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Abstract 
An adaptive exponential time advancement framework is developed for solv-
ing the multidimensional Navier-Stokes equations with a variable-order dis-
continuous Galerkin (DG) discretization on hybrid unstructured curved gr-
ids. The adaptive framework is realized with cell-wise, variable-order DG re-
finements and a dynamic assembly of elemental Jacobian matrices. The accu-
racy and performance gain are investigated for several benchmark cases up to 
a realistic, three-dimensional rotor flow. Numerical results are shown to be 
more efficient than the use of uniform-order exponential DG for simulating 
viscous flows. 
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1. Introduction 

Computational efficiency is one of the most concerned problems towards indus-
trial applications of high-order methods. While various high-order methods 
have been gaining popularity, their computational efficiency can still be en-
hanced by employing a fast time marching method. To this end, a class of expo-
nential time integration methods has been developed for fast time stepping of 
high-order discretized compressible Navier-Stokes equations, demonstrated in 
an arbitrarily high-order discontinuous Galerkin framework HA3D [1]-[6] on 
hybrid curved elements, although it is generally applicable to any spatial discre-
tization. The developed predictor-corrector exponential (PCEXP) time scheme 
[3] is shown to be able to eliminate the Courant-Friedrichs-Lewy (CFL) restric-
tion with low absolutely temporal errors, showing a special capability of achiev-
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ing fast time stepping for steady and unsteady, inviscid and viscous flows. 
In this work, we exploit the possibility of reducing the computational cost as-

sociated with the use of uniform-order exponential DG methods in a varia-
ble-order solution adaptation frame, and to our best knowledge, it has not been 
reported yet. In the current adaptation framework, cell order of accuracy is dy-
namically determined with a local cell error indicator in a modal discontinuous 
Galerkin method, resulting in a cell-wise adaptive distribution of cell orders and 
variable-order elemental Jacobian matrices. 

The remaining parts of this abstract are organized as follows. Section 2 intro-
duces the spatial discretization method used. Section 3 gives the overview of the 
exponential time-marching methods including the accuracy (p) adaptation me-
thods. Finally, the last section presents some numerical tests and the Caradon-
na-Tung rotor in hover [7] is simulated with the adaptive method for demon-
strating its applicability to real-world problems. 

2. Spatial Discretization 
2.1. Governing Equations 

Governing equations consider the three-dimensional compressible Navi-
er-Stokes equations with a source term in the rotating reference frame  

( ) ( ) ( ), ,c v
t + ⋅ + ⋅ ∇ =U F U F U U S U∇ ∇                 (1) 

where , cU F  are the conventional conservative vector and viscous flux. For ro-
tational reference frame, the source term S  and inviscid flux cF  are defined 
as 
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where ( )T, ,u v w=v  is the absolute velocity, ( )T
, ,x y zω ω ω=ω  is the angular 

velocity of the rotating frame of reference, r = ×v xω  the relative velocity; τ , 
q  the viscous stress tensor and the heat flux vector. ρ , p, and e denote the  

flow density, pressure, and the specific internal energy; 21
2

E e= + v  and  

H E p ρ= +  denote the total energy and total enthalpy, respectively; I  de-
notes the 3 3×  unit matrix; and the pressure p is given by the equation of state 
for a perfect gas  

( )1 ,p eρ γ= −                           (3) 

where 7 5γ =  is the ratio of specific heats for perfect gas. 

2.2. Modal Discontinuous Galerkin Method 

The discontinuous Galerkin discretization of Equation (1) is defined on a com-
putational domain Ω  divided into curved elements of arbitrary shape. The 
present adaptive discontinuous Galerkin method seeks an variable-order ap-
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proximation U  in each element E∈Ω  with a p-order polynomial 
( ) ( ){ }2 ,pP E L E∈ Ω ∀ ∈Ω , namely  

( )
( )

( ) ( )
1

, .
N p

j j
j

t t ψ
=

= ∑U x u x                       (4) 

For 3-D problems ( ) ( )( )( )1 2 3 6N p p p p= + + + . The cell order p is a local 
variable for each cell, thus an adaptive approximation is simply obtained by 
adding or removing terms of (18), accordingly. An orthonormal basis set ( )ψ x  
expressed in the Cartesian coordinates is used to facilitate the implementation of 
the adaptation framework [1] [3]. By multiplying Equation (1) with the adap-
tive-order basis functions, the weak form is obtained 

