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Abstract 
To address the high environmental risk related to the increased oil tanker 
traffic in the High North, the Norwegian Coastal Administration (NCA) manag-
es one of its vessel traffic service (VTS) centers in the town of Vardø, Norway. 
The fleet of tugboats, controlled by the VTS center operators, patrols the 
coastline to hook-up with any potential drifting oil tanker in the region of in-
terest, before it runs ashore. Presently, the tugboats are controlled manually, 
which is not only challenging but less effective. In this paper, we develop two 
alternative binary integer programming models that give better tugboat poli-
cies in less computational time compared to previous work. Promising results 
with historical data illustrate great potential for optimal environmental risk 
reduction along the northern coast of Norway. 
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1. Introduction 

Maritime transportation plays an essential role in the international trade as it 
provides a cost-effective means to transport large cargo volumes. It is, however, 
characterized by a high level of uncertainty, which creates various risks in terms 
of fatalities, environmental pollution, and loss of property. In particular, oil 
spills from oil tankers grounding accidents have a devastating effect on the ma-
rine ecosystem [1], they involve prohibitive clean-up operations costs [2] and 

How to cite this paper: Assimizele, B. and 
Bye, R.T. (2020) Minimizing the Environ-
mental Risk from Oil Tanker Grounding 
Accidents in the High North. American 
Journal of Operations Research, 10, 83-100. 
https://doi.org/10.4236/ajor.2020.103005 
 
Received: March 10, 2020 
Accepted: May 11, 2020 
Published: May 14, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2020.103005
https://www.scirp.org/
https://doi.org/10.4236/ajor.2020.103005
http://creativecommons.org/licenses/by/4.0/


B. Assimizele, R. T. Bye 
 

 

DOI: 10.4236/ajor.2020.103005 84 American Journal of Operations Research 
 

have a significant impact on the economic activities of the local communities 
[3]. Ship grounding accidents are generally caused by technical and mechanical 
failures, environmental factors and human errors. Presently, there is no consen-
sus on the statistical distribution of the causes of shipping accidents [4], due to 
the different viewpoints of accident analysis. Thus, prevention remains the pri-
mary way of addressing the environmental issues related to maritime oil trans-
port. 

In pursuit of sustainable sea transportation in the High North, the Norwegian 
coastal administration (NCA) administers one of its vessel traffic service (VTS) 
centers in the town of Vardø, Norway. About 200 vessels are monitored daily by 
the VTS center of which five to six oil tankers receive special attention due to 
their size or risk of pollution. Through the automatic identification system 
(AIS), the VTS center obtains static information (cargo, identity, dimensions) 
and dynamic information (heading, position) from oil tankers moving in the re-
gion. Additionally, dynamic models of wind, ocean currents, wave heights and 
weather forecasts are used to predict potential drift trajectories and grounding 
locations of vessels. Moreover, the oil tankers are required by law to move along 
a predefined corridor approximately 50 km away from the coastline. Any oil 
tanker that losess its maneuverability through steering or propulsion failure is 
immediately assigned to the closest patrol tugboat for rescue operation before it 
runs ashore. The size of the zone of interest is about 1100 km of coastline, and 
the number of tankers entering the region makes it difficult to effectively move 
the tugboats at the right place in time. 

Previous works [5]-[9] consider a one-dimension modeling approach and fo-
cus on the minimization of the distances between potentially drifting vessels and 
the nearest tugboat by means of genetic algorithms and a mixed integer pro-
gramming (MIP). Their model and algorithms allocate tugboats to oil tankers, 
but do not give information on the probability of successful hook-up. In addi-
tion, the implementation of a one-dimension modeling approach is problematic, 
as it would give inaccurate geographical positions. Moreover, the dynamic risk 
model developed by [10] prioritizes oil tankers based on their potential oil spill 
volume in case of accidents, but does not suggest tugboat positions. [11] devel-
ops a two-dimension mathematical model, with hook-up probabilities, that mi-
nimizes the expected cost of grounding accidents. Despite these improvements, 
they do not account for uncertainty on weather conditions and use only one 
drift trajectory to predict the path followed by the potential drifting vessel. 
Moreover, the discretization of the region into cells of 5 by 5 km in their models 
is very large for optimal tugboat policies. In this paper, we address these issues 
by developing two alternative mathematical models that use more than one drift 
trajectory and smaller cells size for optimal decisions on tugboat positions in less 
computational time. 

