treated via traditional ozonation and the 
E-peroxone method. Further, thanks to the acceleration of O3 decay and quench-
ing of HOBr by electrogenerated H2O2, the E-peroxone method considerably 
decreased the generation of bromate throughout the treatment of bromide-con- 
taining water juxtaposed to traditional ozonation. Such findings show that un-
like traditional electrochemical techniques, the productions of halide-derived 
by-products are not a main worry for the E-peroxone process throughout water 
treatment. 

2) The killing pathogens rate of a sonochemical method augments with US 
power irradiated but it is not feasible to obtain the total disinfection of the ef-
fluent in the span of US power utilized by Cotillas et al. [66]. ED employing DSA 
anodes is an efficacious technique to neutralize microbes in wastewater. Synergies 
bigger than 200% of disinfection rate are noted when merging ultrasound irradi-
ation and ED with DSA anodes. Chlorate and perchlorate were not found, being 
hypochlorite and chloramines the major responsibility of the disinfection me-
thod. It was established that the US ameliorates mass transfer phenomena and 
thus, it enhances the formation of disinfectant species in the solution. Also, the 
US favors the suppression of the agglomeration of E. coli cells in the bulk, per-
mitting an efficacious attack of disinfectant species to pathogens. Such findings 
open large perspectives of suggesting excellent disinfection systems that avert the 
DBPs formation. 

3) Employing granular activated carbon post-treatment could greatly reduce 
the concentrations and poisonous effects of DBPs. Moreover, secure multi-barrier 
techniques, like distillation and membrane processes, remain to be suggested, 
tested, and industrially encouraged. Despite their limitations, both adsorptive 
techniques and membrane processes persist to be an encouraging domain of 
research thanks to their relatively low costs and ease of applications [88] [89] 
[90]. 
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