( )
d

ˆd d d : ,
d

j
i j i i i iE E Et

ψψ ψ σ ψ ψ
∂

= − ⋅ + ⋅ + =∫ ∫ ∫
u

x F n F S x R ∇         (5) 

where the Einstein summation convention is used. Here n̂  denotes the outward 
unit normal of the surface element E∂  of the element E. The flux terms are de-
fined as 

( ) ( )( ) ( ) ( )( ), ; , ,c v c v
h h f h h

±± ±= + + = + +h h h hF F u F u u F F u F u u   ∇ ∇δ δ    (6) 

where cF  is computed by a Riemann solver, and the viscous flux vF  is 
computed with the second approach of Bassi and Rebay (BR2) which introduces 
the local and global lifting operators fδ  and δ  [8]. The BR2 viscous flux dis-
cretization is compact where the global lifting operator is used for volume inte-
gration while the local lifting operator is used face-wised 

,f
E∂

= ∑δ δ                                 (7) 

and the local lifting operator is solved by Galerkin projection on each surface σ ,  

where we introduce the average operator { } ( )1
2

a a a+ −= +  

{ }( )df hE E
u uψ ψ +

∂ ∂
⋅ = ⋅ −∫ ∫δ σ                        (8) 

The implementation of BR2 formulation to exponential schemes uses analyti-
cal global Jacobian [5] [6], which is composed of variable order cell Jacobians in 
the current framework. 

3. Exponential Time Integration 

The PCEXP scheme that originally developed for fast time stepping of 
semi-discretized equations is independent of the choice of spatial discretization. 
And this feature makes it applicable as a general time integration tool. The pre-
vious results show it permits the use of very large time steps [1]-[6], and are 
more efficient than the third-order explicit TVD Runge-Kutta method and the 
second-order implicit backward difference formula [3]. In this section, the 
PCEXP scheme is briefly overviewed and its variable-order implementation is 
discussed. 
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We start with the following semi-discrete system of ordinary differential equ-
ations which may be obtained from a spatial discretization with problem asso-
ciated boundary conditions: 

( )d ,
dt

=
u R u                                (9) 

where ( ) Kt= ∈u u   denotes the vector of the solution variables and 
( ) K∈R u   the right-hand-side term which may be the spatially discretized re-

sidual terms of the discontinuous Galerkin method used in this work. The di-
mension K is the degrees of freedom which can be very large for 3-D problems. 
Without loss of generality, we consider ( )tu  in the interval of one time step, 
i.e., [ ]1,n nt t t +∈ . Splitting the right hand side leads to a different exact expression 

( )d ,
d nt

= +
u J u N u                           (10) 

where the subscript n indicates the value evaluated at nt t= , nJ  denotes the 
Jacobian matrix ( ) ( )

n
n nt t=
= ∂ ∂ = ∂ ∂J R u u R u u  and ( ) ( ) n= −N u R u J u  

denotes the remainder, which in general is nonlinear. Equation (10) admits the 
following formal solution:  

( ) ( )( ) ( )( )1 0
exp exp d ,

t
n n n n nt t tτ τ τ

∆

+ = ∆ + ∆ − +∫u J u J N u        (11) 

Here, the matrix exponential is defined similarly to its scalar version  

( ) ( )
0

exp
!
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m

t
t

m

∞

=

−
− = ∑

J
J                       (12) 

is the integrating factor. The formal solution (11) is the starting point to derive 
the proposed exponential scheme in which the stiff part is computed analytically 
whereas the nonlinear term is approximated numerically. The PCEXP approxi-
mation of (11) is read as 

( ) ( )*
1 .n n nt t= + ∆ ∆u u J R uΦ                     (13) 

( ) ( ) ( )* *
1 1

1 .
2n n nt t+

 = + ∆ ∆ − u u J N u N uΦ              (14) 

where a new matrix function is defined as 

( ) ( )
1

1 : exp ,nt t
t

−

∆ = ∆ −  ∆
JJ J IΦ                   (15) 

and I  denotes the K K×  identity matrix. 
The physical nature of such type of exponential schemes relies on the global 

coupling feature via the global Jacobian matrix J , so that flow transportation 
information can be broadcasted to the whole computational domain without a 
CFL restriction. That is why the exponential schemes behave like a fully implicit 
method but only depends on the current solution, i.e., in an explicit way of for-
mulation (14). While the second-order PCEXP scheme is more appropriate for 
computing unsteady problems, its first-order version, EXP1 only takes the first 
stage of (14), thus is more efficient for steady flows as shown in reference [2] [3] 

https://doi.org/10.4236/jfcmv.2020.82004


S. J. Li 
 

 

DOI: 10.4236/jfcmv.2020.82004 67 Journal of Flow Control, Measurement & Visualization 
 

[5]. In this paper, we used PCEXP for all the test cases for both steady and un-
steady flows. 