The remainder of this paper is organized as follows. Section 2 formulates the 
tugboat positioning problem and presents the two linear integer models that mi-
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nimize the environmental risk from oil tanker grounding accidents. We discuss 
the integration of a receding horizon control (RHC) scheme into the mathemat-
ical models in Section 3. In addition, we present the numerical results with rea-
listic test instances as well as case studies with historical events in Section 4. Fi-
nally, conclusions and further research are provided in Section 5. 

2. Model Formulation 

Following the formulation approach from [11], we discretize the time horizon 
into a finite set of time periods { }1,2, ,T=   and subdivide the region of in-
terest controlled by the VTS center into a finite number of cells { }1, ,C=  . 
Each tugboat or oil tanker occupies one cell at each time period and can move to 
neighborhood cells depending on the speed, which is influenced by the weather 
conditions. The non-drifting oil tankers move on cells defined in the corridor 
and tugboats in the zone close to shore and approximately parallel to the corri-
dor. Furthermore, the cells are constructed in a way that any tugboat will not 
need more than a time period to move from a given cell, except cells with very 
bad weather conditions at specified time periods. 

For every oil tanker (vessels) v, in the set  , entering the region of interest, 
we consider independent potential drift trajectories at each time period in the 
defined time horizon. Let Ω  represent the set of possible scenarios in the 
planning horizon. Obviously, ω∈Ω  is a combination of drift trajectories (ves-
sel scenarios), or normal routes in absence of an incident, followed by each ves-
sel. That is, ( )1, , vω ω ω=  , where v vω ∈Ω  denotes the vessel scenario for 
vessel v in a given time period and vΩ  is the set of all possible scenarios for 
vessel v. In case of drift, a vessel will follow a path denoted by ( )1 2, , , Tp c c c=  , 

tc ∈ , which is a succession of cells followed by the drifting vessel. Although 
the model inputs are updated every time period as discussed in Section 3, uncer-
tainty on drift trajectories is addressed by predicting more than one single po-
tential path. That is, ( ),

vv i i tt p p ωω = ∀ ∈ , where 
vtω  represents the set of all 

predicted paths for vessel scenario vω  at time of distress call t and we denote by 
N the cardinality of 

vtω . Thus, ( ),v it pω =  represents the potential scenario 
for vessel v, where { }1t T∈ +  is the time the VTS center notices or is 
alerted to the distress of vessel v and ip  are the predicted paths followed by the 
drifting vessel. In the absence of incident, t is set to 1T + . 

Let   be the set of tugboats run by the VTS center in the town of Vardø. At 
the beginning of the planning, each tugboat g ∈  is positioned at an initial 
cell 0gc ∈ . The tugboats can only transit between neighborhood cells at each 
time period, which is determined by their maximal speeds in the planning hori-
zon. Accordingly, let ( )c ⊂   be the set of cells that are adjacent to c∈ . 
Thus, ( )c  represents cells that are reachable from cell c within one time pe-
riod. 

The main objective is to determine the position of tugboats at each time pe-
riod such that the expected environmental consequence of oil tanker grounding 
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accidents is minimized. Thus, let 
v

Kω  denote the environmental consequence 
associated with oil tanker v if vessel scenario vω  occurs and no tugboat manage 
to rescue it before it runs ashore. In the next subsection, we present the risk  
model 

v
Riskω  for any vessel scenario vω  that helps to derive the risk for all  

scenarios ω , which represents the main function to be minimized in the two 
binary integer programming (BIP) models presented in Subsection 2.2. 

2.1. Environmental Risk Modeling for Drift Grounding Vessels 

A risk is a combination of the probability of an event and its consequence. In 
drift grounding accidents, the risk model for each potential vessel scenario vω   
is the product of the probability of failure 

v
Rω , the probability of grounding 

given that it is adrift, 1
v

Qω−  and the environmental consequence, 
v

Kω :  

 ( )1
v v v v

Risk R Q Kω ω ω ω= −                     (1) 

An oil tanker might start drifting at any time period with a certain probability,  

v
Rω , that depends on the internal factors from the oil tanker itself as well as 

wind and current forces, and wave heights. 
In Equation (1), 

v
Qω  represents the probability of successful hook-up of the  

drifting vessel with the nearest tugboat. The VTS center detects every drifting oil 
tanker and informs the nearest tugboat. Practically, the tugboat response time is 
determined by three main factors: 1) preparation time (reaction time and mobi-
lization time), 2) sailing time and 3) connection or towing time. [10] illustrates 
the need for further analysis on the weather dependent towing time which is 
about 2 hours. Once the drifting vessel is reached by the tugboat, the time lt  
left before it runs ashore will determine the probability of successful hook-up. 
Thus, the probability of successful hook-up with the nearest tugboat given that  
the vessel is adrift, denoted by 

v
Qω , mainly depends on lt . Accordingly, let 

vgcQ ω  denote the probability of successful hook-up by tugboat g with drifting  

vessel v, given tugboat g is in cell c at time of distress call t and vessel v follows 
scenario ( ),v it pω = . This probability depends on the position of the nearest 
tugboat at time of distress call, currents, wind, waves, distance of the vessel to 
shore and property of the drifting vessel such as type, draft, size and loading  
condition. All these dependencies are captured in 

vgcωλ , which is the predicted 

time left once tugboat g, in cell c at time of distress call t, reaches the drifting 
vessel in scenario ( ),v it pω = . As in [11], we determine 

vgcωλ  using the maximal  

operational speed of the nearest tugboat and its location relative to the drifting 
vessel’s trajectory, and set  

 
( )( )
( )( )

min

min

exp
.

1 exp
v v v

v

v v

gc
gc

gc

t
Q

t

ω ω ω

ω

ω ω

β δ λ

δ λ

−
=

+ −
                (2) 

The parameter mint  represents the minimal remaining drift time required to at-
tempt a hook-up. If 

vgcωλ  is less than mint , 
vgcQ ω  is set to 0. In addition, 
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[ ]0,1
vω

β ∈  and 0
vω

δ ≥  represent the influence of weather conditions [11]. 

The environmental consequence of a drift grounding accident depends on the 
expected oil spill size (S) and the impact (I) of one tonne of oil on the environment  
[10], such that 

v v v
K S Iω ω ω= . It is important to note that spill size and spill impact  

include both bunker and cargo spill. The spill size depends on the vessel type, 
size, loading condition and on whether the ship is single or double hulled. It is  
found by combining the probability of an oil spill 

vω
τ , given that the vessel run 

aground with the expected oil outflow in the event of oil spill, 
v

Oω , in scenario 

vω : 
v v v

S Oω ω ωτ= . Moreover, Dwt
v v v

Oω ω ωα γ= , where 
vω

α  is the expected 

outflow rate given as a percentage of the tank content volume and 
vω

γ  is the  

volume of cargo and bunker oil as a percentage of vessel dead-weight tonnage Dwt. 
The oil spill impact per tonne depends on the type of oil spilled and the vul-

nerability of the affected area. This is modeled as environmental sensitivity index,  

v
Eω  and oil type significance index, 

v
Lω  (

v v v
I E Lω ω ω= ). The value 

v
Eω  de-

pends on oil type and incorporates the vulnerability and ecological significance 
of the geographical area. In addition, 

v
Lω  describes the significance of the oil  

type spilled. In case of drift for a given vessel scenario ( ),v it pω = , the impact of 
an oil spill will depend on the distance to shore, the weathering processes, the 
chemical composition of the oil, and the drift trajectory, which depends on the 
local wind and current condition. 

2.2. Binary Integer Programming Models 

We present two different binary integer models that minimize the expected en-
vironmental consequences from oil tanker grounding accidents. The first model, 
BIP-1, allocates the potential drifting vessels to the nearest tugboat, while the 
second model, BIP-2, focuses on the number of vessels that could not be rescued 
within a predefined threshold. 

2.2.1. BIP-1 Model 
We denote by 

vgcz ω  a binary variable taking the value 1 if tugboat g is in cell c  

and is the nearest tugboat at time of distress call t of vessel scenario ( ),v it pω = , 
and 0 otherwise. In addition, we assume that the probability of vessel scenarios 

vω  is mutually independent. This assumption may not always be reasonable, 
however, we justify it by the fact that vessels in distress are usually spatially se-
parated with few common environmental factors [11]. Thus, the probability for  
a scenario ω  is given by 

vv
R Rω ωω ω∈

=∏ . In addition, we define gctx  as a  

binary variable taking the value 1 if tugboat g is in cell c at time t, and 0 other-
wise. The environmental risk function to be minimized is then written as fol-
lowed:  

 ( )
( )

( )
1 , ,

1 ,
v v v

v v
gc gc

g c
f z R Q K zω ω ω ω

ω ω ω ω ω= ∈Ω ∈ ∈ ∈

= −∑ ∑ ∑ ∑
  

        (3) 

where z  denotes the vector with components 
vgcz ω . The binary integer pro-

https://doi.org/10.4236/ajor.2020.103005


B. Assimizele, R. T. Bye 
 

 

DOI: 10.4236/ajor.2020.103005 88 American Journal of Operations Research 
 

gramming model below is developed to optimally minimize the objective func-
tion ( )f z  subject to some constraints. 
 