3.1. p-Adaptive Time Steps 

The time step of the adaptive exponential DG is dynamically determined via a 
residual monitoring strategy [3]. The local time step t∆  is chosen by the min-
imum of the convection time step ct∆  and the diffusion time step dt∆ , which 
are given below 

( )( )

( )

3D
c

2
3D

d
2

CFL ;
2 1

CFL .
2 41 max ,

3

ht
p c

ht
Mp
Re Pr

µ γ
ρ

∞

∆ =
+ +

∆ =
  +     

v
                 (16) 

Here, p denotes the cell order, v  and c the velocity vector and sound speed 
evaluated at the cell center, d the spatial dimension, and 3Dh  represents a cha-
racteristic size of a 3-D cell defined by the ratio of volume and surface area. 2-D 
computations are also supported by the HA3D solver developed by the author 
which uses a quasi-3D mesh obtained by extruding the 2-D mesh by one layer of 
cells. In the 2-D computations, 2dh  is used instead for eliminating the effect of 
z dimension. Given the cell size z∆  in the z direction, 2Dh  is determined by 

2D 3D

2 3 1 .
h h z

= −
∆

                          (17) 

A proven efficient CFL formula is employed in (16). For the current adaptive 
computations, we take the global minimal time step for time advancement. Us-
ing local time steps is possible, but might suffer from stability issues with very 
large time steps. 

3.2. Adaptation Strategy for the p-Refinement 

An adaptive, p-refinement strategy defines DG polynomial order p in a cell-wise 
way so that higher-order approximations can be placed locally in key flow re-
gions such as those of near body and wake flows. To identify these regions, a 
so-called spectral delay error (SDE) indicator [9] is developed for locating shock 
waves originally. The SDE indicator, relating to the numerical resolution of the 
approximation, can also be used for p-adaptive refinement. Recalling the modal 
DG expansion of (18), we have 

( )
( )

( ) ( )
1

, .
N p

j j
j

t t ψ
=

= ∑U x u x                     (18) 

The truncated expansion ( ),tr tU x  for a lower degree ( 1p − ) is computed by 
cutting the summation 

( )
( )

( ) ( )
1

1
,

N p

tr j j
j

t t ψ
−

=

= ∑U x u x                    (19) 

Applying the truncated expansion to the total energy variable 
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21
2

E e vρ ρ ρ= +  leads to 

( ) ( )( )
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22
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d d
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ρ ρ
β
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−−
= = ∫∫

∫ ∫
tr xU U x

U x x
             (20) 

The variable β  is finally used as the cell error indicator of the p-adaptation. 
The adaptation process starts with 0p =  globally, namely first-order approxi-
mation. And then the cell error indicator β  is computed in each cell after a full 
convergence is obtained in each level of adaptation. The cell order p is updated 
in each cell with the following criterion  

1

9 1
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0, 10

1, 10 10

, 10

p p
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−

− −

−

 ≤


= + ≤ ≤
 ≤

                      (21) 

The above criterion is applied only when the variation of global maximal 
Mach number is within 10−5 to prevent occurring premature adaptive solutions 
that are still in the process of dynamic evaluations. 

3.3. Variable Order Residual Jacobians 

The global residual Jacobian R u= ∂ ∂J  is required by the PCEXP scheme, 
which is composed of cell-wise, variable order Jacobians in the current adapta-
tion framework. Unlike traditional nodal based high-order methods that require 
special treatments of interface order coupling [10] when different order ap-
proximations exist in two adjacent cells, the current modal based method is na-
turally compatible with variable accuracy without any treatment. The dimension 
of global residual Jacobian dynamically depends on the distribution of cell or-
ders so that the dimension of elemental residual Jacobian depends on ( )N p . 