Indices  

t time period 

tc c c′  cells 

v vessel 

g tugboat 

ip  path; ( )1, ,i Tp c c=   

vω  scenario for vessel v; ( ),v it pω =  

ω  scenario for all vessels ( )1, , vω ω ω=   

Sets  

  set of cells 

  set of vessels 

  set of tugboats 

  set of time period 

( )c ⊆   set of cells adjacent to cell c 

vtω  set of paths for vessel scenario ( ),v it pω =  

vΩ  set of scenarios for vessel v 

Ω  set of all possible scenarios 1 vΩ = Ω × ×Ω  

Parameters  

v
Kω  environmental consequence associated with vessel v in scenario vω  

v
Rω  failure probability for vessel scenario vω  

Rω  probability for scenario ( )1, , vω ω ω=  , 
vv

R Rω ω∈
=∏ 

 

vgcQ ω  probability of successful hook-up by tugboat g with vessel v, given 

 tugboat g is in cell c at time of distress call t and vessel v follows 

 scenario ( ), ,
vv i i tt p p ωω = ∈  

0 gc  initial position of tugboat g 

Variables  

gctx  binary variable taking the value 1 if tugboat g is in cell c at time t, 

 0 otherwise 

vgcz ω  binary variable takes the value 1 if tugboat g is in cell c at time of distress 

 call t and is allocated (nearest) to vessel v doing scenario vω  

 

Formulation  

 ( )min f z                                (4) 

s.t.  

 
( )

{ }1 , , \ 0
tg

gct gc t
c c

x x g c t′−
′∈

′≥ ∀ ∈ ∀ ∈ ∀ ∈∑


                 (5) 
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 1 ,gct
c

x g t
∈

= ∀ ∈ ∀ ∈∑


                       (6) 

 
0, ,0 1

gg cx g= ∀ ∈                         (7) 

 ( ), , , ,
vgc gct v vz x g c p t vω ω≤ ∀ ∈ ∀ ∈ = ∈Ω ∈               (8) 

 
,

1 ,
vgc v

g c
z vω ω ω

∈ ∈

= ∀ ∈ ∈∑
 

                    (9) 

 { }, 0,1 , , , ,
vgct gc v vx z g c t vω ω∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈Ω ∈            (10) 

Constraints (5) ensure tugboats move only between neighborhood cells. In 
addition, constraints (6) make sure tugboats are located in only one cell at each 
time period. The initial positions of tugboats are given in constraints (7), such 
that cell 0gc  is the position of tugboat g at the beginning of the time horizon. 
Constraints (8) and (9) allocate nearest tugboats to vessel scenarios and ensure 
that each vessel scenario vω  is allocated to only one tugboat.  

2.2.2. BIP-2 Model 
The main objective of this model is to minimize the expected environmental 
consequence associated with the potential drifting vessel scenarios that could not 
be rescued within a predefined threshold ρ . From the previous approach,  

 
( )( )
( )( )

min

min

exp
,

1 exp
v v v

v

v v

gc
gc

gc

t
Q

t

ω ω ω

ω

ω ω

β δ λ

δ λ

−
=

+ −
                   (11) 

where 
vgcωλ  represents the estimated drift time left once the vessel is reached by 

the tugboat. Thus, we define 
vgcH ω  as a binary parameter taking the value 1 if 

tugboat g is at cell c at time of distress call t and is not able to hook-up with ves-
sel v under scenario ( ),v it pω = , within a predefined threshold time ρ  and 0 

otherwise. Additionally, let 
v

yω  be a variable that takes the value 1 if no tugboat  

is able to hook-up with vessel v, doing scenario vω , within a predefined thre-
shold ρ  and 0 otherwise. The expected environmental consequence to be mi-
nimized in then written as follow.  

 ( )
( )1 , , ,

v v
V v v v

g x R K yω ω ω
ω ω ω ω= ∈Ω ∈Ω ∈

= ∑ ∑
 

                (12) 

where x  denotes a vector with components gctx . 
In addition to ( )g x , we define ( )u x  as a function that gives incentive to 

tugboats to optimally position themselves once the threshold is reached:  

 ( )
( )1 , , ,

.v

V v v v

gct

v c g gc

K x
u x ω

ω ω ω ω ωλ= ∈Ω ∈Ω ∈ ∈ ∈

= ∑ ∑ ∑ ∑
   

            (13) 

The BIP-2 model that minimizes the objective functions ( )g x  and ( )u x  is 
presented below.  
 

Additional Parameters  

vgcωλ  
Drift time left once tugboat g reaches vessel v, given tugboat g is in cell c 
at time of distress call t and vessel v follows scenario ( ), ,

vv i i tt p p ωω = ∈ . 
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Continued 

vgcH ω  
Takes the value 1 if tugboat g is at cell c and is not able to hook-up with 
vessel v under scenario vω , within a predefined threshold ρ , and 0 
otherwise. 

Additional Variables  

v
yω  

binary variable taking the value 1 if no tugboat is able to rescue vessel v 
in scenario vω , 0 otherwise. 

 
Formulation  

 ( ) ( )min g x u x+                          (14) 

s.t.  
constraints (5)-(7) in BIP-1 and 

( ) 1
v vgc gct v

c g
H x yω ω ω

∈ ∈

≤ + − ∀ ∈Ω∑ ∑ card
 

            (15) 

 { }, 0,1 , , , ,
vgct v vx y g c t vω ω∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈Ω ∈          (16) 

Constraints (15) capture the vessels that could not be reached within the prede-
fined threshold and the other constraints are the same as in BIP-1.  

3. Integrating the BIP Models with the RHC 

In this section, we integrate the RHC algorithm with the BIP models to account 
for uncertainty in weather conditions and dynamic changes of the input para-
meters. A RHC is a class of algorithms that make use of explicit process models 
to predict future response of a system, with optimizations as intermediate steps. 
The main idea is to dynamically run the BIP model in real time, while imple-
menting only the first time period over the whole planing horizon (see [11] and 
references therein). Indeed, updating the parameters with new accurate values 
improves the output quality of the BIP model. For instance, information about 
vessels entering and leaving the region of interest as well as available operational 
tugboats need to be updated at every time period. Moreover, it is certainly effi-
cient to pro-actively include next time periods in the BIP model. We then im-
plement the RHC algorithm as present in Table 1. 

4. Test Cases 

We present the numerical settings in this section and discuss the quality and 
performance of the BIP models, compared with previous work, run with realistic 
test cases. In addition, the promising results with a historical event highlight the 
important features derived from the BIP models as a decision support tool for 
the NCA managers. 

4.1. Computational Settings 

The region of interest covers about 1100 km of coastline and the corridor is on 
average 50 km away from the coast. We discretize the region by collecting the  
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Table 1. RHC-BIP algorithm. 

Step 1: 

1) Let : 1t = ; 
0, ,0 : initial value

gg cx =  g∀ ∈ . 

2) Obtain the predicted drift trajectories and velocity of vessels and tugboats. 

3) Run the BIP model to obtain the optimal positions of patrol tugs. 

4) Implement only the first period of the BIP solution. 

Step 2: 

1) Let : 1t t= + ; 
0, ,0 1:

gg c gctx x −=  g∀ ∈ . 

2) Update the predicted drift trajectories and velocity of vessels and tugboats. Additionally, update 
the current number of oil tankers moving along the zone of interest as well as the available number 
of tugboats. Update the probability of successful hook-up matrix. 

3) Run the BIP model to obtain the optimal tugboats policy. 

4) Implement the first period of the new BIP solution. 

Step 3: Go back to Step 2 or stop if 1t T= + . 

 
center position of each cell and transform them into Cartesian coordinates for 
input to the model. Once the optimal solution of the BIP model is obtained, the 
drift trajectories, oil tanker and tugboat positions are transformed back to geo-
graphical coordinates. The drift trajectories are obtained using the AIS and 
Norwegian Meteorological Institute (NMI) information with the algorithm pre-
sented in Section 3 (see [11] for details). Presently, the VTS center operates a fleet 
of two tugboats with an average operating speed of 12 knots and vessels typically 
have an operating speed of 14 - 15 knots. The VTS center subdivided the region 
into two zones, where each zone is assigned to one tugboat. The first zone spans 
from the border to Russia to Torsvåg and the second zone from Torsvåg to Røst. 
Moreover, the hook-up probabilities are computed using the formula presented 
in Section 2.1. We set the threshold 5ρ =  hours, which is larger than the 2 
hours average towing time. This threshold value for BIP-2 can be changed ac-
cording to the VTS center operators needs as discussed in Section 4.2.4. 

Previous research, on the same region of interest, conducted by [10] presents 
a resource specific environmental sensitivity index ranging from 1 to 9. The 
coastal segments used for summarizing index values are presented in Figure 1. 
Because of data accessibility, we randomly generate the environmental conse-
quence according to a uniform random variable on [ ]1,9  times an absolute 
normal random variable with a mean value of 5 and a standard deviation of 2. 
This is a reasonable assumption as the main goal is to dynamically assess tugboat 
positions according to different consequence levels. Moreover, the only unavail-
able input data required to compute the environmental consequence is the 
Deadweight Tonnage (Dwt) of each vessel, which is accessible to the VTS center 
operators for practical implementation of the BIP model. The failure probability 
is randomly chosen between [ ]0.01,0.09  as in [11]. Specific settings to each 
case are presented in the corresponding subsections. 
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Figure 1. Coastal segments used for summarizing index values, shown in color codes on 
10 by 10 km squares [10]. 
 