4. Numerical Results 
4.1. Rotating Flow between Two Concentric Cylinders 

The implementation of high-order discontinuous Galerkin discretization for the 
Navier-Stokes equations is verified on the rotating flow between two concentric 
cylinders or Taylor Couette flow [6]. The fluid is driven by two concentric cy-
linders which are rotating with constant angular velocities of 0ω  and 1ω . A 
low Reynolds number 10Re =  is used for maintaining a laminar state, and the 
Reynolds number is defined by the tangential velocity and the radius of the inner 
cylinder. The analytical solution of this problem is given below 

1 1 0 0
0 0 1 1

1 0 0 1 1 0 0 1

r r r r r r r ru r r
r r r r r r r rθ ω ω− −

= +
− −

                  (22) 

where uθ  is the tangential velocity, 0 1r =  and 1 2r =  are the inner radius and 
the outer radius. The isothermal boundary condition is set on the inner cylinder 
with angular velocity 0ω  of Mach number 0 0.2M = . The outer cylinder is sta-
tionary with 1 0ω =  and uses the adiabatic wall boundary condition. The front 
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and the back faces of z-direction use the symmetric boundary condition for 
conducting quasi-2D computations. The order of accuracy is computed on a se-
quence of three meshes, using first- to fifth-order DG schemes ( 0 4P → ). Qua-
dratic curved elements are used on the boundary surfaces. For this case, we focus 
on the error convergences. The 2L  norms of velocity errors are detailed in  

Table 1. They are computed as ( )2 d du uθ− Ω Ω∫ ∫  integrating in the entire  

computational domain Ω . The expected order of convergence is observed for 
all the p levels, thereby verifying the high-order implementation of DG viscous 
discretization and also the use of curved elements. 

4.2. Lid-Driven Cavity Flows 

The developed adaptive framework is evaluated on the lid-driven cavity flows. 
The accuracy-adaptive solutions with 410Re =  are computed and compared 
with the baseline results of Ghia [11]. The top boundary is moving at a velocity 
at 0.2M∞ = , and the left, right, and bottom walls are set as the nonslip boun-
dary condition. The front and the back faces of z-direction use the symmetric 
boundary condition for conducting quasi-2D computations. For the flow condi-
tion of 410Re = , secondary vortices show up in the corners of the cavity and 
high-resolution simulations are usually required. In this work, instead of using 
fine mesh, the adaptive frame is used so that a very coarse mesh ( 20 20× ) can be 
used. In this case, we start by studying the impacts of discrete accuracy on the 
flow solution. Figure 1 presents the streamline plots using the 0 1P → , 0 4P →  so-
lutions. It is observed that the 0 1P →  solution is over-damped, where corner vor-
tices are nearly disappeared due to the presence of high numerical viscosity of 
low-order approximations. The situation is improved when using higher-order 
adaptations where the corner vortices exhibit increased resolution of flow struc-
tures. It is also verified that the 0 4P →  solution is essentially identical to the uni-
form 4P  solution of Figure 2(a). This agreement confirms the effectiveness of  
 
Table 1. Rotating flow between two concentric cylinders: uniform and adaptive order re-

sults of the 2L  error expressed in the 10log  scale. ( )4#P %  denotes the percentage of 

the number of P4 cells of all the cells obtained with the adaptive method using cellwise 
polynomial refinement from P0 to P4 order. 

N cell 20 2×  40 4×  80 8×  order 

0P  −7.962E−01 −1.109E+00 −1.435E+00 1.07 

1P  −1.828E+00 −2.378E+00 −2.880E+00 1.75 

2P  −2.394E+00 −3.459E+00 −4.418E+00 3.36 

3P  −3.292E+00 −4.542E+00 −5.752E+00 4.09 

4P  −4.112E+00 −5.559E+00 −6.941E+00 4.70 

0 4P →  −4.112E+00 −5.559E+00 −6.066E+00 n/a 

( )4#P %  100% 100% 38.5% n/a 
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Figure 1. Lid-driven cavity flow at 410Re =  with polynomial adaptation: 

0 1P → , 0 2P → , 0 3P → , 0 4P →  ( from left to right, from top to bottom). 

 

 
                       (a)                                 (b) 

Figure 2. Lid-driven cavity flow at 410Re = : (a) The baseline uniform 4P  
reference solution; (b) order distribution of the 0 4P →  adaptive solution. 

 
the procedure of variable accuracy refinement. Interestingly, the polynomial re-
finement occurs primarily in the boundary layer and strong shear regions where 
energy cascade occurs that transfers energy from large-scale vortices to 
small-scale ones, as shown in Figure 2(b). A quantitative comparison is shown 
in Figure 3, where horizontal and vertical velocity profiles along the central lines 
of x and y axes are given. We notice that the uniformly and adaptively refined 
solutions are in good agreement with the reference solutions of Ghia [11] while 
the low-order solutions fail to match the results. In Table 2, we compare the  
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(a) 

 
(b) 

Figure 3. Lid-driven cavity flow at 410Re = : Comparison of the velocity 
profiles. (a) x-velocity profile along the line 0.5x = ; (b) y-velocity profile 
along the line 0.5y = . 