All computations are carried out on a personal computer with an Intel® Pen-
tium® IV 3.0 CPU and 4.0 GB of RAM. The optimization software Gurobi 6.0.5 
is used as a solver, with Python 2.7.3 and Pyomo 4.2, on Microsoft Windows 7. 

4.2. Test Cases with Realistic Data 

This subsection discusses the numerical results for three different cases. For each 
case, the models are run for a total of 24 hours with 100 different instances and 
the environmental risk associated with each scenario is computed according to 
the tugboat positions from each model policy. A total number of 6 oil tankers, 
which correspond to the current average daily number, are used with random 
geographical positions, directions and speeds. 

4.2.1. Case 1: Large Cell Size 
In this case, we use a large cell size of 5 by 5 km as in [11] and compare the qual-
ity and performance of their MIP-U model with those of BIP-1 and BIP-2 mod-
els. In order to allow comparison with the MIP-U model from previous work, we 
only use one predicted drift trajectory for vessel scenario vω . The numerical 
results in Table 2 present the statistical values of the computational time and 
environmental risk related to each scenario from the test instances for each 
model. 

As presented in Table 2, the average environmental risk is almost the same for 
the three models with a value of ≈11.8. In addition, the standard deviations from 
the BIP-1 and BIP-2 models are slightly higher than that of MIP-U. The compu-
tational time is, however, very high for the MIP-U model. In fact, the BIP-1 is 
about three times faster than MIP-U model. Moreover, the BIP-2 performance is 
by far better than those of MIP-U and BIP-1. Nevertheless, the performances of 
these three models are acceptable for this case with small scenarios number and  
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Table 2. Numerical results for 5 by 5 km cells size. 

 MIP-U BIP-1 BIP-2 

 Risk Time (min) Risk Time (min) Risk Time (min) 

Avrg 11.758 1.91 11.838 0.565 11.818 0.077 

Std.dev 7.992 1.91 8.055 0.565 8.119 0.077 

Min 1.835 5.589 1.835 4.535 1.835 1.378 

Max 41.244 11.786 41.244 6.633 41.648 1.744 

 
large cells size. Essentially, the models are run dynamically, where only the first 
step of one hour is implemented, as described in Table 1, and each of these 
models can be run every hour. The very small standard deviation of the compu-
tational time in BIP-2 model is a good indication of its great performance when 
considering lager scenarios number discussed in the next subsection. 

4.2.2. Case 2: Smaller Cell Size 
In this subsection, we consider smaller cells size, of 2 by 2 km, compared to that 
of Case 1. We also use a single path as in Case 1 to predict the drift trajectory of 
each potential drifting vessel. The computational results for MIP-U and BIP-2 
models are presented in Table 3. The BIP-1 model is not included because it 
could not yield an optimal solution after two hours of run time with each test 
instance of this case. 

Noticeably, the computational time for both MIP-U and BIP-2 models have 
considerably increased compared to the values in Case 1. Indeed, smaller cells 
size increases the overall number of cells, which consequently expand the prob-
lem size. The average run-time for the BIP-2 model is equal to 5.5 minutes with 
a standard deviation of only 3.7 minutes. These values are significantly smaller 
than those of MIP-U model. The average performance of almost 40 minutes, 
with a maximum of 91.5 minutes, in the MIP-U model makes it impossible to be 
run dynamically and account for uncertainty with the algorithm in Table 1. 
Thus, the BIP-2 model is well suited for large number of cells as well as possible 
extension of the current region of interest. Additionally, the environmental risk 
for this case with small cells size has considerably decreased compared to that of 
Case 1. In fact, a large number of cells increase the flexibility of tugboats and al-
low for better positions that minimize the environmental risk. 

4.2.3. Case 3: Large Scenarios Number 
This case study uses the same cells size of 2 by 2 km as in Case 2. The main dif-
ference, however, is the total number of scenarios. In this case, we use three drift 
trajectories to predict the path followed by each vessel scenario vω . In addition, 
we consider up to two possible vessel scenarios vω  for each scenario ω . This 
gives more than 50,000 total number of scenarios. 

For this case, none of the MIP-U and BIP-1 models are able to provide solu-
tions in less than three hours. Thus, the numerical results presented in Table 4  
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Table 3. Numerical results for 2 by 2 km cells size. 