 
Table 2. Computational cost of the lid-driven cavity flow at 410Re = . The CPU time is 
normalized by the one of 0 4P → . #Pk  denotes the number of the k-order cells in the per-
centage of total cells. The 0 4P →  adaptive solution achieves a nearly three-fold speedup 
compared to the P4 one. The memory usage of the global Jacobian is expressed in Mega-
bytes (M). 

 0# P  1# P  2# P  3# P  4# P  DOFs CPU time 
Storage 

(M) 

0 4P →  0 0 56.25% 27.50% 16.25% 6,581 1.00 0.52 

0 3P →  0 0 63.00% 37.00% - 5,480 0.46 0.45 

0 2P →  0 2.75% 97.25% - - 3,934 0.17 0.36 

0 1P →  0 100% - - - 1,600 0.02 0.05 

4P  uniform - - - - 100% 14,000 2.70 0.92 
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computational cost of all the runs, all the adaptation procedures offer cost re-
duction in terms of the total degree of freedoms (DOFs) and work unit. Espe-
cially, the 0 4P →  solution that starts up at 0P  and ends up at 4P  offers a two-
fold reduction in DOFs and three times speedup in work units compared with 
the uniform 4P  solution. This case shows that the adaptive strategy is effective 
and accurate for viscous flows. 

4.3. Caradonna-Tung Rotor in Hover 

A real-world problem is considered in this case corresponding to the experi-
mental model hover test conditions of Caradonna and Tung [7]. The experi-
mental model consists of a two-bladed rigid rotor with rectangular planform 
blades with no twist or taper. The blades are made of NACA0012 airfoil sections 
with an aspect ratio of 6 as shown in Figure 4. The computational condition 
uses the case of tip Mach number 0.4395tipM = , collective pitch 8θ =  , and 
the Reynolds number 61.92 10×  based on the blade tip speed and chord. More 
computational parameters are listed in Table 3. For this case, adaptive 0 4P →  
solutions are computed and compared with the experimental data [7]. The adap-
tive order distribution is shown in Figure 5(a) and the cell order is locally re-
fined just around the trajectory of wake vortex shown in Figure 5(b). Compari-
sons of pressure coefficients at different span-wise locations defined by r/R are 
given in Figure 6, where r is the span-wise radius from the rotation axis and R is 
the tip radius defined in Table 3. The results demonstrate the feasibility of using 
p-adaptation framework of exponential time marching for 3-D problems. 
 

 
Figure 4. The experimental configuration of Caradonna-Tung 
rotor in hover [7]. 
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Table 3. Computational parameters of the Caradonna-Tung rotor in hover. 

Parameter Value 

Rotor radius R 1.143 m 

Angular velocity, Ω  1250 rpm 

Tip Mach number, tipM  0.4395 

Reynolds number, Re 1.92 × 106 

Blade chord length, c 0.1905 

Blade aspect ration, AR 6.0 

Blade twist, tθ  0˚ 

Blade collective pitch, cθ  8˚ 

Blade profile NACA0012 

 

 
(a) 

 
(b) 

Figure 5. Caradonna-Tung rotor in hover: (a) 0.4395tipM = , 8θ =   and Re = 1.92 × 
106; adaptive order distribution; (b) vorticity contour of the rotor wake flow. 
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Figure 6. Caradonna-Tung rotor in hover: 0.4395tipM = , 8θ =   and 61.92 10Re = × ; surface pressure coefficient (top); pres-

sure coefficient comparisons at different span-wise, sectional locations r/R (computational:   96,222 cells; experimental [7]: 
 ); trajectory of vortex core comparison (right bottom). 
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5. Conclusions 

An adaptive high-order DG framework has been developed with the PCEXP ex-
ponential time marching scheme. By using the adaptive control strategy, the 
performance of PCEXP scheme is shown to be enhanced in terms of computa-
tional cost and memory usage. The correctness of the variable order implemen-
tation of PCEXP is firstly validated in the case of rotating flow between two 
concentric cylinders. While uniform order solver can deliver formal convergence 
rates, the adaptive 0 4P →  solution can even give a comparable error to the uni-
form 4P  solution. In the cavity flow case, it is found that the use of spectral de-
cay error indicator is effective in capturing key flow structures such that the 
secondary corner vortices can be captured. Performance statistic shows that a 
three-fold reduction in CPU time and a two-fold reduction in DOFs are gained. 
Finally, the adaptive solver is applied to the Caradonna-Tung rotor in hover, 
where three-dimensional wake flows are adaptively captured with the coarse 
mesh. The results are in good agreement to the experimental data [7] thus de-
monstrates its applicability to practical 3D complex flows. 