 MIP-U BIP-2 

 Risk Time (min) Risk Time (min) 

Avrg 2.209 39.246 2.253 5.495 

Std.dev 4.784 42.937 5.070 3.717 

Min 4.034 5.589 3.577 1.378 

Max 43.983 91.458 43.983 11.069 

 
Table 4. Results for 2 by 2 km cells size with BIP-2 model. 

 Initial Risk Optimal Risk Time (min) 

Avrg 31.172 3.769 12.116 

Std.dev 10518 5.762 2.808 

Min 8.637 0.349 5.589 

Max 57.159 46.940 14.498 

 
are those of the BIP-2 model only. The initial risk column in Table 4 represents 
statistical values of the potential environmental risk if no action is taken from 
tugboats. Fortunately, the computational time is less than 15 minutes for all the 
instances considered in this case, which makes it possible to combine the BIP-2 
model with the receding horizon control algorithm described in Table 1. Ob-
viously, the increase in the computational time compared to Case 2 is due to the 
larger number of scenarios and cells, which also increase the complexity of the 
model. Additionally, the average and standard deviation of the risk have in-
creased from 2.253 to 3.769 and 5.070 to 5.762, respectively (see Table 3 and 
Table 4). This could be misleading, but it is important to note that in Case 2, 
only one drift trajectory is used to predict the path followed by a drifting vessel, 
which does not account for uncertainty such as wave heights, ocean currents and 
wind forces, and underestimates the real potential risk. 

4.2.4. Case 4: Different Values of the Threshold 
In order to assess the effect of the threshold parameter on the solution values, we 
run the BIP-2 model with a real world instance. The test case consists of 9 vessels 
that moved along the coast over a time period of 15 hours. In addition, we dis-
cretize the region of interest into small cells with large scenarios number as in Case 
3. The expected potential risk for each value of the threshold { }2,5,8,11ρ ∈  is 
presented in Table 5. 

As presented in Table 5, the average potential environmental risk increases 
with higher values of the threshold. For 2ρ =  the expected risk is equal to 4.39, 
whereas that of 11ρ =  is equal to 4.92. We notice, however, that the standard 
deviation of the risk decreases with higher values of the threshold. For 2ρ =  
the standard deviation of the risk is equal to 4.62, whereas that of 11ρ =  is 
equal to 4.12. Moreover, the maximum value of the risk decreases from 24.85 to  
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Table 5. Results for different values of the threshold with BIP-2 model. 

Threshold 2 5 8 11 

Avrg 4.396 4.440 4.726 4.919 

Std.dev 4.622 4.448 4.294 4.122 

Min 1.036 1.245 1.928 3.105 

Max 24.848 22.355 20.065 18.711 

 
18.71 while the minimum risk value increase from 1.04 to 3.11 for a threshold 
value of 2 and 11, respectively. The threshold parameter gives more options with 
regards to tugboats policy and level of risk. That is, the managers at the VTS 
center will have to make a trade-off between having smaller standard deviation 
of the risk and avoiding the high risk of worst case scenarios at the expense of 
higher expected potential risk. 

The histograms in Figure 2 present the distribution of the potential environ-
mental risk for different decisions that are computed using different values of 
ρ . As shown in Figures 2(a)-(c), the tails of the distribution reduces with 
higher values of ρ . This is mostly seen on the upper tails, which represent the 
very rare but high risk scenarios. The policy for 11ρ =  in Figure 2(c) consi-
derably shapes the distribution of the risk by reducing the maximum, but also 
decreases the probability of smaller risk values. 

4.3. Test Case with Historical Data 

This case is based on real-world data collected from the AIS and the NMI. In ad-
dition, we use the basemap library in python to plot and draw the maps with 
drift trajectories, oil tanker and tugboat positions. 

On the 21st of Mars 2014 at 11:10 pm, a vessel ran aground at N71˚01.06'N - 
028˚27.46'E after 15 hours of drifting time. At the time of distress call, the near-
est tugboat was located at N70˚40'N - 023˚40'E and unsuccessfully tried to reach 
the drifting vessel. The tugboat was located about 142.8 km away from the vessel 
at the time of grounding. We ran the BIP-2 model for 15 hours prior to the time 
of distress call for more than 50,000 scenarios. A total number of 7 vessels, in-
cluding the one that ran ashore, sailed along the region during the considered 
planning horizon. Their corresponding directions, latitudes, longitudes and 
speeds over ground (SOG) at the beginning of the planning horizon are pre-
sented in Table 6. 

The results for the first and last time period are presented in Figure 3, where 
the initial positions of vessels are presented in red cycles. In addition, the drift 
trajectories for vessel scenarios that could be rescued within the threshold of 

5ρ =  hours are in blue solid lines while those of the vessels that could not 
hook-up with tugboats within the threshold are in red solid line. Moreover, the 
actual drift trajectory followed by the grounded vessel is represented by green 
solid lines. Furthermore, the two red directed lines in Figure 3(b) are the actual  
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Table 6. Case 3A. Initial vessel directions, positions and SOG.  

Vessel 1 Vessel 2 Vessel 3 Vessel 4 Vessel 5 Vessel 6 Vessel 7 

North-west North-west West-north West-north North-west West-north North-west 

N71˚1 N71˚51 N69˚28 N71˚27 N71˚25 N71˚42 N68˚55 

N028˚02 N022˚56 N013˚51 N028˚29 N026˚27 N019˚48 N012˚10 

12.4 13.4 12.5 12.6 13.0 13.1 9.1 

 

 
(a) 

 
(b) 
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(c) 

Figure 2. Case 4. Distribution of the risk for different value of ρ . The histograms show the reduction of the tail of the dis-
tribution as ρ  increases. (a) 2ρ =  vs. 5ρ = ; (b) 2ρ =  vs. 8ρ = ; (c) 2ρ =  vs. 11ρ = . 

 

 
Figure 3. Results of the first and last time period. The dashed green lines represent the suggested movements 
of tugboats by the BIP-2 model and the predicted drift trajectories that can be rescued within the threshold 

5ρ =  hours are in blue solid lines while those in red solid line represent the drift trajectories of the vessels 
that could not be hook-up within the threshold. Additionally, the actual drift trajectory of the vessel that ran 
aground is represented by green solid lines. The two directed red lines close to shore in (b) are the actual po-
sitions of tugboats from the time of distress call to the time of grounding. (a) t = 1; (b) t = 15. 
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paths followed by the tugboats from the time of distress call to the time of 
grounding while the green solid lines linked with small squares represent the 
suggested movement of the tugboats by the BIP-2 model. The risk values asso-
ciated with each vessel scenario is not presented in the figure because of the 
small visibility. 

A zoomed-in view of the grounded location in Figure 4 shows actual and pre-
dicted drift trajectories of the grounded vessel. Additionally, the small square in 
red represents the suggested position of the nearest tugboat by the BIP-2 model 
at the time of distress call. The probability of successful rescue of the grounded 
vessel by the nearest tugboat with the BIP-2 model is about 0.70 while that of the 
actual tugboat policy is equal to 0.2. That is, the grounded vessel had 70% chance 
to be rescued if the BIP-2 model was implemented. For this particular case, the 
hook-up probability is slightly smaller than that of the MIP-U model of 0.86 in 
[11]. However, their model does not account for the uncertainty on drift trajec-
tory. Thus, in the long run, more vessels in distress will have very low probabili-
ty of successful hook-up with tugboats as very few number of scenarios are con-
sidered. 

5. Conclusions 

In this paper, we address the environmental risk related to oil tankers traffic 
along the northern Norwegian coast. We propose two alternative models that 
could be used as a decision support tool at the vessel traffic service center in the 
town of Vardø, for a better rescue operation of vessels in distress. These models 
are combined with a receding horizon control algorithm to account for uncer-
tainty in weather conditions and to dynamically update the constantly changing 
input parameters. For a large cells size of 5 by 5 km and smaller scenarios number,  
 

 
Figure 4. Zoom on the grounded vessel. The predicted drift trajectories are represented in blue solid lines and the actual 
drift trajectory of the vessel that ran aground is represented in green solid lines. In addition, the red directed path 
represents the positions of the nearest tugboat from the time of distress call to the time of grounding. The dashed green 
lines are the suggested movements of the nearest tugboat by the BIP-2 model. 
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the BIP-1 and BIP-2 models outperform the MIP-U model from previous work. 
In addition, the BIP-A model is by far faster than the other models for large sce-
narios number and small cells size, which considerably adds complexity to the 
models. Moreover, the BIP-2 model gives flexibility to the operators at the VTS 
center by allowing different threshold levels. The results with a historical event 
indicate better decisions on tugboat patrol operations. 

It is recommended that further research is done to determine the optimal fleet 
of tugboat required as well as extension of the BIP models to consider other 
search and rescue operations. Additionally, more research is needed to better 
assess the failure probabilities of vessels, oil spill rates, probability of oil spill 
given that an accident has occurred, and environmental consequence of the re-
gion of interest. Furthermore, the hook-up probability formula could be better 
estimated with empirical data including new features such as “ship arrestors” 
newly acquired by the NCA to reduce the speed of the drifting vessels. 
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