Acknowledgements 

This work is funded by the National Natural Science Foundation of China 
(NSFC) under the Grant U1930402. The computational resources are provided 
by Beijing Computational Science Research Center (CSRC). 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Li, S.-J. (2013) A Parallel Discontinuous Galerkin Method with Physical Orthogonal 

Basis on Curved Elements. Procedia Engineering, 61, 144-151.  
https://doi.org/10.1016/j.proeng.2013.07.107 

[2] Li, S.-J., Wang, Z.J., Ju, L. and Luo, L.-S. (2017) Explicit Large Time Stepping with a 
Second-Order Exponential Time Integrator Scheme for Unsteady and Steady Flows. 
55th AIAA Aerospace Sciences Meeting, Grapevine, 9-13 January 2017, AIAA Paper 
2017-0753. https://doi.org/10.2514/6.2017-0753 

[3] Li, S.-J., Luo, L.-S., Wang, Z.J. and Ju, L. (2018) An Exponential Time-Integrator 
Scheme for Steady and Unsteady Inviscid Flows. Journal of Computational Physics, 
365, 206-225. https://doi.org/10.1016/j.jcp.2018.03.020 

[4] Li, S.-J. (2018) Efficient p-Multigrid Method Based on an Exponential Time Discre-
tization for Compressible Steady Flows. arXiv:1807.0115. 

[5] Li, S.-J., Wang, Z.J., Ju, L. and Luo, L.-S. (2018) Fast Time Integration of Navi-
er-Stokes Equations with an Exponential-Integrator Scheme. AIAA Aerospace 
Sciences Meeting, Kissimmee, 8-12 January 2018, AIAA Paper 2018-0369.  
https://doi.org/10.2514/6.2018-0369 

[6] Li, S.-J. and Ju, L. (2019) Exponential Time-Marching Method for the Unsteady 

https://doi.org/10.4236/jfcmv.2020.82004
https://doi.org/10.1016/j.proeng.2013.07.107
https://doi.org/10.2514/6.2017-0753
https://doi.org/10.1016/j.jcp.2018.03.020
https://doi.org/10.2514/6.2018-0369


S. J. Li 
 

 

DOI: 10.4236/jfcmv.2020.82004 76 Journal of Flow Control, Measurement & Visualization 
 

Navier-Stokes Equations. AIAA Scitech 2019 Forum, San Diego, 7-11 January 2019, 
AIAA Paper 2019-0907. https://doi.org/10.2514/6.2019-0907 

[7] Caradonna, F.X. and Tung, C. (1981) Experimental and Analytical Studies of a 
Model Helicopter Rotor in Hover. NASA Technical Memorandum 1981-81232, 
NASA, Ames Research Center, Moffett Field. 

[8] Bassi, F. and Rebay, S. (1997) A High-Order Accurate Discontinuous Finite Element 
Method for the Numerical Solution of the Compressible Navier-Stokes Equations. 
Journal of Computational Physics, 131, 267-279.  
https://doi.org/10.1006/jcph.1996.5572 

[9] Persson, P.-O. and Peraire, J. (2006) Sub-Cell Shock Capturing for Discontinuous 
Galerkin Methods. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 9-12 
January 2006, AIAA Paper 2006-112. https://doi.org/10.2514/6.2006-112 

[10] Cagnone, J.S., et al. (2013) A p-Adaptive LCP Formulation for the Compressible 
Navier Stokes Equations. Journal of Computational Physics, 233, 324-338.  
https://doi.org/10.1016/j.jcp.2012.08.053 

[11] Ghia, U., Ghia, K.N. and Shin, C.T. (1982) High-Resolutions for Incompressible 
Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of Com-
putational Physics, 48, 387-411. https://doi.org/10.1016/0021-9991(82)90058-4 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Nomenclatures 

γ : specific heat ratio 
Pr : Prandtl number 
Pk : k-order DG polynomial  
#Pk : cell number of the k-order cells 

2Dh : quasi-2D characteristic cell size 

3Dh : 3D characteristic cell size  
z∆ : mesh dimension of coordinate z 
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